
Improving the Usability of HOL through
Controlled Automation Tactics

Eunsuk Kang and Mark D. Aagaard

Electrical and Computer Engineering
University of Waterloo
Waterloo, ON, Canada

{ekang,maagaard}@uwaterloo.ca

Abstract. This paper introduces the concept ofcontrolled automationas a bal-
anced medium between high-level automated reasoning and low-level primitive
tactics in HOL. We created a new tactic that subsumes many existing low-level
tactics for logical operations and three new tactics that simplify common uses
of term rewriting: definition expansion, simplification, and equational rewriting.
To implement the tactics, we extended HOL with a facility to label assumptions
and operate uniformly on both goals and assumptions. We select automatically
and predictably which low-level tactic to apply by examining the structure of the
selected assumption or goal. A simple and uniform set of hints enable users to
provide the minimal information needed to guide the tactics. We performed two
case studies and achieved a 60% reduction in the number of unique tactics used.

1 Introduction

HOL 4 [4] is a powerful theorem proving environment, providing a wide range of proof
techniques such as tactics, term rewriting, and decision procedures. However, the vast
richness of HOL can be overwhelming. A novice user often spends a significant amount
of time navigating through the HOL reference manual. Even experienced HOL users oc-
casionally encounter difficulties remembering the name or syntax of a tactic. Based on
these observations, our goal was to automate common proof tasks in HOL and eliminate
much of the need to search documentation when doing common reasoning. By doing
so, we allow the users to focus on devising strategies to conduct the proof.

Tactics in HOL can be classified into two types. Low-level tactics are used to de-
compose a goal into smaller subgoals or transform it into another form through term
rewriting. Most of these low-level tactics carry out one specific operation at a time,
such as eliminating a conjunctive operator or expanding thedefinition of a constant. In
comparison, high-level tactics are capable of performing multiple operations in a sin-
gle step, often attempting to reduce a goal as much as possible. High-level tactics can
be risky when used without careful discretion because they occasionally perform more
operations than what the user wants them to do. In some other cases, they simply fail to
do what the user expects. Low-level tactics provide finer control, but they are numerous
and difficult to remember.

In this paper, we introduce four new tactics:ELIM TAC,EXPAND TAC,REDUC TAC,
andEQUATE TAC. The purpose of our tactics is to provide a balanced medium between



high-level and low-level tactics. These tactics replace many of the existing low-level tac-
tics and inference rules in HOL, significantly reducing the number of functions that the
user needs to remember throughout a proof. At the same time, all of the tactics operate
on the basic principle that they should perform exactly whatthe user instructs them to
do — no more, no less — thereby giving the user the complete control of proof steps.
In short, these tactics provide what we callcontrolled automation.

Each of the four tactics is specialized in terms of the types of low-level proof tasks
that it automates.ELIM TAC is intended for performing primitive logical operations,
such as the elimination of a conjunctive operator. We classify term rewriting into three
different categories; definitional expansion, term simplification, and equational rewrit-
ing. The three types of rewriting tasks are carried out byEXPAND TAC, REDUC TAC,
andEQUATE TAC, respectively.

The implementation of our tactics is based on three underlying ideas. First, we in-
troduce a new data structure calledhints, which allows the user to provide the minimal
amount of information needed to guide our tactics. A major portion of our work focused
on establishing hints as an easy-to-use, intuitive controlmechanism for HOL users. Sec-
ondly, we develop a system of labelling and identifying an assumption using a string
in order to allow the user to operate directly on the assumption. Lastly, we provide a
precise control mechanism for the user to select between different rewriting strategies,
depending on the type of the rewriting task.

We performed two case studies to evaluate the effectivenessof the new tactics in
improving the usability of HOL, and solicited feedback fromnovice users in a graduate
course on formal verification. We started with a small example where HOL is used to
solve a logic puzzle from the popular novel seriesHarry Potter. We then moved on to
a much larger study, where we formally proved the equivalence of several superscalar
microprocessor correctness statements [1]. The statistics gathered from these studies
show an approximately 60% reduction in the number of HOL functions that a user needs
to use in a proof, and a 25 to 40% decrease in the size of a proof script. These results
demonstrate that our work simplifies and reduces the amount of interaction between the
user and the theorem prover.

In Section 2, we describeELIM TAC and how it replaces many of the most com-
monly used low-level tactics or rules in HOL. Section 3 discusses the three tactics for
rewriting: EXPAND TAC, REDUC TAC, andEQUATE TAC. Sections 4 and 5 contain
the description of the case studies and related work, respectively.

2 Controlled Automation for Logical Operations

2.1 Problem Description

The origins of our work come from two observations that we made about typical HOL
proof scripts. First, many proofs could be shortened if assumptions could be manip-
ulated with the same logical operations that can be applied to the goal. Second, the
logical operation to apply to an assumption or goal can oftenbe predicted based on the
outermost operator of the assumption or goal. From these observations, we set ourselves
the goal of developing a tactic that the user would aim at the goal or an assumption and
say “do the obvious thing”.



Any reasonably complicated proof in HOL likely involves themanipulation of as-
sumptions. Before the user can completely prove the goal or subgoals using automated
reasoners, it is often necessary to transform assumptions into a particular form through
the application of low-level tactics or inference rules. However, HOL does not contain
functions that allow the user to apply a forward inference rule directly to a specific as-
sumption. Instead, an assumption is either moved into the goal and modified via tactics;
or is transformed into a theorem, modified via forward inference rules, and then put
back onto the assumption list. There are several disadvantages to this limitation. The
multi-step processes to manipulate assumptions distract the user from the main reason-
ing of the proof. The names of forward inference rules are often seemingly unrelated to
the names of the corresponding tactic. As the number of assumptions on the goalstack
increases, it becomes difficult to identify the specific assumption to be manipulated.
To overcome these inconveniences, we designedELIM TAC to operate uniformly on
both the assumptions and the goal and developed a mechanism on top of HOL to name
assumptions and then identify assumptions by name.

A goal-directed proof in HOL typically involves decomposing the goal or assump-
tions into smaller terms. For example, conjunctive goals (e.g.P ∧ Q) are decomposed
into two goals, one forP and one forQ. We observed that it is often possible to guess the
next logical operation to perform by examining the outermost operator of the goal or
assumption. To reduce the number of tactics that the user must remember,ELIM TAC
uses simple rules to choose the tactic to apply based upon theoutermost logical con-
nective or quantifier of the identified goal or assumption.

Different tactics have different arguments for users to pass information to the tactic
(e.g a witness term for the elimination of an existential quantifier). Therefore, any pro-
cess to automate the low-level tactics must include an intuitive, easy-to-use method for
users to pass information to the underlying tactics. Relying on heuristics to guess the
requisite information would violate our intention of giving the user complete control.

The remainder of this section discusses our approaches to solving the challenge of
developing robust mechanisms to:

1. Choose a particular tactic to apply based on the logical structure of a term
2. Enable users to pass requisite information to underlyingtactic
3. Operate operate uniformly on a goal or an assumption
4. Ensure that tactics perform the expected operation or fail immediately.

2.2 ELIM TAC

ELIM TAC combines many commonly used low-level tactics. We developed it with one
ultimate purpose: save users time and effort in picking out which tactic to apply. The
type ofELIM TAC is: string -> hint list -> tactic. The first argument
is a label that identifies the goal or an assumption as atarget on which the tactic will
carry out its operation. The empty string"" denotes the goal.

The second argument is a list ofhints, which serve as a control mechanism for the
user to provide the tactic with the necessary information for carrying out a logical oper-
ation. The choice of hints depends on the type of the operation that is to be performed
on the target expression (e.g. the nullary constructorSKOLEM instructsELIM TAC to



perform skolemnization on an existential quantified term).Table 1 contains a summary
of the data constructors that are applicable toELIM TAC. Later in this paper, we extend
the definition ofhint with additional constructors that are used in our rewrite tactics
(Table 2 in Section 3.3).

Table 1.Descriptions of data constructors forhint

Constructor Type in ML Logical Operation

ASM string -> hint ⇒ elimination
MATCH term -> hint ∧, ∨ elimination
INSTANCE term -> hint ∀ elimination
WITNESS term -> hint ∃ elimination
SKOLEM hint Skolemnization

Often,ELIM TAC does not require any hints. When the logical operation to perform
can be inferred from the structure of the goal or assumption,an empty list of hints
suffices. In the example sequent below, the current goal is animplicative formulaP⇒

Q. ApplyingELIM TAC pushes the antecedent into the current list of assumptions (note
that the string “a” on the third line represents the label forthe assumption,P):

⊢P⇒ Q
By ELIM TAC "" []

a •P
⊢Q

⇒ elimination in goal

The sequents below illustrate the other uses ofELIM TAC for goal decomposition
without hints (∧, ∨, and∀ elimination).

⊢P∧Q
By ELIM TAC "" []

⊢P ⊢ Q

⊢P∨Q
By ELIM TAC "" []

⊢P

⊢∀x.u
By ELIM TAC "" []

⊢u[x′/x]

∧ elimination in goal ∨ elimination in goal ∀ elimination in goal

Next, we introduce an example of a situation where the user isrequired to provide
an extra bit of information toELIM TAC. In order to eliminate an existential quantifier,
we specify a witness term with theWITNESS hint.



⊢∃x.t
By ELIM TAC "" [WITNESS ‘u‘]

⊢ t[u/x]

∃ elimination in goal

We have already presented the use ofELIM TAC for eliminating the disjunctive
operator in a goal. By default, the tactic selects the left ofthe two disjuncts to spawn
as the subgoal. However, if the user wishes to extract the right disjunct instead, how
should this operation be specified inELIM TAC? The constructorMATCH accepts a
higher-order pattern and attempts to match it against either one of the two disjuncts in
the goal. If a match is found, it spawns the matched disjunct as a subgoal. However,
if no such match is found, the tacticimmediately failsand displays an error message,
instead of arbitrarily selecting a disjunct for subgoal generation. It is important to note
that this failure mechanism is a critical part of all controlled automation techniques.
If an operation violates the user’s intention in any way, a controlled automation tactic
must halt its execution; by doing so, it prevents any furtheroperations that might lead
to undesirable results for the user.

⊢P∨Q
By ELIM TAC "" [MATCH ‘Q‘]

⊢Q

∨ elimination in goal

The sequents presented in this section encompass all of the most common logical
operations that one may wish to perform on a goal. In Sections2.3 and 2.4, we show
how we extend the capabilities ofELIM TAC in order to automate even a wider range
of primitive operations in HOL.

2.3 Assumption Labelling

Black and Windley [2] discuss various ways to select one or more specific assumptions
in HOL. Arguably the most straight-forward and convenient mechanism for the user
is identifying assumptions by their position in the assumption list. From an informal
survey of students in a graduate-level introductory courseto theorem proving, we found
that most of them preferred to create their own tactic that allowed them to select a
specific assumption by an explicit numeric index, rather than using built-in capabilities
in HOL. However, this mechanism of identification is highly undesirable since it is
sensitive to changes in a proof script. In the long term, it will likely be detrimental to
the maintenance of the proof script.

In order to provide a mechanism that is convenient for the user and yet insensitive
to changes in a proof, we label assumptions with strings. In order to identify a target
assumption or goal, the user simply passes in the label for the assumption (or the"" for
the goal) toELIM TAC. We also provided functions to allow the user to label a newly
added assumption or change the label of an existing assumption on the goalstack.



Our implementation of labelling did not involve any changesto the existing HOL
code. The mapping between an assumption and a label on the goalstack is accomplished
through a hash table — the key is the term that represents the assumption, and the
hashed item is the string label. The one-to-one mapping between the key and the hashed
item ensures that each assumption has its own unique label, thereby separating the or-
dering of assumptions on the goalstack from their labels. When new assumptions are
added to the goalstack without explicit labels from the user, each of them is entered into
the hash table with a default label. In order to create a default label for an assumption,
we use simple heuristics in which we extract a representative string based on the size
and the first two alphanumeric characters of the term. We designed our heuristics in
such a way that it would reduce the occurrences of duplicate default labels as much as
possible without requiring the user to enter tediously longlabels to refer to assump-
tions. However, in case of duplicate default labels, all subsequent duplicate labels after
the first one are suffixed with a numeric index. This operationmaintains the one-to-one
mapping requirement in the hash table, but also introduces the dependency of labels
on the ordering in which their corresponding assumptions are added to the goalstack.
Based on our experiences withELIM TAC, the occurrences of duplicate default labels
are rare. However, in order to ensure that assumption labelsstay insensitive to changes
in a proof script all the time, we encourage the user to label anew assumption with a
unique, more meaningful name.

2.4 ExtendingELIM TAC to Work with Assumptions

Given the underlying infrastructure for assumption labelling, we now describe the full
capabilities ofELIM TAC as a versatile tool for both reducing a goal and transforming
an assumption into a desired form. In this section, we present sequents for uses of
ELIM TAC when operating on an assumption. We also describe how hints are used
to fully specify the user’s intention when more than one primitive operations may be
possible.

At times, it is useful to be able to extract one specific conjunct out of a term with
an arbitrary number of conjuncts. Let us assume that the userintends to perform the
elimination of a conjunctive operator on an assumption‘t1 ∧ t2 ∧ t3‘. Applying
ELIM TAC to the assumption without any hints results in the extraction of the leftmost
conjunct,‘t1‘.

a • t1∧ t2∧ t3
⊢P

By ELIM TAC "a" []

a • t2∧ t3
t1 • t1

⊢P

∧ elimination in assumption

Another common primitive task in HOL is extracting aninner conjunct out of an
expression. Carrying this operation out by using only the built-in functions in HOL



may take several steps, depending on the level of nesting forthat particular conjunct.
Instead, we specify a pattern that matches a particular subterm (i.e.‘t2‘) using the
MATCH hint. The meaning ofMATCH depends on the context in whichELIM TAC is
currently being used. When applied to a goal,MATCH is used for the decomposition
of a disjunctive expression; when applied to an assumption,MATCH plays the role in
extracting a particular conjunct out of the assumption.

a • t1∧ t2∧ t3
⊢P

By ELIM TAC "a" [MATCH ‘t2‘]

a • t1∧ t3
t2 • t2

⊢P

∧ elimination in assumption usingMATCH

In the next example, we show how one can useELIM TAC to perform the modus
ponens rule involving two assumptions. Given the assumptions, “a1” and “a2” in the
below sequent, the intuitive next step is to match the antecedent in‘t1 ==> t2‘
against the other assumption and obtain the goal,‘t2‘. The data constructorASM
indicates which assumption should be matched against the antecedent of an implicative
assumption.

a1 • t1⇒ t2
a2 • t1

⊢P
By ELIM TAC "a1" [ASM "a2"]

a1 • t2
a2 • t1

⊢P

⇒ elimination in assumption usingASM

When applied to an existentially quantified assumption without hints,ELIM TAC
performs skolemnization. Using only the built-in tactics in HOL, the most straightfor-
ward path to skolemnization on an assumption requires four different steps. Here, using
ELIM TAC, we accomplish this operation in a single step:

a •∃x.t
⊢P

By ELIM TAC "a" []

a • t
⊢P

∃ elimination in assumption



When an existential quantified expression resides as a subterm within an assump-
tion with two or more conjuncts (e.g.‘t1 ∧ ?x. t2 ∧ t3‘), it is sometimes desir-
able to perform skolemnization directly on the quantified subterm. We introduce a new
constructor calledSKOLEM, which instructsELIM TAC to search for an existentially
quantified subterm and apply skolemnization directly on it.

a • t1∧ (∃x.t2)∧ t3
⊢P

By ELIM TAC "a" [SKOLEM]

a • t1∧ t2∧ t3
⊢P

∃ elimination in assumption using SKOLEM

Lastly, eliminating the universal quantifier from an assumption involves instantiat-
ing the quantified variable with a specific constant. The usermust provide this constant
through the hint constructorINSTANCE:

a •∀x.t
⊢P

By ELIM TAC "a" [INSTANCE ‘u‘]

a • t[u/x]
⊢P

∀ elimination in assumption using INSTANCE

In this section, we have described the operations that a usercan perform using the
combination ofELIM TAC with hints. One possible criticism againstELIM TAC is
that the user is still required to memorize the name and the syntax of the different data
constructors for the typehint. In response, we have tried to keep the number of the
data constructors to a minimum without compromising the robustness ofELIM TAC
in its ability to perform a wide range of primitive operations. Also, the names and the
syntax of the constructors are fairly intuitive and easy to remember. An experiment
with students in the graduate course in theorem proving showed that once they became
familiarized withELIM TAC, they preferred working with our tactic over having to
remember a wide range of built-in HOL tactics and inference rules.

3 Controlled Automation for Term Rewriting

3.1 Problem Description

HOL contains a wide set of rewrite tactics and as well as several hundreds of previously
proven theorems that can be used “off-the-shelf” as rewriterules. Despite the richness of
rewriting capabilities available in HOL, term rewriting isnot always a straightforward
matter, and the learning curve is stiff for a novice user.

In this section, we identify two major challenges with term rewriting in HOL. First,
we observe that it is generally difficult to control the exactlocation within a term to



which a rewrite rule must be applied. The most commonly used rewriting tactics such
asREWRITE TAC andONCE REWRITE TAC walk over the entire term in a left-to-
right order and applies the rewrite rule to the first rewritable subterm that it encounters.
Sometimes, these tactics fail to meet the user’s expectations; they either rewrite a wrong
subterm or rewrite more subterms than the user has in mind.

Secondly, HOL does not provide an efficient way to apply a rewrite rule directly to
an assumption or rewrite a goal using an assumption. The former case is closely related
to the discussion in Section 2.3 - that is, the lack of a built-in mechanism for identi-
fying or directly operating on one or more specific assumptions.ASM REWRITE TAC
attempts to rewrite the goal using all of the existing assumptions, but is not useful when
the user wishes to rewrite using only a subset of them.FILTER ASM REWRITE TAC
improves upon the former tactic by allowing the user to select a set of assumptions
as rewrite rules, but requires a condition predicate, whichcan be tedious to create. A
simpler mechanism for rewriting using assumptions is desirable.

In the process of developing controlled automation tacticsfor term rewriting, we
have classified common rewriting tasks into three differentcategories:

1. Definitional expansion
2. Term simplification
3. Other equational rewriting

Instead of creating a single tactic that performs all three types of rewriting, we designed
a separate tactic for each one of them. The rationale behind the separation of tactics is
that it is difficult to devise a single rewrite tactic that “does it all” without falling into
the danger of violating the user’s intentions. For instance, it is sometimes desirable to
simplify an arithmetic expression as much as possible, whereas in other situations, the
user may intend to perform a more delicate rewrite operation. In either case, it is nearly
impossible to guess what the usermightwish to do for the next step of a proof.

In Sections 3.2 and 3.3, we describe our approaches to solving the aforementioned
challenges - specifying a rewritable subterm and applying rewriting operations directly
to assumptions. Then, in Section 3.4, illustrate how the three rewrite tactics evolve on
top of our solutions to these challenges.

3.2 Specifying the Location of Rewriting

One solution to the challenge of specifying the exact location of rewriting within a term
is combining the built-in tacticGEN REWRITE TAC with conversions. A conversion
in HOL is a function, with a typeterm -> thm, that takes a termt and produces
a theorem⊢ t = t ′. A composition of multiple conversions can be used to specify the
search strategies for term rewriting when passed toGEN REWRITE TAC.

For instance, let us assume that the user wishes to rewrite the left hand side of the
equation in‘x - (z + y) = x - (y + z)‘ using the built-in theoremADD SYM:
⊢ ∀m n. m+n = n+m.

The conversionRATOR CONV applies a rewrite rule to the operator of a function
application, andONCE DEPTH CONV applies the rule only once to an applicable sub-
term; the latter conversion is necessary in order to ensure the termination of rewriting.



In the following sequent, the two conversions are composed using the infix operatoro
and passed as an argument to the tactic.

⊢x - (z + y) = x - (y + z)
By GEN REWRITE TAC (RATOR CONV o ONCE DEPTH CONV) [] [ADD SYM]

⊢x - (y + z) = x - (y + z)

We developed an alternative solution where the user simply specifies a rewritable
subterm using higher-order pattern matching. The main goalof our approach is to elim-
inate the necessity for built-in conversions in rewriting.As a first step, we define a
tactic namedNEW REWRITE TAC with a typehint list -> tactic. This tac-
tic shares the same data typehint asELIM TAC does. However, in the context of
rewriting, the data constructorMATCH is used to specify the higher-order match. In ad-
dition, we add a new constructorTHM : thm -> hint, which takes a rewrite rule
as the argument. By combining these two constructors into a list, the user instructs
NEW REWRITE TAC to rewrite only the left hand side of the equation.

⊢x - (z + y) = x - (y + z)
By NEW REWRITE TAC [MATCH ‘z + y‘, THM ADD SYM]

⊢ x - (y + z) = x - (y + z)

As an another example, let us assume that for whatever reasons, the user wishes to
rewrite the left hand side of the equationSUC (x + y) = SUC (x + y) using
ADD SYM. In this case, the original higher-order matching technique cannot be used
to specify only the left hand side of the term, as any pattern would match both of the
two sides. In order to ensure that our term rewriting approach is complete, we extended
our matching algorithm to allow the user to point at a rewritable subterm using the
underscore character‘ ‘. The following sequent illustrates this example:

⊢SUC (x + y) = SUC (x + y)
By NEW REWRITE TAC [MATCH ‘ = a‘, THM ADD SYM]

⊢SUC (y + x) = SUC (x + y)

As a whole, the meaning ofMATCH ‘ = a‘ is equivalent to“extract a subterm
that matches the pattern provided in the hint but rewrite only the part of the subterm
that is highlighted by the underscore character.”Note that since the matching algorithm
used in our approach is based on higher-order pattern matching, the fragment‘a‘ in
‘ = a‘ matches the right hand side of the entire term (i.e.‘SUC (x + y)‘). This
mechanism is convenient because the user does not need to spell out the entire term to
provide the exact match.

3.3 Integrating Rewriting with Assumption Handling

Directly Rewriting an Assumption In Section 2.3, we introduced the system of iden-
tifying an assumption using string labels. We now extendNEW REWRITE TAC to allow
term rewriting on an assumption. The ML type of the tactic is also updated to:



NEW_REWRITE_TAC : string -> hint list -> tactic .

As previously mentioned, the empty string"" denotes the goal on the current goalstack.

Rewriting a Goal using Assumptions SinceNEW REWRITE TAC shares the same
data typehint asELIM TAC does, we take advantage of the data constructorASM to
allow the user to specify the assumption to be applied to a goal as a rewrite rule. Then,
the application of the tactic

NEW_REWRITE_TAC "" [ASM "a1"] .

rewrites the goal using the assumption with the label “a1.”
In some cases, it is also desirable to include multiple assumptions as rewrite rules.

In order to support this capability, we introduce a new data constructor forhint called
ASMS. The constructor has an ML typestring list -> hint. Similarly, to al-
low the user to specify multiple built-in or previously proven theorem as rewrite rules,
we extendhint with another constructor calledTHMS. The complete list of data con-
structors ofhint and their purposes are shown in Table 2:

Table 2.Descriptions of complete data constructors forhint

Constructor Type in ML Logical Operation

ASM string -> hint ⇒ elimination, modus ponens, rewrite rule
ASMS string list -> hint Rewrite rules
INSTANCE term -> hint ∀ elimination
MATCH term -> hint ∧, ∨ elimination, rewrite match
SKOLEM hint Skolemnization
THM thm -> hint Rewrite rule
THMS thm list -> hint Rewrite rules
WITNESS term -> hint ∃ elimination

3.4 Controlled Rewrite Tactics

Given the supporting mechanisms for specifying a subterm and rewriting with assump-
tions, we finally introduce controlled automation tactics that are specialized for term
rewriting. In this process, we replaceNEW REWRITE TAC, which was discussed in the
previous section, with three new tactics,EXPAND TAC,REDUC TAC, andEQUATE TAC.
Syntactically, these tactics share the same ML typestring -> hint list ->
tactic. We believe that the range of rewriting operations supported by our tactics is
wide enough such that user will rarely need to resort to the built-in rewrite tactics in
HOL.



Definitional Expansion EXPAND TAC performs the definitional expansion of one or
more constants in a goal or an assumption. A constant is expandable if there exists a
built-in or user-defined theorem⊢ c = t, wherec is the constant itself, andt is the term
that represents the definition of the constant. More generally, if c is ann-arity function,
an expression equivalent to an application ofc to its n parameters,p1, p2, ..., pn is ex-
pandable if there exists a theorem⊢ (c p1 p2 ... pn) = t ′, wheret ′ is a well-typed term
in the HOL-specific variant of simply typedλ-calculus. One or more of the parameters,
p1, p2, ..., pn, may be universally quantified.

When invoked without any hints,EXPAND TAC traverses the matching subterm
within the target goal or assumption in the top-down manner and unfolds the definition
of the first expandable constant or expression that it encounters. Internally, unnoticed
by the user,EXPAND TAC searches through the database of existing definitions in HOL
and determines whether a constant is expandable. This automatic searching capability
provides convenience to the user but is not always desirable; in this case, hints act as a
useful control mechanism for specifying the behaviour of the tactic.

As an alternative to specifying the rewrite rule throughTHM, narrowing down the
scope of the subterm search by usingMATCH constructor has an identical effect. For
example, let us assume that two theorems,factorial andpow have already been
defined.

factorial: |- (factorial 0 = 1) /\
!n. factorial (SUC n) = (n + 1) * factorial n

pow: |- (!k. pow k 0 = 1) /\
!k n. pow k (SUC n) = k * pow k n

As a next step, the user expands the occurrence offactorial in the left hand side of
the inequality:

⊢factorial (SUC n) > pow 2 (SUC n)
By EXPAND TAC "" []

⊢(n + 1) * factorial n > pow 2 (SUC n)

However, the user changes his or her mind and decides to unfold the definition ofpow
instead:

⊢factorial (SUC n) > pow 2 (SUC n)
By EXPAND TAC "" [THM pow]

⊢factorial (SUC n) > 2 * pow 2 n

It is not necessarily the case that the name of the ML binder (meta-level identifier) is
equal to the name of the constant (HOL term) that is currentlybeing expanded. Alter-
natively, the user can specify the subterm to be rewritten using a higher-order pattern:

⊢factorial (SUC n) > pow 2 (SUC n)
By EXPAND TAC "" [MATCH ‘a > ‘]

⊢factorial (SUC n) > 2 * pow 2 n



The latter alternative may be preferred in some cases since it eliminates the user’s man-
date of having to remember the name of the ML binder for a specific theorem.

Term Simplification REDUC TAC recursively applies a set of built-in simplification
rules about numbers, lists, and propositions as well as user-provided theorems to a goal
or an assumption until no rewrite rule remains applicable. In essence,REDUC TAC is
a wrapper for the built-in HOL simplifierSIMP TAC with an external interface that
gives the user greater control of where to apply simplification. REDUC TAC is most
beneficial when the user wishes to simplify only a particularsubterm within a goal or
an assumption. Consider the following sequent:

a •c + 1 - 1 = a + b
⊢c + 1 - 1 = SUC (a + b - 1)

By REDUC TAC "" [MATCH ‘SUC x‘]

a •c + 1 - 1 = a + b
⊢c + 1 - 1 = a + b

ApplyingREDUC TAC to the entire term would reduce‘c + 1 - 1‘ to‘c‘, which,
in this example, is not the desirable outcome.

Equational Rewriting The last of the trio,EQUATE TAC, is intended for rewriting op-
erations that do not fall into the two other categories - definitional expansion and term
simplification.EQUATE TAC may be used to perform any equational rewriting; in this
sense, its behaviour is nearly identical toGEN REWRITE TAC. However, the two tac-
tics differ significantly in their user interfaces. The latter tactic accepts a set of conver-
sions for search strategies as well as a list of rewrite rulesand theorems.EQUATE TAC
achieves nearly the same level of customizability with a much simpler external interface
and does not require the user to commit to memory numerous conversion functions

4 Case Studies

In order to evaluate the effectiveness of our approach in providing controlled automa-
tion, we have carried out two separate case studies in HOL. Wefirst begin with a small
proof that is based on one of the logic puzzles in the popular novel Harry Potter and
the Sorcerer’s Stone. The details of the puzzle are irrelevant for the purpose of our dis-
cussion. The original version of the proof that we carried out is about 280 lines long in
terms of the size of the proof script, and required 8 intermediate lemmas.

The original proof script served as the control subject in our case study. We then
carried out the same proof from scratch, but the main difference now was that our four
tactics were available for use by the human prover. It is important to note that we did
not modify the general, high-level strategies for carryingout the proof between the
two proof scripts. Rather, the focus of our study was to measure the effectiveness of
our approach in automating low-level details in a proof. After the proof was re-done,
we gathered statistics such as the size of the proof script and the number of tactics or
inference rules that the user had to use in order to successfully carry out the proof.



The first row in Table 3 illustrates the statistics from the study of the Harry Potter
puzzle. The data exhibit a considerable amount of reductionin the size of the proof
script. We attribute this improvement mainly to our assumption handling system, which
allows the user to apply an inference rule directly to an assumption in one step. Using
built-in tools in HOL, the same operation would take two to three steps on average.

Table 3.Reduction in the Size of Proof Scripts and Number of Functions Used

Size (LOC) No. Functions
Original Modified Reduction Original Modified Reduction

Harry Potter 282 162 43% 13 5 62%
Microbox 2254 1678 26% 30 12 60%

Perhaps more significantly, the outcome of our study in Table3 shows a large de-
crease in the number of tactics or inference rules that were used during the proof; the
figure “5” in the last column includes the counting of our tactics. Throughout most parts
of the proof, the user was able to perform logical or rewriting operations using our con-
trolled automation tactics. There were only a few occasionswhere it was necessary to
resort to built-in functions in HOL.

We also carried out a larger case study (2200 line proof script) in which we redid the
Microbox [1] proofs about correctness statements for superscalar microprocessors. The
second row in Table 3 contains the statistics for the comparison between the original and
the modified version of the proof script for the microprocessor correctness statements.
Similar to the Harry Potter proof, we observed a significant improvement both in terms
of the size of the proof script and the number of functions used. The figure “12” in
the last column of the table includes all of the four controlled tactics that we have
described in this paper. The remaining eight were built-in HOL functions that did not
fit into our definition of controlled automation. These functions included high-level
automated reasoners (e.g.PROVE TAC) and miscellaneous facilities such as tactics for
renaming assumptions or dropping unnecessary assumptionsfrom the goalstack. Based
on the case studies, we believe that our approach holds considerable promise in making
theorem proving in HOL a much simpler, less time-consuming task for both novice and
expert users.

5 Related Work

The purpose of our tactics is not to add expressive or deductive power to the HOL
theorem prover. Rather, our goal is to enable users to quickly perform many of the
common logical or rewriting operations.

Harrison compared declarative and procedural styles of theorem proving [7]. De-
lahaye later compared declarative, procedural, and term-based proofs (for constructive
logics) [3]. Each of these different styles of proof is best suited for different types of
reasoning (e.g., forward vs. backward, short proofs vs. long proofs, elegantly crafted



vs. done-and-forgotten). Our work lies within the world of procedural proof, and re-
lies upon three principal ideas: assumption labelling for simple and robust access to
assumptions, hints as a uniform mechanism to pass information to tactics, and packag-
ing low-level rewrite strategies according to user-level purposes: definition expansion,
simplification and reduction, and equational substitution.

Trybulec’s Mizar theorem prover has long allowed users to label proof steps [12] [10].
Harrison adapted the idea of labels to do assumption labelling in his Mizar mode for
HOL [5] and in HOL-light [6]. Hickey’s MetaPRL supports the labelling of proof nodes
to denote the type of reasoning that led to the node (e.g. primary line of reasoning, well-
formedness, or antecedent to an assertion) [8].

One of the most valuable hints in our work isMATCH, which allows the user to select
a subterm to operate on. Martin and colleagues used patternsand meta-variables in the
Angel tactic language to identify subterms on which to operate and to extract subterms
from the program to be passed as arguments to tactics [9]. Toyn used patterns to steer
tactics and to select which tactic to apply [11]. In ISAR, Wenzel uses meta-variables
in proof scripts to refer to terms and includes automatic binding of standard variables,
such as???goal[13]. All of these uses of patterns would certainly be beneficial in hints
or new tactics, but some of the uses could require significantchanges to the way that
HOL parses terms.

6 Conclusion and Future Work

In this paper, we have presented the concept ofcontrolled automationas a balanced
medium between high-level automated reasoning and low-level primitive operations in
the HOL theorem prover. In order to show how we achieve this type of automation, we
have introduced four new HOL tactics, which we namedELIM TAC, EXPAND TAC,
REDUC TAC, andEQUATE TAC. We have also described special data structures called
hints, which serve as an intuitive, easy-to-use mechanism for users to provide these
tactics with information for carrying out the desired operations. Two case studies that
we have conducted demonstrate that our tactics significantly improve on the degree of
automation in HOL by reducing the number of functions that a user needs to remember.

We have introduced these tactics (in addition to existing tactics and rules in HOL)
to students who are enrolled in the introductory level course in formal verification. This
year’s offering is the first time that we have done so. A major assignment in the course
is theorem proving using HOL, and the students are given the freedom of using our
tactics. So far, an informal survey of students indicates that they prefer to use the new
tactics whenever possible over the existing ones in HOL. Many students have positively
expressed that they do not have to cope with the burden of remembering the names of
numerous tactics and inference rules in HOL. Our current plan is to continue introduc-
ing our tactics in future offerings of the course and receivefeedback from students on
how we can improve our tools to better assist novice users in the process of learning
interactive theorem proving.
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