
A Behavioral Notion of Robustness for Software Systems
Changjian Zhang

Institute for Software Research
School of Computer Science
Carnegie Mellon University
changjiz@andrew.cmu.edu

David Garlan
Institute for Software Research
School of Computer Science
Carnegie Mellon University

garlan@cs.cmu.edu

Eunsuk Kang
Institute for Software Research
School of Computer Science
Carnegie Mellon University

eskang@cmu.edu

ABSTRACT
Software systems are designed and implemented with assumptions
about the environment. However, once the system is deployed,
the actual environment may deviate from its expected behavior,
possibly undermining desired properties of the system. To enable
systematic design of systems that are robust against potential envi-
ronmental deviations, we propose a rigorous notion of robustness
for software systems. In particular, the robustness of a system is de-
fined as the largest set of deviating environmental behaviors under
which the system is capable of guaranteeing a desired property. We
describe a new set of design analysis problems based on our notion
of robustness, and a technique for automatically computing robust-
ness of a system given its behavior description. We demonstrate
potential applications of our robustness notion on two case studies
involving network protocols and safety-critical interfaces.
ACM Reference Format:
Changjian Zhang, David Garlan, and Eunsuk Kang. 2020. A Behavioral
Notion of Robustness for Software Systems. In Proceedings of The 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2020). ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Software systems are designed, implemented, and validated with
certain assumptions about the environment in which they are de-
ployed. These assumptions include, for example, the expected be-
havior of a human user, the reliability of the underlying communi-
cation network, or the capability of an attacker that may attempt
to compromise the security of the system.

Once the system is deployed, however, the actual environment
may deviate from its expected behavior, either deliberately or erro-
neously due to a change in the operating conditions or a fault in
one of its parts. For instance, a user interacting with a computer
interface may inadvertently perform a sequence of actions in an
incorrect order; a network may experience a disruption and fail
to deliver a message in time; or an attacker may evolve over time
and obtain a wider range of exploits to compromise the system.
In these cases, the system may no longer be able to satisfy those
requirements that relied on the original assumptions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In well-established engineering disciplines such as aerospace,
civil, and manufacturing, deviations of the environment from the
norm are routinely and explicitly analyzed, and systems are de-
signed to be robust against these potential deviations [32]. In soft-
ware engineering, however, a standard notion of robustness seems
to be missing, although a similar concept has been studied in cer-
tain domains. For example, in distributed systems and networks,
the notion of fault tolerance has been long studied (e.g., [15, 27]),
but does not generalize to other types of software systems where
environmental deviations are not limited to network failures or
delays. In control engineering, a system is said to be robust if small
deviations on an input result only in small deviations on an out-
put [40]. This notion of robustness, however, is intended for systems
whose behaviors are modeled using continuous dynamics, and not
particularly suitable for discrete behaviors observed in software.

In this paper, we propose an approach for designing robust sys-
tems based on a mathematically rigorous notion of robustness for
software. In particular, we say that a system is robust with respect
to a property and a particular set of environmental deviations if the
system continues to satisfy the property even if the environment
exhibits those deviations. Furthermore, we define the robustness of
a software system as the set of all deviations under which a system
continues to satisfy that property. Based on these definitions, we
propose an analysis technique for automatically computing the
robustness of a system given its behavioral description.

We argue that robustness itself is a type of software quality that
can be rigorously analyzed and designed for. The goal of a typical
verification method is to check the following: Given system𝑀 , en-
vironment 𝐸, and property 𝑃 , does the system satisfy the property
under this environment (i.e.,𝑀 ∥𝐸 |= 𝑃)? Our notion of robustness
enables formulation of new types of analyses beyond this. For in-
stance, we could ask whether a system is robust against a particular
set of environmental deviations; given two alternative system de-
signs (both satisfying 𝑃), we could rigorously compare them by
generating deviations against which one design is robust but the
other is not, and; given multiple system properties (some of them
more critical than others), we could compare the environmental
deviations under which the system can guarantee them.

We envision that our notion of robustness can be used to support
design activities across various domains. In this paper, we demon-
strate the application of our approach in two different domains:
(1) human-machine interactions, where we adopt the well-studied
models of human errors from the industrial engineering and hu-
man factors research [6, 35] and show how our method can be used
to rigorously evaluate the robustness of safety-critical interfaces
against such errors, and (2) computer networks, where our method
is used to rigorously compare the robustness of network protocols
against different types of failures in the underlying network.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Changjian Zhang, David Garlan, and Eunsuk Kang

InPlace OutOf
Place

E

X

Editing

Confirm
Xray

Confirm
Ebeam

Fire
Xray

Fire
Ebeam

Beam
Delivered

BB

EnterEnter

EX

UpUp

UpUp

Enter

NotSet

Xray
Mode

Ebeam
Mode

SwitchTo
Ebeam

SwitchTo
Xray

X E

SetSet

(b) Beam Setter (MB)

(a) Treatment Interface (MI) (c) Spreader (MS)

Select
Mode

Confirm
Mode

FireBeam

Task
Complete

X E

Enter

B

(d) Operator Task (E)

XE

X E

X E

Editing

Confirm
Xray

Confirm
Ebeam

Fire
Xray

Fire
Ebeam

Beam
Ready

SetSet

EnterEnter

EX

UpUp

UpUp

B

(e) Redesigned Interface (M'I)

Beam
Delivered

Enter

B B

Figure 1: Labelled transition systems for a radiation therapy system.

The contributions of the paper are as follows:

• A systematic approach to designing systems that are robust
against potential environmental deviations (Section 2),

• A formal notion of robustness for software systems (Sec-
tion 3) and a set of analysis problems that evaluate system
designs with respect to their robustness (Section 4),

• Algorithmic techniques for automatically computing the ro-
bustness of a system and generating succinct representations
of robustness (Section 5), and,

• A prototype implementation of the robustness analysis and
demonstrate our approach on two case studies involving
human-machine interfaces and network protocols (Section 7).

2 MOTIVATING EXAMPLE
This section illustrates how our proposed notion of robustness
may be used to support a new type of design analysis and aid a
systematic development of systems that are robust against failures
or changes in the environment.
(1) Analysis under the normative environment. As a motivat-
ing example, consider the design of a radiation therapy system
similar to the well-known Therac-25 machine [29]. State machines
in Figure 1 describe three components in the system, including the
treatment interface (𝑀𝐼), which allows the operator to control the
device by performing interface actions (e.g., X for setting the beam
mode to X-ray), the beam setter (𝑀𝐵), which determines the current
mode of radiation therapy (electron beam and X-ray, which delivers
roughly 100 times higher level of current than the former), and
spreader (𝑀𝑆), which is put in place during the X-ray mode in order
to attenuate the effect of the high-power X-ray beam and limit
possible overdose. The overall behavior of the therapy system, as
modeled here, is captured by the composition of the state machines,
𝑀 = (𝑀𝐼 ∥𝑀𝐵 ∥𝑀𝑆).

The radiation therapy system is associated with a number of
safety requirements, one of which states that the spreader can be
removed only when the beam is delivered in the electron mode.
This requirement may formally be stated as the following property
in linear-temporal logic (LTL) [33]:

G(BeamDelivered ∧OutOfPlace ⇒ EbeamMode)

where BeamDelivered is a proposition that holds when𝑀𝐼 enters
the state with the same name (and similarly for other propositions).

During a normal treatment process, a therapist is expected to
perform the following tasks: Select the correct therapy mode for
the current patient by pressing either X or E, confirm the treatment
data by pressing Enter and then finally initiate the beam delivery to
the patient by pressing B. This normative behavior of the operator
is modeled as state machine 𝐸 in Figure 1.

Suppose the designer of the machine wishes to check whether
the therapy system satisfies its safety requirements, assuming that
an operator carries out the tasks as expected. More generally, this
can be formulated as the following common type of analysis task:

Does the system, under the environment that behaves
as expected, satisfy a desired property?

To perform this task, one may apply a verification technique such
as model checking [12] to check whether the composition of the
machine and the environment satisfies a desired property (however,
other analysis techniques may be just applicable as long as they can
be used to check𝑀 ∥𝐸 |= 𝑃). Performing this analysis confirms that
the system indeed satisfies the safety property that the spreader is
always in-place during the X-ray mode.
(2) Analysis of undesirable environmental deviations. In com-
plex systems, the environment may not always behave as expected,
and possibly undermine assumptions that the system relies on to
fulfill its requirements. For instance, in interactive systems, human
operators are far from perfect, and inadvertently make mistakes
from time to time while performing a task (e.g., perform a sequence
of actions in a wrong order) [35]. In the context of a safety-critical
system such as medical devices, some of these operator errors, if
permitted by the interface, may result in a safety violation.

To discover these potential environmental deviations, the de-
signer decides to perform the following analysis task:

What are possible ways in which the environment
may deviate from its expected behavior and cause a
violation of the property?

Given the therapy system models (𝑀 and 𝐸) and property 𝑃 , the
designer can use an existing analysis tool (e.g., LTSA [30]) to check
whether𝑀 |= 𝑃 . The analyzer may return a counterexample trace
that demonstrates how the operator could deviate from its norma-
tive behavior (as captured by 𝐸) and cause a violation of 𝑃 .

A Behavioral Notion of Robustness for Software Systems ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Suppose that one such trace contains the following sequence of
operator actions: ⟨X,Up, E, Enter,B⟩. This trace depicts a scenario
in which the operator accidentally selects the X-ray mode, corrects
the mistake by pressing up and selecting the electron beam mode,
and then carrying on the rest of the treatment as intended (by con-
firming the mode and firing the beam). This sequence of operator
actions, however, may lead to a violation of the safety property
𝑃 in the following way: When the operator presses B, the beam
setter may still be in the process of mode switch (i.e., state Switch-
ToBeam), causing the beam to be delivered in the X-ray mode while
the spreader is out of place. This scenario corresponds to one type
of failure that caused fatal overdoses in the Therac-25 system [29].
(3) Robustness analysis. Having discovered how the operator’s
mistake could lead to a safety violation, the designer modifies the
treatment interface to improve its robustness against the possible
error. In this redesign, shown in Figure 1(e), the operator can press
B to fire the beam only after the mode switch has been carried out
by the beam setter. As the next step, the designer wishes to ensure
that the system, as re-designed, is robust against the operator’s
mistake (i.e, it continues to satisfy the safety property even under
the misbehaving operator).

The designer could check 𝑀 ′ |= 𝑃 where 𝑀 ′ is the redesign, if
no errors returned, it means that𝑀 ′ is robust against the mistake
and also 𝑀 ′ can work under any environment. However, it’s not
always the case. More likely, the analyzer may return another trace
representing a new mistake, and it does not necessarily mean that
the system is robust against the old one.

Instead, the designer can use our tool to perform the following
robustness analysis task:

What are possible environmental deviations under
which the new design satisfies the property but the
old design does not?

Given the original system model 𝑀 , modified system model 𝑀 ′,
normative environment 𝐸, and property 𝑃 , our analysis returns a
set of traces (expressed over environmental actions), each trace
describes a scenario where system𝑀 ′ satisfies the property but 𝑀
does not. For example, one of the traces is the sequence of oper-
ator actions discussed above: ⟨X,Up, E, Enter,B⟩, confirming that
the redesign has correctly addressed the risk of a possible safety
violation due to this particular type of mistake by the operator.

The analysis steps (2) and (3) may be repeated to identify poten-
tial safety violations due to other types of operator mistakes and
further improve the robustness of the system.

3 ROBUSTNESS NOTION
This section describes the underlying formalism used to model
systems and environments (namely, labelled transition systems).
We then formally define the notion of robustness and introduce a
new set of analysis problems that leverage this notion to reason
about the robustness of systems.

3.1 Preliminaries
In this work, we use labelled transition systems to model the be-
haviors of machines and environment.

3.1.1 Labelled Transition System. A labelled transition system 𝑇 is
a tuple ⟨𝑆, 𝛼𝑇 , 𝑅, 𝑠0⟩ where 𝑆 is a set of states, 𝛼𝑇 is a set of actions
called the alphabet of 𝑇 , 𝑅 ⊆ 𝑆 × 𝛼𝑇 ∪ {𝜏} × 𝑆 defines the state
transitions (where 𝜏 is a designated action that is unobservable to
the system’s environment), and 𝑠0 ∈ 𝑆 is the initial state. An LTS is
non-deterministic if ∃(𝑠, 𝑎, 𝑠 ′), (𝑠, 𝑎, 𝑠 ′′) ∈ 𝑅 : 𝑠 ′ ≠ 𝑠 ′′; otherwise, it
is deterministic.

A trace 𝜎 ∈ 𝛼𝑇 ∗ of an LTS 𝑇 is a sequence of observable actions
from the initial state. Then, the behavior of 𝑇 is the set of all the
traces generated by 𝑇 , denoted 𝑏𝑒ℎ(𝑇).

3.1.2 Operators. For an LTS𝑇 = ⟨𝑆, 𝛼𝑇 , 𝑅, 𝑠0⟩, the projection opera-
tor ↾ is used to expose only some subset of the alphabet of𝑇 . Given
𝑇 ↾𝐴 = ⟨𝑆, 𝛼𝑇 ∩𝐴, 𝑅′, 𝑠0⟩ where for any (𝑠, 𝑎, 𝑠 ′) ∈ 𝑅, if 𝑎 ∉ 𝐴, then
(𝑠, 𝜏, 𝑠 ′) ∈ 𝑅′, i.e., 𝑎 will be hidden by 𝜏 ; otherwise, (𝑠, 𝑎, 𝑠 ′) ∈ 𝑅′.

The ↾ operator can also be applied to traces. We use 𝜎 ↾𝐴 to
denote the trace that results from removing all the occurrences of
actions 𝑎 ∉ 𝐴 from 𝜎 .

The parallel composition | | is a commutative and associative
operator which combines two LTSs by synchronizing their com-
mon actions and interleaving the remaining actions. Let 𝑇1 =

⟨𝑆1, 𝛼𝑇 1, 𝑅1, 𝑠10⟩ and 𝑇2 = ⟨𝑆2, 𝛼𝑇 2, 𝑅2, 𝑠20⟩, 𝑇1 | |𝑇2 is an LTS 𝑇 =

⟨𝑆, 𝛼𝑇 , 𝑅, 𝑠0⟩ where 𝑆 = 𝑆1 × 𝑆2, 𝛼𝑇 = 𝛼𝑇 1 ∪ 𝛼𝑇 2, 𝑠0 = (𝑠10, 𝑠
2
0),

and 𝑅 is defined as: For any (𝑠1, 𝑎, 𝑠1′) ∈ 𝑅1 and 𝑎 ∉ 𝛼𝑇 2, we have
((𝑠1, 𝑠2), 𝑎, (𝑠1′, 𝑠2)) ∈ 𝑅; for any (𝑠2, 𝑎, 𝑠2′) ∈ 𝑅2 and 𝑎 ∉ 𝛼𝑇 1,
we have ((𝑠1, 𝑠2), 𝑎, (𝑠1, 𝑠2′)) ∈ 𝑅; and for (𝑠1, 𝑎, 𝑠1′) ∈ 𝑅1 and
(𝑠2, 𝑎, 𝑠2′) ∈ 𝑅2, we have ((𝑠1, 𝑠2), 𝑎, (𝑠1′, 𝑠2′)) ∈ 𝑅.

3.1.3 Properties. In this work, we consider a class of properties
called safety properties [26]. In particular, a safety property 𝑃 can
be represented as a deterministic LTS that contains no 𝜏 transitions.
It defines the acceptable behaviors of a system 𝑇 over 𝛼𝑃 , and
we say that an LTS 𝑇 satisfies 𝑃 (denoted 𝑇 |= 𝑃) if and only if
𝑏𝑒ℎ(𝑇 ↾𝛼𝑃) ⊆ 𝑏𝑒ℎ(𝑃).

We check whether an LTS 𝑇 satisfies a safety property 𝑃 =

⟨𝑆, 𝛼𝑃, 𝑅, 𝑠0⟩ by automatically deriving an error LTS 𝑃𝑒𝑟𝑟 = ⟨𝑆 ∪
{𝜋}, 𝛼𝑃, 𝑅𝑒𝑟𝑟 , 𝑠0⟩ where 𝜋 denotes the error state, and 𝑅𝑒𝑟𝑟 = 𝑅 ∪
{(𝑠, 𝑎, 𝜋) |𝑎 ∈ 𝛼𝑃 ∧ �𝑠 ′ ∈ 𝑆 : (𝑠, 𝑎, 𝑠 ′) ∈ 𝑅}. With this 𝑃𝑒𝑟𝑟 LTS, we
test whether the error state 𝜋 is reachable in 𝑇 | |𝑃𝑒𝑟𝑟 . If 𝜋 is not
reachable, then we can conclude that 𝑇 |= 𝑃 .

3.2 Robustness Definition
Let𝑀 be the LTS of a machine, 𝐸 the LTS of the environment, and
𝛼𝐸𝑀 = 𝛼𝑀 ∩ 𝛼𝐸 the common actions between the machine and
the environment. Then, we say 𝑀 ↾𝛼𝐸𝑀 represents the set of all
environmental behaviors that are permitted by machine𝑀 .

Machine𝑀 is said to be robust against a set of traces 𝛿 ⊆ 𝑏𝑒ℎ(𝑀 ↾
𝐸𝑀) if and only if the system satisfies a desired property under a
new environment (𝐸 ′) that is capable of additional behaviors in 𝛿

compared to the original environment (𝐸):

Definition 3.1. Machine𝑀 is robust against a set of traces 𝛿 with
respect to environment 𝐸 and property 𝑃 if and only if 𝛿 ⊆ 𝑏𝑒ℎ(𝑀 ↾
𝛼𝐸𝑀), 𝛿 ∩ 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀) = ∅, and for every 𝐸 ′ such that 𝑏𝑒ℎ(𝐸 ′ ↾
𝛼𝐸𝑀) = 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀) ∪ 𝛿 ,𝑀 | |𝐸 ′ |= 𝑃 .

The set of traces in 𝛿 are also called deviations of 𝐸 ′ from 𝐸 over
𝛼𝐸𝑀 . Then, the robustness of a machine is defined as the largest set

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Changjian Zhang, David Garlan, and Eunsuk Kang

of environmental deviations under which the system continues to
satisfy a desired property:

Definition 3.2. The robustness of machine𝑀 with respect to envi-
ronment 𝐸 and property 𝑃 , denoted Δ(𝑀, 𝐸, 𝑃), is the set of traces
𝛿 such that𝑀 is robust against 𝛿 with respect to 𝐸 and 𝑃 , and there
exists no 𝛿 ′ such that 𝛿 ⊂ 𝛿 ′ and𝑀 is also robust against 𝛿 ′.

beh(E � ↵EM)
<latexit sha1_base64="y4EHErQfBAvc+WWP7UAw0XQBmwo=">AAACCnicbZDLSsNAFIYnXmu9RV26GS1C3ZREBF0WpeBGqGAv0IQwmU6aoZOZMDMRSujaja/ixoUibn0Cd76N0zYLbf1h4OM/53Dm/GHKqNKO820tLa+srq2XNsqbW9s7u/befluJTGLSwoIJ2Q2RIoxy0tJUM9JNJUFJyEgnHF5P6p0HIhUV/F6PUuInaMBpRDHSxgrso5DE1Qb0sjRGMhWCSzqINfQQMwZsBLengV1xas5UcBHcAiqgUDOwv7y+wFlCuMYMKdVznVT7OZKaYkbGZS9TJEV4iAakZ5CjhCg/n54yhifG6cNISPO4hlP390SOEqVGSWg6E6RjNV+bmP/VepmOLv2c8jTThOPZoihjUAs4yQX2qSRYs5EBhCU1f4XYRIKwNumVTQju/MmL0D6ruYbvziv1qyKOEjgEx6AKXHAB6uAGNEELYPAInsEreLOerBfr3fqYtS5ZxcwB+CPr8wfx1ZnD</latexit><latexit sha1_base64="y4EHErQfBAvc+WWP7UAw0XQBmwo=">AAACCnicbZDLSsNAFIYnXmu9RV26GS1C3ZREBF0WpeBGqGAv0IQwmU6aoZOZMDMRSujaja/ixoUibn0Cd76N0zYLbf1h4OM/53Dm/GHKqNKO820tLa+srq2XNsqbW9s7u/befluJTGLSwoIJ2Q2RIoxy0tJUM9JNJUFJyEgnHF5P6p0HIhUV/F6PUuInaMBpRDHSxgrso5DE1Qb0sjRGMhWCSzqINfQQMwZsBLengV1xas5UcBHcAiqgUDOwv7y+wFlCuMYMKdVznVT7OZKaYkbGZS9TJEV4iAakZ5CjhCg/n54yhifG6cNISPO4hlP390SOEqVGSWg6E6RjNV+bmP/VepmOLv2c8jTThOPZoihjUAs4yQX2qSRYs5EBhCU1f4XYRIKwNumVTQju/MmL0D6ruYbvziv1qyKOEjgEx6AKXHAB6uAGNEELYPAInsEreLOerBfr3fqYtS5ZxcwB+CPr8wfx1ZnD</latexit><latexit sha1_base64="y4EHErQfBAvc+WWP7UAw0XQBmwo=">AAACCnicbZDLSsNAFIYnXmu9RV26GS1C3ZREBF0WpeBGqGAv0IQwmU6aoZOZMDMRSujaja/ixoUibn0Cd76N0zYLbf1h4OM/53Dm/GHKqNKO820tLa+srq2XNsqbW9s7u/befluJTGLSwoIJ2Q2RIoxy0tJUM9JNJUFJyEgnHF5P6p0HIhUV/F6PUuInaMBpRDHSxgrso5DE1Qb0sjRGMhWCSzqINfQQMwZsBLengV1xas5UcBHcAiqgUDOwv7y+wFlCuMYMKdVznVT7OZKaYkbGZS9TJEV4iAakZ5CjhCg/n54yhifG6cNISPO4hlP390SOEqVGSWg6E6RjNV+bmP/VepmOLv2c8jTThOPZoihjUAs4yQX2qSRYs5EBhCU1f4XYRIKwNumVTQju/MmL0D6ruYbvziv1qyKOEjgEx6AKXHAB6uAGNEELYPAInsEreLOerBfr3fqYtS5ZxcwB+CPr8wfx1ZnD</latexit><latexit sha1_base64="y4EHErQfBAvc+WWP7UAw0XQBmwo=">AAACCnicbZDLSsNAFIYnXmu9RV26GS1C3ZREBF0WpeBGqGAv0IQwmU6aoZOZMDMRSujaja/ixoUibn0Cd76N0zYLbf1h4OM/53Dm/GHKqNKO820tLa+srq2XNsqbW9s7u/befluJTGLSwoIJ2Q2RIoxy0tJUM9JNJUFJyEgnHF5P6p0HIhUV/F6PUuInaMBpRDHSxgrso5DE1Qb0sjRGMhWCSzqINfQQMwZsBLengV1xas5UcBHcAiqgUDOwv7y+wFlCuMYMKdVznVT7OZKaYkbGZS9TJEV4iAakZ5CjhCg/n54yhifG6cNISPO4hlP390SOEqVGSWg6E6RjNV+bmP/VepmOLv2c8jTThOPZoihjUAs4yQX2qSRYs5EBhCU1f4XYRIKwNumVTQju/MmL0D6ruYbvziv1qyKOEjgEx6AKXHAB6uAGNEELYPAInsEreLOerBfr3fqYtS5ZxcwB+CPr8wfx1ZnD</latexit>

beh(WM,E,P)
<latexit sha1_base64="J/zr5GxedhsY5nYDa5EAUz8VHVI=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViECqUkIuixKIIXoYL9gDaWzXbSLt1swu5GKaH/w4sHRbz6X7z5b9y2OWjrCwsP78wws68fc6a043xbS8srq2vruY385tb2zm5hb7+hokRSrNOIR7LlE4WcCaxrpjm2Yokk9Dk2/eHVpN58RKlYJO71KEYvJH3BAkaJNtaDj4NSs5velq/LtfFJt1B0Ks5U9iK4GRQhU61b+Or0IpqEKDTlRKm268TaS4nUjHIc5zuJwpjQIelj26AgISovnV49to+N07ODSJontD11f0+kJFRqFPqmMyR6oOZrE/O/WjvRwYWXMhEnGgWdLQoSbuvInkRg95hEqvnIAKGSmVttOiCSUG2CypsQ3PkvL0LjtOIavjsrVi+zOHJwCEdQAhfOoQo3UIM6UJDwDK/wZj1ZL9a79TFrXbKymQP4I+vzB90kkW4=</latexit><latexit sha1_base64="J/zr5GxedhsY5nYDa5EAUz8VHVI=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViECqUkIuixKIIXoYL9gDaWzXbSLt1swu5GKaH/w4sHRbz6X7z5b9y2OWjrCwsP78wws68fc6a043xbS8srq2vruY385tb2zm5hb7+hokRSrNOIR7LlE4WcCaxrpjm2Yokk9Dk2/eHVpN58RKlYJO71KEYvJH3BAkaJNtaDj4NSs5velq/LtfFJt1B0Ks5U9iK4GRQhU61b+Or0IpqEKDTlRKm268TaS4nUjHIc5zuJwpjQIelj26AgISovnV49to+N07ODSJontD11f0+kJFRqFPqmMyR6oOZrE/O/WjvRwYWXMhEnGgWdLQoSbuvInkRg95hEqvnIAKGSmVttOiCSUG2CypsQ3PkvL0LjtOIavjsrVi+zOHJwCEdQAhfOoQo3UIM6UJDwDK/wZj1ZL9a79TFrXbKymQP4I+vzB90kkW4=</latexit><latexit sha1_base64="J/zr5GxedhsY5nYDa5EAUz8VHVI=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViECqUkIuixKIIXoYL9gDaWzXbSLt1swu5GKaH/w4sHRbz6X7z5b9y2OWjrCwsP78wws68fc6a043xbS8srq2vruY385tb2zm5hb7+hokRSrNOIR7LlE4WcCaxrpjm2Yokk9Dk2/eHVpN58RKlYJO71KEYvJH3BAkaJNtaDj4NSs5velq/LtfFJt1B0Ks5U9iK4GRQhU61b+Or0IpqEKDTlRKm268TaS4nUjHIc5zuJwpjQIelj26AgISovnV49to+N07ODSJontD11f0+kJFRqFPqmMyR6oOZrE/O/WjvRwYWXMhEnGgWdLQoSbuvInkRg95hEqvnIAKGSmVttOiCSUG2CypsQ3PkvL0LjtOIavjsrVi+zOHJwCEdQAhfOoQo3UIM6UJDwDK/wZj1ZL9a79TFrXbKymQP4I+vzB90kkW4=</latexit><latexit sha1_base64="J/zr5GxedhsY5nYDa5EAUz8VHVI=">AAAB9XicbZBNS8NAEIYnftb6VfXoJViECqUkIuixKIIXoYL9gDaWzXbSLt1swu5GKaH/w4sHRbz6X7z5b9y2OWjrCwsP78wws68fc6a043xbS8srq2vruY385tb2zm5hb7+hokRSrNOIR7LlE4WcCaxrpjm2Yokk9Dk2/eHVpN58RKlYJO71KEYvJH3BAkaJNtaDj4NSs5velq/LtfFJt1B0Ks5U9iK4GRQhU61b+Or0IpqEKDTlRKm268TaS4nUjHIc5zuJwpjQIelj26AgISovnV49to+N07ODSJontD11f0+kJFRqFPqmMyR6oOZrE/O/WjvRwYWXMhEnGgWdLQoSbuvInkRg95hEqvnIAKGSmVttOiCSUG2CypsQ3PkvL0LjtOIavjsrVi+zOHJwCEdQAhfOoQo3UIM6UJDwDK/wZj1ZL9a79TFrXbKymQP4I+vzB90kkW4=</latexit>

(↵E \ ↵M)⇤
<latexit sha1_base64="g/aSx6Bpl16WBkNwTT88P++snGI=">AAACA3icbZDLSgMxFIYz9VbrbdSdboJFqC7KjAi6LIrgRqhgL9AZy5k0bUMzMyHJCGUouPFV3LhQxK0v4c63MW1noa0/BL785xyS8weCM6Ud59vKLSwuLa/kVwtr6xubW/b2Tl3FiSS0RmIey2YAinIW0ZpmmtOmkBTCgNNGMLgc1xsPVCoWR3d6KKgfQi9iXUZAG6tt75U84KIP+Ap7BATObjdH98dtu+iUnYnwPLgZFFGmatv+8joxSUIaacJBqZbrCO2nIDUjnI4KXqKoADKAHm0ZjCCkyk8nO4zwoXE6uBtLcyKNJ+7viRRCpYZhYDpD0H01Wxub/9Vaie6e+ymLRKJpRKYPdROOdYzHgeAOk5RoPjQARDLzV0z6IIFoE1vBhODOrjwP9ZOya/j2tFi5yOLIo310gErIRWeogq5RFdUQQY/oGb2iN+vJerHerY9pa87KZnbRH1mfPzCTle4=</latexit><latexit sha1_base64="g/aSx6Bpl16WBkNwTT88P++snGI=">AAACA3icbZDLSgMxFIYz9VbrbdSdboJFqC7KjAi6LIrgRqhgL9AZy5k0bUMzMyHJCGUouPFV3LhQxK0v4c63MW1noa0/BL785xyS8weCM6Ud59vKLSwuLa/kVwtr6xubW/b2Tl3FiSS0RmIey2YAinIW0ZpmmtOmkBTCgNNGMLgc1xsPVCoWR3d6KKgfQi9iXUZAG6tt75U84KIP+Ap7BATObjdH98dtu+iUnYnwPLgZFFGmatv+8joxSUIaacJBqZbrCO2nIDUjnI4KXqKoADKAHm0ZjCCkyk8nO4zwoXE6uBtLcyKNJ+7viRRCpYZhYDpD0H01Wxub/9Vaie6e+ymLRKJpRKYPdROOdYzHgeAOk5RoPjQARDLzV0z6IIFoE1vBhODOrjwP9ZOya/j2tFi5yOLIo310gErIRWeogq5RFdUQQY/oGb2iN+vJerHerY9pa87KZnbRH1mfPzCTle4=</latexit><latexit sha1_base64="g/aSx6Bpl16WBkNwTT88P++snGI=">AAACA3icbZDLSgMxFIYz9VbrbdSdboJFqC7KjAi6LIrgRqhgL9AZy5k0bUMzMyHJCGUouPFV3LhQxK0v4c63MW1noa0/BL785xyS8weCM6Ud59vKLSwuLa/kVwtr6xubW/b2Tl3FiSS0RmIey2YAinIW0ZpmmtOmkBTCgNNGMLgc1xsPVCoWR3d6KKgfQi9iXUZAG6tt75U84KIP+Ap7BATObjdH98dtu+iUnYnwPLgZFFGmatv+8joxSUIaacJBqZbrCO2nIDUjnI4KXqKoADKAHm0ZjCCkyk8nO4zwoXE6uBtLcyKNJ+7viRRCpYZhYDpD0H01Wxub/9Vaie6e+ymLRKJpRKYPdROOdYzHgeAOk5RoPjQARDLzV0z6IIFoE1vBhODOrjwP9ZOya/j2tFi5yOLIo310gErIRWeogq5RFdUQQY/oGb2iN+vJerHerY9pa87KZnbRH1mfPzCTle4=</latexit><latexit sha1_base64="g/aSx6Bpl16WBkNwTT88P++snGI=">AAACA3icbZDLSgMxFIYz9VbrbdSdboJFqC7KjAi6LIrgRqhgL9AZy5k0bUMzMyHJCGUouPFV3LhQxK0v4c63MW1noa0/BL785xyS8weCM6Ud59vKLSwuLa/kVwtr6xubW/b2Tl3FiSS0RmIey2YAinIW0ZpmmtOmkBTCgNNGMLgc1xsPVCoWR3d6KKgfQi9iXUZAG6tt75U84KIP+Ap7BATObjdH98dtu+iUnYnwPLgZFFGmatv+8joxSUIaacJBqZbrCO2nIDUjnI4KXqKoADKAHm0ZjCCkyk8nO4zwoXE6uBtLcyKNJ+7viRRCpYZhYDpD0H01Wxub/9Vaie6e+ymLRKJpRKYPdROOdYzHgeAOk5RoPjQARDLzV0z6IIFoE1vBhODOrjwP9ZOya/j2tFi5yOLIo310gErIRWeogq5RFdUQQY/oGb2iN+vJerHerY9pa87KZnbRH1mfPzCTle4=</latexit>

Normative behaviors
of environment E

Environmental deviations
under which M satisfies P
i.e., its robustness (grey)

Environmental deviations
violating P (red)

Set of all possible
traces between M & E

beh(M � ↵EM)

Figure 2: Behavioral relationships between possible environments.

Figure 2 illustrates the relationships between the behaviors of
possible environments that interact with a machine through shared
actions 𝛼𝐸 ∩ 𝛼𝑀 . The outermost circle represents the set of all
environmental behaviors that are permitted by the machine; the
innermost circle represents the normative behaviors of the envi-
ronment. The deviations of the environment could be classified
into two sets: those under which the machine still maintains a de-
sired property 𝑃 (i.e., its robustness), and the others that lead to its
violation (the area shaded red in Figure 2).

4 ANALYSIS PROBLEMS
This section defines a set of analysis problems for evaluating system
designs with respect to their robustness.

Problem 4.1 (Robustness analysis). Given machine 𝑀 , environ-
ment 𝐸, and property 𝑃 , compute Δ(𝑀, 𝐸, 𝑃).

Given a method for computing the robustness of a machine
(described in Section 5), we can also perform the following analyses:

Problem 4.2 (Design comparison). Given machines 𝑀1 and 𝑀2,
environment 𝐸, and property 𝑃 such that 𝛼𝑀1 ∩ 𝛼𝐸 = 𝛼𝑀2 ∩ 𝛼𝐸,
compute set 𝑋 = Δ(𝑀2, 𝐸, 𝑃) − Δ(𝑀1, 𝐸, 𝑃).

This analysis allows us to compare a pair of machines (repre-
senting alternative designs of a system) on their robustness against
the given environment and property.𝑀2, for example, may be an
evolution of𝑀1; the result of the analysis would describe precisely
the environmental deviations under which𝑀2 is more robust than
𝑀1. Note that𝑀1 and𝑀2 may overlap, not necessarily subsume, in
terms of their robustness.

Another type of analysis can be used to reason about how the
robustness of a machine changes depending on the property that it
attempts to establish:

Problem 4.3 (Property comparison). Given machines𝑀 , environ-
ment 𝐸, and properties 𝑃1 and 𝑃2, compute set 𝑋 = Δ(𝑀, 𝐸, 𝑃2) −
Δ(𝑀, 𝐸, 𝑃1).

For instance, suppose that 𝑃1 says that “the radiation therapy
system should always deliver the correct amount of dose to each
patient”, while 𝑃2 states that “the system never overdoses patients
by delivering X-ray while the spreader is out of place” (similar to
property 𝑃 from Section 2). The result of this analysis could tell us,
for example, that the system is capable of guaranteeing 𝑃2 (weaker
and arguably more critical of the two) even under certain operator
errors, while 𝑃1 may be violated under similar deviations.

In general, since improving robustness might introduce addi-
tional complexity into the system, it may be a cost-effective strategy
to design the system to be robust for most critical of the system
requirements [24]; our analysis could be used to support this ap-
proach to design.

5 ROBUSTNESS COMPUTATION
This section describes a method for automatically computing the
robustness of the machine with respect to a given environment and
a desired property (Problem 4.1 in Section 4).

5.1 Overview
Figure 3 shows the overall process of our approach to compute
the robustness of a machine𝑀 with respect to environment 𝐸 and
property 𝑃 . The input of our tool is the LTS of 𝑀 , 𝐸, and 𝑃 . We
first generate the weakest assumption of𝑀 (Section 5.2) to compute
Δ(𝑀, 𝐸, 𝑃). Since Δ may be infinite, we then generate a succinct
representation of it. We compute the representative model of Δ (Sec-
tion 5.3.1), group the traces into equivalence classes, and generate
a finite set of representative traces (Section 5.3.2). Finally, we take
an external deviation model as input to generate explanations for
those representative traces (Section 5.4). The final output is a set of
pairs of a representative trace and its explanation.

5.2 Weakest Assumption
In assume-guarantee style of reasoning [25], a machine is consid-
ered capable of establishing a property under some assumption
about the behavior of the environment. In our modeling approach,
an assumption is represented as some subset of all permitted envi-
ronmental behaviors; the largest such subset is called the weakest
assumption (the second largest circle in Figure 2). More formally:

Definition 5.1. The weakest assumption𝑊𝑀,𝐸,𝑃 of a machine 𝑀
with respect to environment 𝐸 and property 𝑃 is an LTS which
defines the largest subset of the permitted environment behaviors
of𝑀 which satisfy property 𝑃 , i.e.,

𝑏𝑒ℎ(𝑊𝑀,𝐸,𝑃) ⊆𝑏𝑒ℎ(𝑀 ↾𝛼𝐸𝑀) ∧ 𝑀 | |𝑊𝑀,𝐸,𝑃 |= 𝑃 ∧
∀𝐸 ′ : 𝑀 | |𝐸 ′ |= 𝑃 ↔ 𝐸 ′ |=𝑊𝑀,𝐸,𝑃

If stated otherwise, we will simply write𝑊 to mean𝑊𝑀,𝐸,𝑃 for
the rest of the paper.

Then, the robustness of a machine is equivalent to its weakest
assumption minus the behaviors of the original environment. More
formally, we can compute the robustness of machine𝑀 with respect
to environment 𝐸 and property 𝑃 by constructing the following set:

Δ(𝑀, 𝐸, 𝑃) = {𝜎 ∈ 𝑏𝑒ℎ(𝑊) | 𝜎 ∉ 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀)} (1)

We use the approach by Giannakopoulou et al. [17] to generate
the weakest assumption of a system to satisfy a certain safety

A Behavioral Notion of Robustness for Software Systems ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Figure 3: Overview of the process for robustness computation. The input is the LTS of machine 𝑀 , environment 𝐸, and property 𝑃 . Sec-
tion 5.2 describes weakest assumption generation for computing Δ. Section 5.3 describes generating robustness representation (i.e., a set of
representative traces). Finally, Section 5.4 describes explanation generation for the representative traces.

property. We briefly describe the approach: Given the system LTS
𝑀 , the environment LTS 𝐸, and the safety property 𝑃 ,

(1) Compose system 𝑀 with the error LTS of property 𝑃 (as
defined in Section 3.1.3) and project its alphabet to the com-
mon actions between𝑀 and 𝐸, i.e., let 𝛼𝐸𝑀 = 𝛼𝑀 ∩ 𝛼𝐸, we
compute (𝑀 | |𝑃𝑒𝑟𝑟) ↾𝛼𝐸𝑀 .

(2) Perform backward propagation of the error state over 𝜏 tran-
sitions in the LTS obtained from Step 1. We prune all states
that are backward reachable from the error state via one or
more 𝜏 steps. The rationale is that if the system is in a state
which can enter the error state with some internal actions,
then no environment can prevent the property violation.

(3) Determinize the LTS obtained from step 2 by applying 𝜏

elimination and subset construction [22].
(4) Remove the error state and all of its incoming transitions to

obtain the LTS that corresponds to the weakest assumption.

5.3 Representation of Robustness
In general, the set of environmental traces that represent robust-
ness in Equation (1) may be infinite. Since simply enumerating
this set may not be an effective way to present this information
to the system designer, we propose a succinct, finite representa-
tion of the robustness. The key idea behind our approach is that
many of the traces in Δ(𝑀, 𝐸, 𝑃) capture a similar type of deviation
(e.g., a human operator erroneously skipping an action) and can be
grouped into the same equivalence class with a single representative
trace that describes the deviation. Based on this idea, we describe a
method for automatically converting Δ into a finite number of such
equivalence classes (and thus, a finite set of representative traces).

5.3.1 Representative Model of Robustness. Recall from Equation (1)
that Δ contains traces that are in the weakest assumption𝑊 but not
in the original normative environment 𝐸. To construct an LTS that
represents Δ, we take advantage of the method to check safety prop-
erties (described at the end of Section 3.1.3). In particular, we treat
the original environment 𝐸 projected over 𝛼𝐸𝑀 as a safety property,
and compute traces in𝑊 that lead to a violation of this property;
any such trace represents a prefix of the traces in Δ(𝑀, 𝐸, 𝑃).

To illustrate our approach, consider a simple example in Figure 4,
where𝑊 is the weakest assumption generated from some machine
𝑀 and 𝐸 is the original environment. To compute the representation
of Δ(𝑀, 𝐸, 𝑃), we first test whether 𝑊 |= (𝐸 ↾ 𝛼𝐸𝑀), which is

(a) E

0 1 2

a b

b

ac
c

0 1 2

a b

b

c

0 1 2

a b

b

c

?
ac

(b) W (c) W || Eerr

Figure 4: LTS’s for a simple example illustrating the construction
of robustness.

equivalent to testing whether the error state is reachable in𝑊 | | (𝐸 ↾
𝛼𝐸𝑀)𝑒𝑟𝑟 , as shown in Figure 4(c). We say𝑊 | | (𝐸 ↾𝛼𝐸𝑀)𝑒𝑟𝑟 is the
representative model of Δ(𝑀, 𝐸, 𝑃), and let Π(𝑊, 𝐸) be the set of all
the error traces in it. Then,

Δ(𝑀, 𝐸, 𝑃) = {𝜎 ∈ 𝑏𝑒ℎ(𝑊) | ∃𝜎 ′ ∈ Π(𝑊, 𝐸) : 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎 ′, 𝜎)} (2)

where 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎1, 𝜎2) means 𝜎1 is the prefix of 𝜎2. Thus, a trace in
Π(𝑊, 𝐸) can represent a set of traces in Δ(𝑀, 𝐸, 𝑃) that share this
prefix. For our example, trace ⟨𝑎, 𝑐⟩ in Π(𝑊, 𝐸) can represent, e.g.,
⟨𝑎, 𝑐, 𝑎, 𝑏, . . .⟩ and ⟨𝑎, 𝑐, 𝑎, 𝑐, . . .⟩ in Δ(𝑀, 𝐸, 𝑃).

5.3.2 Representative Traces of Robustness. Nevertheless, Π(𝑊, 𝐸)
may also be infinite due to possible cycles. For example, in Figure
4(c), ⟨𝑎, 𝑏, 𝑏, . . . , 𝑎⟩ would result in infinite number of error traces.
Therefore, we further divide the traces into equivalence classes:

Let LTS𝑇𝑊,𝐸 = ⟨𝑆𝑊,𝐸 , 𝛼𝐸𝑀 , 𝑅𝑊,𝐸 , 𝑠0⟩ be the composition𝑊 ∥(𝐸 ↾
𝛼𝐸𝑀)𝑒𝑟𝑟 . Then,

Π(𝑊, 𝐸) =
⋃

𝑠∈𝑆𝑊,𝐸

𝑎∈𝛼𝐸𝑀

Π𝑠,𝑎 (𝑊, 𝐸) where (𝑠, 𝑎, 𝜋) ∈ 𝑅𝑊,𝐸

i.e., Π𝑠,𝑎 (𝑊, 𝐸) denotes a subset of traces in Π(𝑊, 𝐸) that all end
with transition (𝑠, 𝑎, 𝜋). Then, we have
Δ(𝑀, 𝐸, 𝑃) = {𝜎 ∈ 𝑏𝑒ℎ(𝑊) | ∃Π𝑠,𝑎 (𝑊, 𝐸), ∃𝜎 ′ ∈ Π𝑠,𝑎 (𝑊, 𝐸) :

𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎 ′, 𝜎)}
(3)

We say that Π𝑠,𝑎 (𝑊, 𝐸) is an equivalence class of Π(𝑊, 𝐸). In
our example, we have two equivalence classes: Π1,𝑐 (𝑊, 𝐸) and
Π2,𝑎 (𝑊, 𝐸). Traces like ⟨𝑎, 𝑐⟩ and ⟨𝑎, 𝑏, 𝑐, 𝑎, 𝑐⟩ all belong to class
Π1,𝑐 (𝑊, 𝐸); and traces like ⟨𝑎, 𝑏, 𝑎⟩ and ⟨𝑎, 𝑏, 𝑏, 𝑏, 𝑎⟩ all belong to
class Π2,𝑎 (𝑊, 𝐸).

The rationale is that: 𝑠 is the last state by following the normative
behaviors of the original environment, and 𝑎 is the first deviated

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Changjian Zhang, David Garlan, and Eunsuk Kang

action. Thus, Π𝑠,𝑎 (𝑊, 𝐸) describes a class of traces that deviate
from the original environment from the same normative state 𝑠 and
by the same action 𝑎.

Since 𝑆𝑊,𝐸 and 𝛼𝐸𝑀 are finite, so we have a finite number of
equivalence classes. We can simply generate them by enumerating
all the transitions leading to the error state. Then, we can pick
one of the traces in each equivalence class to represent Δ(𝑀, 𝐸, 𝑃).
Because we may not be interested in how the environment reaches
the last normative state, here we simply choose the shortest one.
Finally, we define:

Definition 5.2. The representation of Δ(𝑀, 𝐸, 𝑃), denoted by Δ𝑟𝑒𝑝 (
𝑀, 𝐸, 𝑃), is a finite set of traces such that each trace in it is the
shortest trace of one of the equivalence classes of Π(𝑊𝑀,𝐸,𝑃 , 𝐸).

Therefore, for our conceptual example, Δ(𝑀, 𝐸, 𝑃) can be repre-
sented by: Π1,𝑐 (𝑊, 𝐸) : ⟨𝑎, 𝑐⟩, and Π2,𝑎 (𝑊, 𝐸) : ⟨𝑎, 𝑏, 𝑎⟩.

5.4 Explanation of Representative Traces
By definition, a representative trace in Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃) contains only
actions from 𝛼𝐸𝑀 . While this trace describes how the environment
deviates from its expected behavior as observed by the machine,
it does not capture how the internal behavior of the environment
could have caused this deviation. To provide such an explanation for
an environmental deviation, we propose a method for augmenting
the representative traces with additional domain-specific informa-
tion (called faulty events) about the underlying root cause behind
the deviation. In this approach, the normative model is augmented
with additional transitions on these faulty events (which are in-
ternal to the environment) and an automated method is used to
extract a minimal explanation for a particular representative trace.

5.4.1 Explanations from a Deviation Model. In order to build expla-
nations for representative traces, our tool takes a deviation model
as input, which contains normative and deviated behaviors, and
maps each representative trace to a trace in the deviation model.

Definition 5.3. A deviation model 𝐷 of environment 𝐸 is an LTS
𝑇 = ⟨𝑆, 𝛼𝐷, 𝑅, 𝑠0⟩ where 𝛼𝐷 = 𝛼𝐸 ∪ {𝑓1, 𝑓2, . . . , 𝑓𝑛}, 𝑓𝑖 is a fault
in the environment, 𝑏𝑒ℎ(𝐸) ⊆ 𝑏𝑒ℎ(𝐷 ↾ 𝛼𝐸), and 𝑏𝑒ℎ(𝐷 ↾ 𝛼𝐸𝑀) ∩
Δ(𝑀, 𝐸, 𝑃) ≠ ∅.

Our tool makes no assumptions on how to generate such a devia-
tionmodel. It can be built manually (e.g., Section 7.2 uses a manually
defined deviation model); or it can be derived from existing fault
models in other fields (e.g., Section 7.3 derives the deviation model
from an existing human error behavior model). The model may not
necessarily cover all the traces in Δ(𝑀, 𝐸, 𝑃); however, we say a
deviation model is complete with respect to Δ(𝑀, 𝐸, 𝑃) if and only
if Δ(𝑀, 𝐸, 𝑃) ⊆ 𝑏𝑒ℎ(𝐷 ↾𝛼𝐸𝑀).

Then, an explanation of a representative trace is a trace in the
deviation model:

Definition 5.4. For any trace 𝜎 ∈ Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃) and 𝜎 ′ ∈ 𝑏𝑒ℎ(𝐷),
if 𝜎 ′↾𝛼𝐸𝑀 = 𝜎 , then we say 𝜎 ′ is an explanation of 𝜎 .

Consider a deviation model for our simple example in Figure 5,
then: for the representative trace ⟨𝑎, 𝑐⟩, we can build explanations
⟨𝑎, 𝑓1, 𝑐⟩ and ⟨𝑎, 𝑓3, 𝑓4, 𝑐⟩; and for the representative trace ⟨𝑎, 𝑏, 𝑎⟩,
we can build an explanation ⟨𝑎, 𝑏, 𝑓2, 𝑎⟩.

(a) Original Environment E

0 1 2

a b

b

c

(b) Deviation Model D

0 1 2

a b

b
c

3

f1

c
4

f2

a

5

f3f4

Figure 5: Deviation model for the simple example.

5.4.2 The Minimal Explanation. Of course, there could be infinite
number of explanations for a representative trace. However, similar
to software testing where we are often interested in the smallest
test cases against certain errors, here we are also only interested in
the explanation of 𝜎 which contains the minimal number of faults.

Definition 5.5. Theminimal explanation for𝜎 = ⟨𝑎0, . . . , 𝑎𝑛−1, 𝑎𝑛⟩
in Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃) under deviation model 𝐷 is the shortest trace 𝜎 ′ ∈
𝑏𝑒ℎ(𝐷) where 𝜎 ′↾𝛼𝐸𝑀 = 𝜎 and faulty actions only exist between
𝑎𝑛−1 and 𝑎𝑛 .

A minimal explanation describes: 1) how the environment can
reach the last normative state without any faults; 2) and what
minimal sequence of faults have caused the environment to deviate
from the normative behavior.

To compute the minimal explanation for 𝜎 ∈ Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃), let
𝑇𝜎 = ⟨𝑆, 𝛼𝐸𝑀 , 𝑅, 𝑠0⟩ be the LTS where 𝜎 and its prefixes are the
only traces in it. Besides, we make the last action in 𝜎 lead to 𝜋 to
denote the end state, i.e., (𝑠, 𝑎𝑛, 𝜋) ∈ 𝑅. Then, we use BFS to search
the minimal explanation in 𝐷 | |𝑇𝜎 , as shown in Algorithm 1.

Line 1-3 define an empty queue to store the remaining search
states and an empty set to store the visited states, and add the
initial state to the queue. The algorithm loops until the queue is
empty (Line 4). If the current visiting state is 𝜋 , then it returns the
current trace as the explanation (Line7-8); otherwise, it adds the
next states to the queue. Specifically, if the current trace does not
match the prefix of 𝜎 , i.e., ⟨𝑎0, . . . , 𝑎𝑛−1⟩, then it only adds states
with a non-faulty transition (Line 12-13). Since BFS returns on the
first result, it is guaranteed to find the minimal explanation. For
example, our algorithm returns ⟨𝑎, 𝑓1, 𝑐⟩ as the minimal explanation
for ⟨𝑎, 𝑐⟩ instead of ⟨𝑎, 𝑓3, 𝑓4, 𝑐⟩ in the deviation model (Figure 5(b)).

6 ROBUSTNESS COMPARISON
This section describes a method to compare robustness between a
pair of machines (Problem 4.2), or a machine against a pair of prop-
erties (Problem 4.3). According to Equation (1), to solve Problem
4.2, we have

𝑋 = Δ(𝑀2, 𝐸, 𝑃) − Δ(𝑀1, 𝐸, 𝑃)
= {𝜎 ∈ 𝑏𝑒ℎ(𝑊𝑀2) | 𝜎 ∉ 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀) ∧ 𝜎 ∉ 𝑏𝑒ℎ(𝑊𝑀1)}

By assuming 𝑏𝑒ℎ(𝐸 ↾ 𝛼𝐸𝑀) ⊆ 𝑏𝑒ℎ(𝑊𝑀1), we can simplify the
equation to:

𝑋 = Δ(𝑀2, 𝐸, 𝑃) − Δ(𝑀1, 𝐸, 𝑃) = {𝜎 ∈ 𝑏𝑒ℎ(𝑊𝑀2) | 𝜎 ∉ 𝑏𝑒ℎ(𝑊𝑀1)}
Then, we can use the same method described in Section 5.3 to
generate its representation. By computing𝑊𝑀2 | | (𝑊𝑀1)𝑒𝑟𝑟 , we have
Π(𝑊𝑀2 ,𝑊𝑀1) representing all the prefixes of𝑋 . Similarly, we divide

A Behavioral Notion of Robustness for Software Systems ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Algorithm 1:Minimal explanation search
Data: A trace 𝜎 ∈ Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃) and the LTS of 𝐷 | |𝑇𝜎
Result: The minimal explanation 𝜎 ′ ∈ 𝑏𝑒ℎ(𝐷)

1 𝑞 := empty queue ; // remaining search states

2 𝑣 := empty set of states ; // visited states

3 enqueue(𝑞, (𝑠0, ⟨⟩));
4 while ¬isEmpty(q) do
5 𝑠, 𝑡 := dequeue(q); // 𝑠 the current state, 𝑡 the

current trace

6 if 𝑠 ∉ 𝑣 then
7 if 𝑠 = 𝜋 then
8 return t;
9 else
10 𝑣 := 𝑣 ∪ {𝑠};
11 for (𝑠, 𝑎, 𝑠 ′) ∈ 𝑅 do
12 if 𝑡 ↾𝛼𝐸𝑀 = 𝑠𝑢𝑏𝑇𝑟𝑎𝑐𝑒 (𝜎, 0, 𝑛 − 1) then

enqueue(𝑞, (𝑠 ′, 𝑡 ⌢ 𝑎)) ;
/* 𝑡 does not match ⟨𝑎0, . . . , 𝑎𝑛−1⟩. */

13 else if 𝑎 is not a fault then
enqueue(𝑞, (𝑠 ′, 𝑡 ⌢ 𝑎)) ;

14 end
15 end
16 end
17 end

it into equivalence classes, i.e., Π𝑠,𝑎 (𝑊𝑀2 ,𝑊𝑀1) where (𝑠, 𝑎) leads
to the error state. Then, we have

𝑋 = Δ(𝑀2, 𝐸, 𝑃) − Δ(𝑀1, 𝐸, 𝑃)
= {𝜎 ∈ 𝑏𝑒ℎ(𝑊𝑀2) | ∃Π𝑠,𝑎 (𝑊𝑀2 ,𝑊𝑀1),

∃𝜎 ′ ∈ Π𝑠,𝑎 (𝑊𝑀2 ,𝑊𝑀1) : 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎
′, 𝜎)}

(4)

Finally, the representation of𝑋 = Δ(𝑀2, 𝐸, 𝑃)−Δ(𝑀1, 𝐸, 𝑃) is a finite
set of shortest traces of Π𝑠,𝑎 (𝑊𝑀2 ,𝑊𝑀1).

We apply the same process to 𝑋 = Δ(𝑀, 𝐸, 𝑃2) − Δ(𝑀, 𝐸, 𝑃1). By
assuming that 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀) ⊆ 𝑏𝑒ℎ(𝑊𝑃1) and computing Π(𝑊𝑃2 ,

𝑊𝑃1) and its equivalence classes, we have

𝑋 = Δ(𝑀, 𝐸, 𝑃2) − Δ(𝑀, 𝐸, 𝑃1)
= {𝜎 ∈ 𝑏𝑒ℎ(𝑊𝑃2) | ∃Π𝑠,𝑎 (𝑊𝑃2 ,𝑊𝑃1),

∃𝜎 ′ ∈ Π𝑠,𝑎 (𝑊𝑃2 ,𝑊𝑃1) : 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎
′, 𝜎)}

(5)

Then, the representation of 𝑋 = Δ(𝑀, 𝐸, 𝑃2) − Δ(𝑀, 𝐸, 𝑃1) is a finite
set of shortest traces of Π𝑠,𝑎 (𝑊𝑃2 ,𝑊𝑃1).

7 CASE STUDIES
This section reports on our experience applying our proposed
method to evaluate the robustness of software designs. In par-
ticular, our goal was to answer the following research questions:
(1) Does our proposed notion of robustness capture the types of
environmental deviations that occur in practice? (2) Is our notion
of robustness applicable across multiple domains? To answer (2),
we demonstrate the application of our method to two different
types of systems: namely, network protocols and safety-critical
interfaces. For (1), we show that the robustness computed by our

method indeed corresponds to environmental deviations that have
been studied in the respective domains.
Data availability All of the implementation code and models used
in our case studies will be made available open source and archived
on a public repository upon acceptance.

7.1 Implementation
We created our robustness analyzer on top of LTSA [30, 31], a
modeling tool that supports automated reachability-based analysis
of labelled transition systems. In our tool, the LTS’s corresponding
to the input system, environment, and property are specified using
FSP, the input modeling language of LTSA. We implement the
functions including weakest assumption generation, representation
generation, and explanation generation in a Kotlin program (a JVM-
based language). In particular, we take advantage of the built-in tool
support of LTSA for composition, projection, and property checking
over LTS. Our evaluation was done on a Windows machine with
3.6GHz CPU and 32GB memory.

7.2 Network Protocol Design
This section describes a case study on rigorously evaluating the
robustness of network protocol designs. In particular, we focus on
two protocols: A naive protocol that assumes a perfectly reliable
communication channel, and the Alternate Bit Protocol (ABP) [39],
which is specifically designed to guarantee integrity of messages
over a potentially unreliable communication channel. By computing
and comparing the robustness of the two, we formally show that
the ABP is indeed more robust than the naive protocol against
possible failures in the channel. As far as we know, our method is
the first automated technique for formally evaluating the robustness
of network protocols.

7.2.1 Models. Figure 6 shows the LTS’s for the environment and
machines (i.e., network protocols). Here, the environment 𝐸 corre-
sponds to a communication channel over which messages are trans-
mitted (with 𝛼𝐸 = {𝑠𝑒𝑛𝑑 [0..1], 𝑟𝑒𝑐 [0..1], 𝑎𝑐𝑘 [0..1], 𝑔𝑒𝑡𝑎𝑐𝑘 [0..1]}1).
Under normal circumstances, we expect that the channel reliably
delivers messages to the intended receiver (i.e., it does not lose,
duplicate, or corrupt messages); this model of the normative envi-
ronment is captured as the perfect channel in Figure 6(a).

A machine in this case study corresponds to a network protocol
whose goal is to reliably deliver each message from the sender to its
intended receiver. In particular, we compare two protocols: A naive
protocol𝑀𝑁 , which simply sends and receives messages assuming
the channel is reliable, and the Alternate Bit Protocol (ABP)𝑀𝐴𝐵𝑃 ,
which is designed to ensure reliable delivery even in presence of
potential faults in the underlying channel. Figure 6(b) and 6(c) show
their specifications respectively.

7.2.2 Computing Robustness and Explanations. We defined prop-
erty 𝑃 as “the input and output should alternate”; in FSP:

property P = (input -> output -> P).

This property ensures that the sender sends a new message only
after it receives the receiver’s acknowledgement that the previously
sent message was successfully delivered.

1𝑠𝑒𝑛𝑑 [0..1] refers to a set of actions {𝑠𝑒𝑛𝑑 [0], 𝑠𝑒𝑛𝑑 [1] }.

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Changjian Zhang, David Garlan, and Eunsuk Kang

(a) Perfect Channel (E)

||Sender

Send

WaitAck

WaitRec

Output

Receiver

WaitInput

Ack

input

send[0..1]

getack[0..1]

rec[0..1]

output

ack[0..1]

||Transmit Channel

Send

Receive

Ack

GetAck

Acknowledge Channel

Sender ||

Send.0

WaitInput

WaitRec.0

Output

Receiver

WaitInput

Ack/
WaitRec.1

getack[0]

rec[0]

outputSend.1

send[0], getack[1]

input

send[1], getack[0]

getack[1]

input

ack[0], rec[0]

Output
rec[1]

Ack/
WaitRec.0

output

ack[1], rec[1]

rec[0]

send[x]rec[x] ack[x]getack[x]

(b) Naive Protocol (MN) (c) ABP Protocol (MABP)

Figure 6: (a) The perfect channel: the transmission channel transmits messages with parameter 0 or 1 from the sender to the receiver; and
the acknowledge channel transmits acknowledgements from the receiver back to the sender. (b) The naive protocol: The sender sends user
input data with either 0 or 1, and waits on the acknowledgement; the receiver waits on messages, output the data, and acknowledges with
either 0 or 1. (c) The ABP protocol [16]: The sender first sends a message with 0, and it continues sending the message until it receives an
acknowledgement with 0. Then, it alternates the bit to send a message with 1. The receiver first waits on a message with 0, and it continues
sending acknowledgements with 0 until it receives a new message with 1. Then, it acknowledges with 1 and waits for a new message with 0.

We used our tool to compute the robustness of the two protocols,
i.e., Δ(𝑀𝑁 , 𝐸, 𝑃) and Δ(𝑀𝐴𝐵𝑃 , 𝐸, 𝑃). Specifically, 𝐸 contains 9 states
and 24 transitions, 𝑀𝑁 contains 20 states and 67 transitions, and
our tool spent 130ms to generate Δ𝑟𝑒𝑝 (𝑀𝑁 , 𝐸, 𝑃) and build their
explanations. Δ𝑟𝑒𝑝 (𝑀𝑁 , 𝐸, 𝑃) contains 4 traces corresponding to 4
equivalence classes. 𝑀𝐴𝐵𝑃 contains 30 states and 104 transitions,
and our tool spent 1s317ms to generate Δ𝑟𝑒𝑝 (𝑀𝐴𝐵𝑃 , 𝐸, 𝑃) and their
explanations. Δ𝑟𝑒𝑝 (𝑀𝐴𝐵𝑃 , 𝐸, 𝑃) contains 107 traces corresponding
to 107 equivalence classes.

7.2.3 Analysis. We built a deviation model 𝐷 which contains mes-
sage loss, duplication, and corruption of bits (only the bit parameter
0 and 1, but not the message content) to provide explanations for
these representative traces. Figure 7 shows its specification.

Send Lost

send[x]

lose

Receive

send[x]

rec[x]

Duplicated
rec[x]

duplicate

Corrupted

corruptrec[1-x]

Figure 7: Deviation model that describes the faulty transmission
channel. The faulty acknowledge channel is similarly structured
and omitted here.

All the 4 traces in Δ𝑟𝑒𝑝 (𝑀𝑁 , 𝐸, 𝑃) correspond to the bit corrup-
tion error. For example, the explanation for ⟨𝑠𝑒𝑛𝑑 [0], 𝑟𝑒𝑐 [1]⟩ is
⟨𝑖𝑛𝑝𝑢𝑡, 𝑠𝑒𝑛𝑑 [0], 𝑐𝑜𝑟𝑟𝑢𝑝𝑡, 𝑟𝑒𝑐 [1]⟩. We were surprised to find that
the naive protocol is robust against such errors (our expectation
was that the naive protocol would be not robust against any kind
of environmental deviations at all). This is because property 𝑃

is somewhat under-specified: It requires only that the input and
output actions alternate, and does not say anything about the bit
parameters in the sent and corresponding received messages.

For the 107 traces in Δ𝑟𝑒𝑝 (𝑀𝐴𝐵𝑃 , 𝐸, 𝑃), our tool finds the mini-
mal explanations for 99 of them. For example, the explanation for
⟨𝑠𝑒𝑛𝑑 [0], 𝑠𝑒𝑛𝑑 [0]⟩ is ⟨𝑖𝑛𝑝𝑢𝑡, 𝑠𝑒𝑛𝑑 [0], 𝑙𝑜𝑠𝑒, 𝑠𝑒𝑛𝑑 [0]⟩ corresponding
to message loss during transmission; the explanation for ⟨𝑠𝑒𝑛𝑑 [0],
𝑟𝑒𝑐 [0], 𝑟𝑒𝑐 [0]⟩ is ⟨𝑖𝑛𝑝𝑢𝑡, 𝑠𝑒𝑛𝑑 [0], 𝑟𝑒𝑐 [0], 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒, 𝑟𝑒𝑐 [0]⟩
corresponding to message duplication during transmission; and
the explanation for ⟨𝑠𝑒𝑛𝑑 [0], 𝑟𝑒𝑐 [0], 𝑎𝑐𝑘 [0], 𝑔𝑒𝑡𝑎𝑐𝑘 [1]⟩ is ⟨𝑖𝑛𝑝𝑢𝑡,
𝑠𝑒𝑛𝑑 [0], 𝑟𝑒𝑐 [0], 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑎𝑐𝑘 [0], 𝑐𝑜𝑟𝑟𝑢𝑝𝑡, 𝑔𝑒𝑡𝑎𝑐𝑘 [1]⟩ corresponding
to the bit corruption error during acknowledgement.

Fault types #Traces Fault types #Traces
trans.lose 23 ack.duplicate 14
trans.duplicate 18 trans.{duplicate,corrupt} 4
trans.corrupt 8 ack.{duplicate,corrupt} 2
ack.lose 22 unexplained 8
ack.corrupt 8 Total 107

Table 1: Summary of Δ𝑟𝑒𝑝 for ABP. “trans” refers to errors during
transmission, and “ack” refers to errors during acknowledgements.

We further grouped the representative traces by the type of fault
in their explanations, as shown in Table 1. For example, trans.{ dupli-
cate, corrupt} represents a set of deviations in which the transmitted
message is duplicated and then corrupted (e.g., ⟨..𝑟𝑒𝑐 [0], 𝑟𝑒𝑐 [1]⟩).
There may be multiple representative traces of the same fault type,
since the fault may occur at different points during an expected
sequence of environmental actions.

Our analysis shows that the ABP protocol is more robust than
the naive protocol in being able to handle message loss and dupli-
cation, as intended by the protocol design [39]. In addition, the 8
unexplained traces also gave us an insight into a type of error that
ABP was previously unknown to be robust against; namely, that
the sender may receive acknowledgments even when the receiver
does not send them. This type of deviation may occur, for example,
when a malicious channel generates a dubious acknowledgement to
deceive the sender into believing that a message has been delivered.

A Behavioral Notion of Robustness for Software Systems ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

7.3 Radiation Therapy System
The second case study focuses on the radiation therapy system
introduced in Section 2. Specifically, we compare the robustness
of the two designs (i.e., the original design and the redesign in-
volving an additional check to ensure the completion of the mode
switch before beam delivery) and show that the redesign is in-
deed more robust against potential human errors. In particular, to
model normative and erroneous human behavior, we adopt the En-
hanced Operator Function Model (EOFM) [7], a formal notation for
modeling tasks performed over human-machine interfaces. Human
behavior modeling has been studied by researchers in human fac-
tors and cognitive science [21, 35], and we reuse their results in this
case study to demonstrate that our approach can be combined with
existing behavior models in fields other than network protocols.

7.3.1 EOFM. The Enhanced Operator Function Model (EOFM) [7]
is a formal description language for human task analysis, a well-
established subfield of human factors that focuses on the design of
human operator tasks and related factors (e.g., training, working
conditions, and error prevention) [2]. An EOFM describes the task
to be performed by an operator over a machine interface as a hierar-
chical set of activities. Each activity includes a set of conditions that
describe (1) when the activity can be undertaken (pre-conditions)
and (2) when it is considered complete (completion conditions). Each
activity is decomposed into lower-level sub-activities and, finally,
into atomic interface actions. Decomposition operators are used
to specify the temporal relationships between the sub-activities or
actions. The EOFM language is based XML, and it also supports a
tree-like visual notation.

InterfaceState = Editing

aSelectXorE

aSelectXray
aSelect
EBeam

X E

xor

ord ord

InterfaceState != Editing

Figure 8: The EOFMmodel of the Beam Selection Task. A rounded
box defines an activity, a rectangular box defines an atomic action,
and a rounded box in gray includes all the sub-activities/actions of a
parent activity. The labels on the directed arrows are decomposition
operators. The triangle in yellow defines the pre-conditions of an
activity, and the triangle in red defines the completion conditions.

Figure 8 shows a fragment of the EOFM model of the operator’s
tasks for the radiation therapy system (from [9]). It defines the Beam
Selection Task, which can be performed only if the interface is in
the Editing state; the operator can select either X-ray or electron
beam by pressing X or E, respectively; and the activity is completed
only if the interface leaves the editing state.

7.3.2 Models. The LTS’s used for this case study (shown in Fig-
ure 1) were adopted from a prior work on formal safety analysis of

radiation therapy system under potential human errors [9], where
the system is modeled as a finite state machine and the human
operator task is specified using an EOFM. Adopting their system
model into our LTS was straightforward. To translate the EOFM to
a corresponding LTS, we implemented an automatic EOFM-to-LTS
translator using a technique proposed in [10]; due to limited space,
we omit the details about our translation process.

7.3.3 Deviation Model. To generate explanations for Δ that involve
human errors, we adopted a method for automatically augmenting
a model of a normative operator task (specified in EOFM) with
additional behaviors that correspond to human errors [8]. In par-
ticular, this approach leverages a catalog of human errors called
genotypes [35]. For example, one type of genotype errors named
commission describes errors where the operator accidentally per-
forms an activity under a wrong condition. Other genotype errors
include omission (skipping an activity) and repetition.

Select
Mode

Confirm
Mode

FireBeam
Task

Complete

GoBack

X

E

Enter B

commissionUp

Figure 9: A partial deviation model of the operator task.

Figure 9 shows a simplified version of the deviation model that
was automatically generated from the EOFM model of the ther-
apist task. This model captures the operator making a potential
commission error; i.e., deviating from the expected task by press-
ing Up. For simplicity, we only show one faulty transition here;
the complete deviation model is considerably more complex, since
commission, omission, or repetition errors can occur at any state
in the normative operator model.

7.3.4 Comparing Robustness of𝑀 and𝑀𝑅 . We compared the ro-
bustness of the two designs by computing 𝑋 = Δ(𝑀𝑅, 𝐸, 𝑃) −
Δ(𝑀, 𝐸, 𝑃) (using Equation (4)) and generated representative traces
that illustrate differences in their robustness. Specifically,𝑀 con-
tains 19 states and 40 transitions, 𝑀𝑅 contains 19 states and 42
transitions. Our tool spent 958ms to compute the representation of
𝑋 , which contains 3 representative traces (i.e., implying that 𝑀𝑅

is more robust than𝑀 against three types of operator deviations).
One of the traces represents the error that was discussed in Sec-
tion 2: ⟨X,Up, E, Enter,B⟩. This shows that the redesign is indeed
robust against the operator error involving the switch from X-ray
to EBeam. Moreover, we used the deviation model to generate the
following minimal explanation for this trace: ⟨X, commission,Up, E,
Enter,B⟩, corresponding to the operator making a commission error
by unexpectedly pressing Up during the task.

In addition, computingΔ(𝑀, 𝐸, 𝑃)−Δ(𝑀𝑅, 𝐸, 𝑃) yielded an empty
set, demonstrating that the redesign of the system is strictly more
robust than the original design.

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Changjian Zhang, David Garlan, and Eunsuk Kang

7.3.5 Comparing Robustness Under Two Properties. Recall that
property 𝑃 states that the system should not fire X-ray when the
spreader is out of place. It may also be desirable to ensure that
the system does not fire electron beam when the spreader is in
place (for example, resulting in under-dose, which, while not as
life-threatening as overdose, is still considered a critical error.) Let
𝑃 ′ be a property stating that the system must prevent both over-
dose as well as under-dose by ensuring the right mode of beam
depending on the configuration of the spreader. Intuitively, 𝑃 ′ is a
stronger property than 𝑃 .

To compare the robustness of the system against these two prop-
erties, we computed𝑋 = Δ(𝑀, 𝐸, 𝑃)−Δ(𝑀, 𝐸, 𝑃 ′) by using Equation
(5). Our tool spent 2s98ms and returned one representative trace, i.e.,
⟨E,Up, X, Enter,B⟩. Since this behavior is allowed in Δ(𝑀, 𝐸, 𝑃) but
not in Δ(𝑀, 𝐸, 𝑃 ′), we can conclude from the the analysis that the
the system (as expected) is less robust in establishing the stronger
property 𝑃 ′ under potential operator errors.

8 RELATEDWORK
Most of the prior works on robustness within the software engi-
neering community have focused on testing [36]. Techniques such
as fuzz testing (e.g., [18]), model-based testing (particularly those
that use a fault model [4, 14]) and chaos testing [3] are designed to
evaluate the robustness of systems against unexpected inputs or en-
vironmental failures. However, the primary goal of these techniques
is to identify undesirable system behaviors (e.g., crashes or security
violations) rather than to compute robustness as an intrinsic charac-
teristic of the software. In addition, we believe that our robustness
metric can potentially be used to complement and further system-
atize robustness testing; for instance, traces in Δ could be used to
guide the generation of test cases that are designed to evaluate the
system against specific types of environmental deviations.

Various formal definitions of robustness for discrete systems
have been investigated [5, 19, 20, 37]. One common characteris-
tics of these prior definitions is that they are all quantitative in
nature. For instance, Bloem et al. propose a notion of robustness
that relates the number of incorrect environment inputs and system
outputs (e.g., the ratio of incorrect outputs over inputs should be
small) [5]. Tabuada et al. propose a different notion of robustness
that assigns costs to certain input and output traces (e.g., a high
cost may be assigned to an input trace that deviates significantly
from the expected behavior) and stipulates that an input with a
small cost should only result in an output with a proportionally
small cost [37]. Henzinger et al. adopt the notion of Lipschitz con-
tinuity from the control theory to discrete transition systems and
use the distance between a pair of expected and actual input traces
to quantify the amount of environmental deviations [19, 20].

In comparison, our notion of robustness is qualitative in that
it captures the (possibly infinite) set of environmental deviations
under which the system guarantees a desired property. These two
types of metrics are complementary in nature and have their own
potential uses. While a quantitative metric may directly enable
ordering of design alternatives, our robustness contains additional
information about the environmental behaviors (e.g., specific types
of deviations) that can be used to improve the system robustness.

Tabuada and Neider propose an extension of linear temporal
logic called robust linear temporal logic (rLTL), which allows spec-
ifications stipulating that a “small” violation of the environment
assumption must cause only a “small” violation of the guarantee
by the system [38]. In particular, they use a multi-valued semantics
to capture different levels of property satisfaction by the environ-
ment (e.g., given an expected property of form G𝜑 , being able to
satisfy only a weaker property F(G𝜑) would be considered a “small”
violation) [37]. Although the focus of our paper is on computing ro-
bustness rather than specifying it, rLTL could potentially be used to
characterize certain types of deviations that are temporal in nature.

Our notion of robustness can be regarded as one way of charac-
terizing uncertainty about the environment under which the system
is capable guaranteeing a certain property. Researchers have devel-
oped various notations and analysis techniques for specifying and
reasoning about uncertainty [11, 13, 23, 28]. For example, modal
transition systems (MTS) allow one to express uncertainty about
behavior by assigning a modality to transitions (e.g., a transition
that can possibly but not necessarily occur is assigned modality
may) [28]. More recently, partial models have been developed as a
general modeling framework for specifying and reasoning about
uncertainty on structural or behavioral aspects of a system [13].
Although the approach in this paper uses a purely trace-based en-
coding of robustness, these existing notations could potentially be
used to provide a more high-level representation of robustness.

In safety engineering and risk management, operating envelope
(or somestimes safety envelope) has been used to refer to the bound-
ary of environmental conditions under which the system is capable
of maintaining safety [34]. This concept has been adopted in a num-
ber of domains such as aviation, robotics, and manufacturing, but
as far as we know, has not been rigorously defined in the context
of software. Our notion of robustness can be considered as one
possible definition of the operating envelope for software systems.

9 LIMITATIONS AND DISCUSSIONS
One limitation of the proposed approach is that our current notion
of robustness is specifically designed for safety properties. As a next
step, to enable reasoning about liveness properties [1], we plan to in-
vestigate an extended notion of robustness where the environment
deviates from its expectation not only by performing additional
behaviors, but also by failing to perform expected behaviors (thus
possibly resulting in a liveness violation).

Another limitation that we plan to address is that our current
method of defining equivalence classes for Δ may sometimes result
in a classification that is too fine-grained. For example, for the ABP
protocol, our tool generated 107 different classes of environmental
deviations (see Section 7.2). Intuitively, traces ⟨𝑠𝑒𝑛𝑑 [0], 𝑠𝑒𝑛𝑑 [0]⟩
and ⟨. . . , 𝑠𝑒𝑛𝑑 [1], 𝑠𝑒𝑛𝑑 [1]⟩ refer to the same type of fault (i.e., mes-
sage loss during sending) and could be grouped into the same class.
In future work, we plan to explore different strategies for gen-
erating representative traces, leveraging abstraction-based meth-
ods to produce higher-level representations of deviations (e.g.,
⟨. . . , 𝑠𝑒𝑛𝑑 [𝑥], 𝑠𝑒𝑛𝑑 [𝑥]⟩ for some event parameter 𝑥).

One potential future direction is to develop an approach for sys-
tematically redesigning a system to improve its robustness: Given
machine𝑀 and some environmental deviations 𝛿 under which the

A Behavioral Notion of Robustness for Software Systems ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

system fails to satisfy property 𝑃 , how do we redesign the system
to be robust against such deviations (i.e., 𝛿 ⊆ Δ(𝑀 ′, 𝐸, 𝑃) for re-
designed machine 𝑀 ′)? In particular, we plan to formulate this
problem as a type of model transformation (from 𝑀 to 𝑀 ′), and
explore algorithmic methods for (semi-)automatically synthesizing
the robust redesign.

ACKNOWLEDGMENTS
We’d like to thank Daniel Jackson, Stéphane Lafortune, and Stavros
Tripakis for their discussions on robustness, and anonymous re-
viewers for their suggestions that helped greatly improve this paper.
This work was supported in part by awards CCF-1918140 and CNS-
1801546 from the National Science Foundation.

REFERENCES
[1] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,

1985.
[2] J. Annett and N. A. Stanton. Task Analysis. CRC Press, 2000.
[3] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and

C. Rosenthal. Chaos engineering. IEEE Software, 33(3):35–41, May 2016.
[4] F. Belli, A. Hollmann, and W. E. Wong. Towards scalable robustness testing. In

2010 Fourth International Conference on Secure Software Integration and Reliability
Improvement, pages 208–216. IEEE, 2010.

[5] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Jobstmann.
Specification-centered robustness. In Industrial Embedded Systems (SIES), 2011
6th IEEE International Symposium on, SIES 2011. Vasteras, Sweden, June 15-17, 2011,
pages 176–185, 2011.

[6] M. L. Bolton. A task-based taxonomy of erroneous human behavior. Int. J. Hum.
Comput. Stud., 108:105–121, 2017.

[7] M. L. Bolton and E. J. Bass. Enhanced operator function model: A generic human
task behavior modeling language. In 2009 IEEE International Conference on
Systems, Man and Cybernetics, pages 2904–2911. IEEE, 2009.

[8] M. L. Bolton and E. J. Bass. Generating erroneous human behavior from strategic
knowledge in task models and evaluating its impact on system safety with
model checking. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
43(6):1314–1327, 2013.

[9] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu. Generating phenotypical erroneous
human behavior to evaluate human-automation interaction usingmodel checking.
International Journal of Human Computer Studies, 70(11):888–906, 2012.

[10] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass. A systematic approach to model
checking human-automation interaction using task analytic models. IEEE Trans-
actions on Systems, Man, and Cybernetics Part A:Systems and Humans, 41(5):961–
976, 2011.

[11] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued
temporal logics. In Computer Aided Verification, 11th International Conference,
CAV ’99, Trento, Italy, July 6-10, 1999, Proceedings, pages 274–287, 1999.

[12] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.
[13] M. Famelis, R. Salay, and M. Chechik. Partial models: Towards modeling and rea-

soning with uncertainty. In 34th International Conference on Software Engineering,
ICSE 2012, Zurich, Switzerland, pages 573–583, 2012.

[14] J.-C. Fernandez, L. Mounier, and C. Pachon. A model-based approach for ro-
bustness testing. In IFIP International Conference on Testing of Communicating
Systems, pages 333–348. Springer, 2005.

[15] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985.

[16] D. Giannakopoulou, J. Kramer, and J. Magee. Practical behaviour analysis for
distributed software architectures. In UK Programmable Networks and Telecom-
munications Workshop, 1998.

[17] D. Giannakopoulou, C. S. Pǎsǎreanu, and H. Barringer. Assumption generation
for software component verification. In Proceedings - ASE 2002: 17th IEEE In-
ternational Conference on Automated Software Engineering, pages 3–12. IEEE,
2002.

[18] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated whitebox fuzz testing.
In NDSS, volume 8, pages 151–166, 2008.

[19] T. A. Henzinger, J. Otop, and R. Samanta. Lipschitz robustness of finite-state
transducers. In 34th International Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014, New Delhi,
India, pages 431–443, 2014.

[20] T. A. Henzinger, J. Otop, and R. Samanta. Lipschitz robustness of timed I/O
systems. In Verification, Model Checking, and Abstract Interpretation - 17th Inter-
national Conference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016.
Proceedings, pages 250–267, 2016.

[21] E. Hollnagel. Cognitive Reliability and Error Analysis Method (CREAM). Elsevier
Science, 1998.

[22] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory,
languages, and computation. Acm Sigact News, 32(1):60–65, 2001.

[23] M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A founda-
tion for three-valued program analysis. In Programming Languages and Systems,
10th European Symposium on Programming, ESOP 2001 Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2001 Genova,
Italy, April 2-6, 2001, Proceedings, pages 155–169, 2001.

[24] D. Jackson and E. Kang. Separation of concerns for dependable software design. In
Proceedings of theWorkshop on Future of Software Engineering Research, FoSER 2010,
at the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010, pages 173–176, 2010.

[25] C. B. Jones. Specification and design of (parallel) programs. In Information
Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris, France,
September 19-23, 1983, pages 321–332, 1983.

[26] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977.

[27] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[28] K. G. Larsen and B. Thomsen. A modal process logic. In Proceedings of the Third
Annual Symposium on Logic in Computer Science (LICS ’88), Edinburgh, Scotland,
UK, July 5-8, 1988, pages 203–210, 1988.

[29] N. G. Leveson and C. S. Turner. Investigation of the therac-25 accidents. IEEE
Computer, 26(7):18–41, 1993.

[30] J. Magee and J. Kramer. State models and java programs. wiley Hoboken, 1999.
[31] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software

architectures. In Working Conference on Software Architecture, pages 35–49.
Springer, 1999.

[32] H. Petroski. To engineer is human: The role of failure in successful design. St
Martins Press, 1985.

[33] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pages 46–57, 1977.

[34] J. Rasmussen. Risk management in a dynamic society: a modelling problem.
Safety Science, 27(2):183 – 213, 1997.

[35] J. Reason. Human Error. Cambridge University Press, New York, 1990.
[36] A. Shahrokni and R. Feldt. A systematic review of software robustness. Informa-

tion and Software Technology, 55(1):1–17, 2013.
[37] P. Tabuada, A. Balkan, S. Y. Caliskan, Y. Shoukry, and R. Majumdar. Input-output

robustness for discrete systems. In Proceedings of the 12th International Conference
on Embedded Software, EMSOFT 2012, part of the Eighth Embedded Systems Week,
ESWeek 2012, Tampere, Finland, October 7-12, 2012, pages 217–226, 2012.

[38] P. Tabuada and D. Neider. Robust linear temporal logic. In 25th EACSL Annual
Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016,
Marseille, France, pages 10:1–10:21, 2016.

[39] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2
edition, 2000.

[40] K. Zhou and J. C. Doyle. Essentials of Robust Control. Prentice-Hall, 1998.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Robustness Notion
	3.1 Preliminaries
	3.2 Robustness Definition

	4 Analysis Problems
	5 Robustness Computation
	5.1 Overview
	5.2 Weakest Assumption
	5.3 Representation of Robustness
	5.4 Explanation of Representative Traces

	6 Robustness Comparison
	7 Case Studies
	7.1 Implementation
	7.2 Network Protocol Design
	7.3 Radiation Therapy System

	8 Related Work
	9 Limitations and Discussions
	Acknowledgments
	References

