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Abstract. This paper introduces the conceptaaintrolled automatioras a bal-
anced medium between high-level automated reasoning antel@l primitive
tactics in HOL. We created a new tactic that subsumes marsyirgilow-level
tactics for logical operations and three new tactics thapfy common uses
of term rewriting: definition expansion, simplification,caaquational rewriting.
To implement the tactics, we extended HOL with a facilityabél assumptions
and operate uniformly on both goals and assumptions. Wetsalgomatically
and predictably which low-level tactic to apply by examipithe structure of the
selected assumption or goal. A simple and uniform set ofsheéniable users to
provide the minimal information needed to guide the tactés performed two
case studies and achieved a 60% reduction in the numberaieitactics used.

1 Introduction

HOL 4 [4] is a powerful theorem proving environment, provigia wide range of proof
techniques such as tactics, term rewriting, and decisiongatures. However, the vast
richness of HOL can be overwhelming. A novice user often dpersignificant amount
of time navigating through the HOL reference manual. Evgreelenced HOL users oc-
casionally encounter difficulties remembering the nameyotax of a tactic. Based on
these observations, our goal was to automate common peiafi@HOL and eliminate
much of the need to search documentation when doing comnasome1g. By doing
so, we allow the users to focus on devising strategies towtrile proof.

Tactics in HOL can be classified into two types. Low-levetitzcare used to de-
compose a goal into smaller subgoals or transform it intdterdorm through term
rewriting. Most of these low-level tactics carry out one aifie operation at a time,
such as eliminating a conjunctive operator or expandingl&fmition of a constant. In
comparison, high-level tactics are capable of performindtiple operations in a sin-
gle step, often attempting to reduce a goal as much as peskliglh-level tactics can
be risky when used without careful discretion because tieegsionally perform more
operations than what the user wants them to do. In some aikesgcthey simply fail to
do what the user expects. Low-level tactics provide finetrobrbut they are numerous
and difficult to remember.

In this paper, we introduce four new tactié€$:l MTAC, EXPAND_TAC, REDUC_TAC,
andEQUATE_TAC. The purpose of our tactics is to provide a balanced mediuwedsn



high-level and low-level tactics. These tactics replacayrd the existing low-level tac-
tics and inference rules in HOL, significantly reducing thwenier of functions that the
user needs to remember throughout a proof. At the same tihoé the tactics operate
on the basic principle that they should perform exactly vihatuser instructs them to
do — no more, no less — thereby giving the user the completeaarf proof steps.
In short, these tactics provide what we aaihtrolled automation

Each of the four tactics is specialized in terms of the tyddewe-level proof tasks
that it automatesEL1 MTAC is intended for performing primitive logical operations,
such as the elimination of a conjunctive operator. We diassim rewriting into three
different categories; definitional expansion, term sifigdkion, and equational rewrit-
ing. The three types of rewriting tasks are carried ouEBPAND_TAC, REDUC_TAC,
andEQUATE_TAC, respectively.

The implementation of our tactics is based on three undeglideas. First, we in-
troduce a new data structure calleidts which allows the user to provide the minimal
amount of information needed to guide our tactics. A majatipo of our work focused
on establishing hints as an easy-to-use, intuitive contemthanism for HOL users. Sec-
ondly, we develop a system of labelling and identifying asuasption using a string
in order to allow the user to operate directly on the assumptiastly, we provide a
precise control mechanism for the user to select betweésrelift rewriting strategies,
depending on the type of the rewriting task.

We performed two case studies to evaluate the effectivesfes® new tactics in
improving the usability of HOL, and solicited feedback frowvice users in a graduate
course on formal verification. We started with a small examphere HOL is used to
solve a logic puzzle from the popular novel setfitry Potter. We then moved on to
a much larger study, where we formally proved the equivaeafcseveral superscalar
microprocessor correctness statements [1]. The statigbthered from these studies
show an approximately 60% reduction in the number of HOL fiams that a user needs
to use in a proof, and a 25 to 40% decrease in the size of a pedpf.sThese results
demonstrate that our work simplifies and reduces the amdimtoaction between the
user and the theorem prover.

In Section 2, we describeLl MTAC and how it replaces many of the most com-
monly used low-level tactics or rules in HOL. Section 3 dissrs the three tactics for
rewriting: EXPAND_TAC, REDUC_TAC, andEQUATE_TAC. Sections 4 and 5 contain
the description of the case studies and related work, régphc

2 Controlled Automation for Logical Operations

2.1 Problem Description

The origins of our work come from two observations that we enalout typical HOL
proof scripts. First, many proofs could be shortened if aggions could be manip-
ulated with the same logical operations that can be apptiettié goal. Second, the
logical operation to apply to an assumption or goal can dftepredicted based on the
outermost operator of the assumption or goal. From thesreditsons, we set ourselves
the goal of developing a tactic that the user would aim at tad gr an assumption and
say “do the obvious thing”.



Any reasonably complicated proof in HOL likely involves thmnipulation of as-
sumptions. Before the user can completely prove the goallmyaals using automated
reasoners, it is often necessary to transform assumptibms iparticular form through
the application of low-level tactics or inference ruleswéwver, HOL does not contain
functions that allow the user to apply a forward inferende directly to a specific as-
sumption. Instead, an assumption is either moved into théagw modified via tactics;
or is transformed into a theorem, modified via forward infee rules, and then put
back onto the assumption list. There are several disadyesit® this limitation. The
multi-step processes to manipulate assumptions distraetger from the main reason-
ing of the proof. The names of forward inference rules arerofeemingly unrelated to
the names of the corresponding tactic. As the number of gssons on the goalstack
increases, it becomes difficult to identify the specific agstion to be manipulated.
To overcome these inconveniences, we desigalddVITAC to operate uniformly on
both the assumptions and the goal and developed a mechamisp of HOL to name
assumptions and then identify assumptions by name.

A goal-directed proof in HOL typically involves decompogithe goal or assump-
tions into smaller terms. For example, conjunctive goalg.@ A Q are decomposed
into two goals, one foP and one foQ. We observed that it is often possible to guess the
next logical operation to perform by examining the outernugserator of the goal or
assumption. To reduce the number of tactics that the userr@memberELI MTAC
uses simple rules to choose the tactic to apply based upasutieemost logical con-
nective or quantifier of the identified goal or assumption.

Different tactics have different arguments for users tepaformation to the tactic
(e.g a witness term for the elimination of an existentialrgifeer). Therefore, any pro-
cess to automate the low-level tactics must include antimgieasy-to-use method for
users to pass information to the underlying tactics. Relyin heuristics to guess the
requisite information would violate our intention of gigthe user complete control.

The remainder of this section discusses our approachedviogthe challenge of
developing robust mechanisms to:

1. Choose a particular tactic to apply based on the logicatstre of a term
2. Enable users to pass requisite information to underligntic

3. Operate operate uniformly on a goal or an assumption

4. Ensure that tactics perform the expected operation bnfaiediately.

2.2 ELI MTAC

ELI MTAC combines many commonly used low-level tactics. We devealdpeith one
ultimate purpose: save users time and effort in picking duittvtactic to apply. The
type of ELI MTACis:string -> hint list -> tactic. The first argument
is a label that identifies the goal or an assumption &sgeton which the tactic will
carry out its operation. The empty stritg denotes the goal.

The second argument is a list loits, which serve as a control mechanism for the
user to provide the tactic with the necessary informatiomcéorying out a logical oper-
ation. The choice of hints depends on the type of the operétiat is to be performed
on the target expression (e.g. the nullary construS®L EMinstructseEL| M TAC to



perform skolemnization on an existential quantified teffaple 1 contains a summary
of the data constructors that are applicablEltd M TAC. Later in this paper, we extend
the definition ofhi nt with additional constructors that are used in our rewritita
(Table 2 in Section 3.3).

Table 1. Descriptions of data constructors for nt

Constructor Type in ML Logical Operation
ASM string -> hint = elimination
MATCH term-> hint A, V elimination

| NSTANCE term-> hint V elimination

W TNESS term-> hint 3 elimination
SKOLEM hi nt Skolemnization

Often,ELI MTACdoes not require any hints. When the logical operation ttoper
can be inferred from the structure of the goal or assumptonempty list of hints
suffices. In the example sequent below, the current goal isiplicative formulaP =
Q Applying ELI MTAC pushes the antecedent into the current list of assumptians (
that the string “a” on the third line represents the labetf@ assumptior?):

FP=Q
By ELIMTAC "" []
a eP

FQ

= elimination in goal

The sequents below illustrate the other useEldf M TAC for goal decomposition
without hints (\, Vv, andV elimination).

FPAQ FPVQ FVvx.u
By ELIMTAC "" [] By ELIMTAC "" [] By ELIMTAC "" []
FP FQ FP FulX /X]
A elimination in goal V elimination in goal V elimination in goal

Next, we introduce an example of a situation where the usesired to provide
an extra bit of information t&LI M.TAC. In order to eliminate an existential quantifier,
we specify a witness term with th&f TNESS hint.



F3ax.t
By ELIMTAC "" [WTNESS ‘u‘]
Ft{u/X]

3 elimination in goal

We have already presented the useEbf MTAC for eliminating the disjunctive
operator in a goal. By default, the tactic selects the letheftwo disjuncts to spawn
as the subgoal. However, if the user wishes to extract the digjunct instead, how
should this operation be specified .l MTAC? The constructoMATCH accepts a
higher-order pattern and attempts to match it againstreithe of the two disjuncts in
the goal. If a match is found, it spawns the matched disjusa aubgoal. However,
if no such match is found, the tactimmediately failsand displays an error message,
instead of arbitrarily selecting a disjunct for subgoal g@tion. It is important to note
that this failure mechanism is a critical part of all conliedl automation techniques.
If an operation violates the user’s intention in any way, atogled automation tactic
must halt its execution; by doing so, it prevents any furttygerations that might lead
to undesirable results for the user.

FPVQ
By ELIMTAC "" [MATCH ' Q]

FQ
V elimination in goal

The sequents presented in this section encompass all ofdeeanmmon logical
operations that one may wish to perform on a goal. In Sec2oBsnd 2.4, we show
how we extend the capabilities 8.1 MTAC in order to automate even a wider range
of primitive operations in HOL.

2.3 Assumption Labelling

Black and Windley [2] discuss various ways to select one amspecific assumptions
in HOL. Arguably the most straight-forward and conveniergamanism for the user
is identifying assumptions by their position in the assuoptist. From an informal
survey of students in a graduate-level introductory cotaseeorem proving, we found
that most of them preferred to create their own tactic thimwedd them to select a
specific assumption by an explicit numeric index, rathenthsing built-in capabilities
in HOL. However, this mechanism of identification is highlgdesirable since it is
sensitive to changes in a proof script. In the long term, it hdely be detrimental to
the maintenance of the proof script.

In order to provide a mechanism that is convenient for the asd yet insensitive
to changes in a proof, we label assumptions with stringsrdiercto identify a target
assumption or goal, the user simply passes in the labeléagbumption (or the" for
the goal) toELI M.TAC. We also provided functions to allow the user to label a newly
added assumption or change the label of an existing assumgnithe goalstack.



Our implementation of labelling did not involve any changeshe existing HOL
code. The mapping between an assumption and a label on tlstagids accomplished
through a hash table — the key is the term that representssthergtion, and the
hashed item is the string label. The one-to-one mappingd®ithe key and the hashed
item ensures that each assumption has its own unique laleglty separating the or-
dering of assumptions on the goalstack from their labelsefMew assumptions are
added to the goalstack without explicit labels from the usach of them is entered into
the hash table with a default label. In order to create a did&el for an assumption,
we use simple heuristics in which we extract a represemtatiing based on the size
and the first two alphanumeric characters of the term. Wegdesli our heuristics in
such a way that it would reduce the occurrences of duplicefi@udt labels as much as
possible without requiring the user to enter tediously Itatgels to refer to assump-
tions. However, in case of duplicate default labels, alls&guent duplicate labels after
the first one are suffixed with a numeric index. This operati@intains the one-to-one
mapping requirement in the hash table, but also introdusesiépendency of labels
on the ordering in which their corresponding assumptiopsaaided to the goalstack.
Based on our experiences with. | MTAC, the occurrences of duplicate default labels
are rare. However, in order to ensure that assumption |absjdnsensitive to changes
in a proof script all the time, we encourage the user to labeha assumption with a
unique, more meaningful name.

2.4 ExtendingELI MTACto Work with Assumptions

Given the underlying infrastructure for assumption labgll we now describe the full
capabilities ofELI MTAC as a versatile tool for both reducing a goal and transforming
an assumption into a desired form. In this section, we ptesequents for uses of
ELI M- TAC when operating on an assumption. We also describe how hiaetssed
to fully specify the user’s intention when more than one [tiira operations may be
possible.

At times, it is useful to be able to extract one specific coojuout of a term with
an arbitrary number of conjuncts. Let us assume that theiossrds to perform the
elimination of a conjunctive operator on an assumptiol A t2 A t 3. Applying
ELI MTACto the assumption without any hints results in the extraatithe leftmost
conjunct, t 1* .

a et1IAt2At3

FP
By ELIMTAC "a" []
a et2At3
t1  etl
FP

A elimination in assumption

Another common primitive task in HOL is extracting amer conjunct out of an
expression. Carrying this operation out by using only thétdu functions in HOL



may take several steps, depending on the level of nestinthébmparticular conjunct.
Instead, we specify a pattern that matches a particulaesubfi.e. t 2* ) using the
MATCH hint. The meaning oMATCH depends on the context in whi¢i | MTAC is
currently being used. When applied to a gd#\TCH is used for the decomposition
of a disjunctive expression; when applied to an assumph#i,CH plays the role in
extracting a particular conjunct out of the assumption.

a etlAt2At3

FP
By ELIMTAC "a" [MATCH ‘t2']
a etlAt3
12 et2
FP

A elimination in assumption usingMATCH

In the next example, we show how one can Bké MTAC to perform the modus
ponens rule involving two assumptions. Given the assumgtital” and “a2” in the
below sequent, the intuitive next step is to match the ad@tein‘ t 1 ==> t 2
against the other assumption and obtain the goa®‘ . The data constructohSM
indicates which assumption should be matched against teeedent of an implicative
assumption.

al etl=12
a2 etl
P
By ELIMTAC "al" [ASM "a2"]
al et2
a2 etl
P

= elimination in assumption usingASM

When applied to an existentially quantified assumption eutrhints,EL1 MTAC
performs skolemnization. Using only the built-in tactiosHOL, the most straightfor-
ward path to skolemnization on an assumption requires fifferent steps. Here, using
ELI MTAC, we accomplish this operation in a single step:

a edxt
FP
By ELIMTAC "a" []
a et
FP

3 elimination in assumption



When an existential quantified expression resides as arsubiihin an assump-
tion with two or more conjuncts (e.gt 1 A ?x. t2 At 3"), it is sometimes desir-
able to perform skolemnization directly on the quantifiedtetm. We introduce a new
constructor calledSKOLEM which instructsELlI M TAC to search for an existentially
quantified subterm and apply skolemnization directly on it.

a etlA(Ixt2)At3
FP
By ELIMTAC "a" [ SKOLEM
a etlIAt2At3
FP

3 elimination in assumption using SKOLEM
Lastly, eliminating the universal quantifier from an asstiompinvolves instantiat-

ing the quantified variable with a specific constant. The oagst provide this constant
through the hint constructém™NSTANCE:

a evVxt
P
By ELIMTAC "a" [|INSTANCE ‘ u‘]
a et[u/x
FP

v elimination in assumption using INSTANCE

In this section, we have described the operations that acaseperform using the
combination ofELI MTAC with hints. One possible criticism againSLI MTAC is
that the user is still required to memorize the name and thtaxyof the different data
constructors for the typki nt . In response, we have tried to keep the number of the
data constructors to a minimum without compromising theustiiess oELI M. TAC
in its ability to perform a wide range of primitive operat®rAlso, the names and the
syntax of the constructors are fairly intuitive and easydmember. An experiment
with students in the graduate course in theorem proving stidhat once they became
familiarized with ELI MTAC, they preferred working with our tactic over having to
remember a wide range of built-in HOL tactics and inferendes.

3 Controlled Automation for Term Rewriting

3.1 Problem Description

HOL contains a wide set of rewrite tactics and as well as s¢Wemdreds of previously
proven theorems that can be used “off-the-shelf” as rewults. Despite the richness of
rewriting capabilities available in HOL, term rewritingi®t always a straightforward
matter, and the learning curve is stiff for a novice user.

In this section, we identify two major challenges with temmriting in HOL. First,
we observe that it is generally difficult to control the exlatation within a term to



which a rewrite rule must be applied. The most commonly usediting tactics such
as REVIRI TE_TAC and ONCE_REWRI TE_TAC walk over the entire term in a left-to-
right order and applies the rewrite rule to the first rewiligaubterm that it encounters.
Sometimes, these tactics fail to meet the user’s expentatibey either rewrite a wrong
subterm or rewrite more subterms than the user has in mind.

Secondly, HOL does not provide an efficient way to apply a itewule directly to
an assumption or rewrite a goal using an assumption. Thegfiocase is closely related
to the discussion in Section 2.3 - that is, the lack of a bniltnechanism for identi-
fying or directly operating on one or more specific assummaidSMREVWRI TE_TAC
attempts to rewrite the goal using all of the existing assionp, but is not useful when
the user wishes to rewrite using only a subset of theh. TER ASMREWRI TE_TAC
improves upon the former tactic by allowing the user to dedeset of assumptions
as rewrite rules, but requires a condition predicate, whih be tedious to create. A
simpler mechanism for rewriting using assumptions is céxir.

In the process of developing controlled automation tadticgerm rewriting, we
have classified common rewriting tasks into three diffecaté¢gories:

1. Definitional expansion
2. Term simplification
3. Other equational rewriting

Instead of creating a single tactic that performs all thypes of rewriting, we designed
a separate tactic for each one of them. The rationale behedeparation of tactics is
that it is difficult to devise a single rewrite tactic that ‘&hoit all” without falling into
the danger of violating the user’s intentions. For instaiitds sometimes desirable to
simplify an arithmetic expression as much as possible, @dsein other situations, the
user may intend to perform a more delicate rewrite operalioeither case, it is nearly
impossible to guess what the useightwish to do for the next step of a proof.

In Sections 3.2 and 3.3, we describe our approaches to galvnaforementioned
challenges - specifying a rewritable subterm and applyéugiting operations directly
to assumptions. Then, in Section 3.4, illustrate how thedewrite tactics evolve on
top of our solutions to these challenges.

3.2 Specifying the Location of Rewriting

One solution to the challenge of specifying the exact lacedif rewriting within a term
is combining the built-in tacticGEN_ REWRI TE_TAC with conversionsA conversion
in HOL is a function, with a typd er m - > t hm that takes a termh and produces
a theorent-t =t’. A composition of multiple conversions can be used to spetbié
search strategies for term rewriting when passe@id REVRI TE_TAC.

For instance, let us assume that the user wishes to rewetiefthhand side of the
equationin x - (z +y) = x - (y + z)' usingthe built-intheorerADD_SYM
FYmnm+n=n+m

The conversiorRATOR_.CONV applies a rewrite rule to the operator of a function
application, andONCE_DEPTH_CONV applies the rule only once to an applicable sub-
term; the latter conversion is necessary in order to ens@résrmination of rewriting.



In the following sequent, the two conversions are compos@thuhe infix operatoo
and passed as an argument to the tactic.

Fx - (z +y) =x - (y + 2)
By GEN.REWRI TE.TAC ( RATORCONV o ONCE.DEPTH.CONV) [] [ ADD.SYM
X - (Y +2) =X (Y +2)

We developed an alternative solution where the user singgifies a rewritable
subterm using higher-order pattern matching. The mainafoalr approach is to elim-
inate the necessity for built-in conversions in rewritidg a first step, we define a
tactic named\NEWREWRI TE_TAC with a typehi nt |ist -> tacti c. This tac-
tic shares the same data typent asELI MTAC does. However, in the context of
rewriting, the data constructtMATCH is used to specify the higher-order match. In ad-
dition, we add a new constructdHM : t hm -> hi nt, which takes a rewrite rule
as the argument. By combining these two constructors inistathe user instructs
NEWREWRI TE_TAC to rewrite only the left hand side of the equation.

Fx - (z +y) =x - (y + 2)
By NEWREWRI TE-TAC [MATCH ‘z + y*, THM ADD.SYM
Fx- (Y r2) Ex- (YD)

As an another example, let us assume that for whatever reabenuser wishes to
rewrite the left hand side of the equati®C (x + y) = SUC (x + y) using
ADD_SYM In this case, the original higher-order matching techeigannot be used
to specify only the left hand side of the term, as any pattesald/match both of the
two sides. In order to ensure that our term rewriting apgnasiccomplete, we extended
our matching algorithm to allow the user to point at a revialtasubterm using the
underscore character’ . The following sequent illustrates this example:

FSUC (x +y) = SUC (x + V)
By NEWREWRI TE.TAC [ MATCH ‘' _ = a‘, THM ADD.SYM
FSUC (y + x) = SUC (x + V)
As a whole, the meaning &ATCH ‘ _ = a' is equivalent td'extract a subterm

that matches the pattern provided in the hint but rewriteyahle part of the subterm
thatis highlighted by the underscore charact®&idte that since the matching algorithm
used in our approach is based on higher-order pattern matcthie fragmenta‘ in

‘ _ = a' matches the right hand side of the entire term (i®UC (x + y) ‘). This
mechanism is convenient because the user does not needltowtke entire term to
provide the exact match.

3.3 Integrating Rewriting with Assumption Handling
Directly Rewriting an Assumption In Section 2.3, we introduced the system of iden-

tifying an assumption using string labels. We now ext8EWWREWRI TE_TACto allow
term rewriting on an assumption. The ML type of the tactids®aipdated to:



NEW REWRI TE_TAC : string -> hint list -> tactic

As previously mentioned, the empty strihy denotes the goal on the current goalstack.

Rewriting a Goal using Assumptions Since NEWREWRI TE_TAC shares the same
data typehi nt asELI MTAC does, we take advantage of the data construssdito
allow the user to specify the assumption to be applied to &agoa rewrite rule. Then,
the application of the tactic

NEW REWRI TE_TAC "" [ASM "al"]

rewrites the goal using the assumption with the label “al.”

In some cases, it is also desirable to include multiple apsioms as rewrite rules.
In order to support this capability, we introduce a new datastructor fohi nt called
ASMS. The constructor has an MLty ring |ist -> hint. Similarly, to al-
low the user to specify multiple built-in or previously peavtheorem as rewrite rules,
we extenchi nt with another constructor calletHVS. The complete list of data con-
structors ohi nt and their purposes are shown in Table 2:

Table 2. Descriptions of complete data constructorstont

Constructor  Type in ML Logical Operation

ASM string -> hint = elimination, modus ponens, rewrite rule
ASMS string list -> hint Rewrite rules

I NSTANCE term-> hint V elimination

MATCH term-> hint A, V elimination, rewrite match

SKOLEM hi nt Skolemnization

THM thm -> hint Rewrite rule

THVS thmlist -> hint Rewrite rules

W TNESS term-> hint 3 elimination

3.4 Controlled Rewrite Tactics

Given the supporting mechanisms for specifying a subtemhrewriting with assump-
tions, we finally introduce controlled automation tactibattare specialized for term
rewriting. In this process, we replabEWREWRI TE_TAC, which was discussed in the
previous section, with three new tactiEXPAND_TAC, REDUC TAC, andEQUATE_TAC.
Syntactically, these tactics share the same ML tgpei ng -> hint list ->
tacti c. We believe that the range of rewriting operations supjaidsieour tactics is
wide enough such that user will rarely need to resort to thk-tourewrite tactics in
HOL.



Definitional Expansion EXPAND_TAC performs the definitional expansion of one or
more constants in a goal or an assumption. A constant is eqidmif there exists a
built-in or user-defined theoremc =t, wherec is the constant itself, ands the term
that represents the definition of the constant. More gelyeifat is ann-arity function,

an expression equivalent to an applicatiorcd its n parametersps, p2, ..., pn iS €x-
pandable if there exists a theorénic p; p2 ... pn) =1/, wheret’ is a well-typed term

in the HOL-specific variant of simply typedcalculus. One or more of the parameters,
p1, P2, ---, Pn, May be universally quantified.

When invoked without any hintEXPAND_TAC traverses the matching subterm
within the target goal or assumption in the top-down mannedrunfolds the definition
of the first expandable constant or expression that it erteosininternally, unnoticed
by the userEXPAND_TAC searches through the database of existing definitions in HOL
and determines whether a constant is expandable. This atitosearching capability
provides convenience to the user but is not always desijrabiRis case, hints act as a
useful control mechanism for specifying the behaviour efttctic.

As an alternative to specifying the rewrite rule througtM narrowing down the
scope of the subterm search by usM§TCH constructor has an identical effect. For
example, let us assume that two theorefres;t ori al andpow have already been
defined.

factorial: |- (factorial 0 = 1) /\
I'n. factorial (SUCn) = (n + 1) = factorial n
pow. |- (!'k. powk 0 = 1) /\
'k n. powk (SUCn) =k * powk n

As a next step, the user expands the occurrentaof or i al in the left hand side of
the inequality:

Ffactorial (SUC n) > pow 2 (SUC n)
By EXPAND.TAC "" []
F(n + 1) = factorial n > pow 2 (SUC n)

However, the user changes his or her mind and decides toduthf@ldefinition ofpow
instead:

Ffactorial (SUC n) > pow 2 (SUC n)
By EXPAND.TAC "" [ THM pow]
Ffactorial (SUC n) > 2 * pow 2 n

It is not necessarily the case that the name of the ML bindetgrtevel identifier) is
equal to the name of the constant (HOL term) that is currdvging expanded. Alter-
natively, the user can specify the subterm to be rewrittémgues higher-order pattern:

Ffactorial (SUC n) > pow 2 (SUC n)
By EXPAND.TAC "" [MATCH ‘a > ‘]
Ffactorial (SUC n) > 2 * pow 2 n



The latter alternative may be preferred in some cases dieliminates the user’'s man-
date of having to remember the name of the ML binder for a §ipgbheorem.

Term Simplification REDUC_TAC recursively applies a set of built-in simplification
rules about numbers, lists, and propositions as well aspresided theorems to a goal
or an assumption until no rewrite rule remains applicableedsenceREDUC_TAC is

a wrapper for the built-in HOL simplifieBl MP_TAC with an external interface that
gives the user greater control of where to apply simplifamatREDUC_TAC is most
beneficial when the user wishes to simplify only a particslalnterm within a goal or
an assumption. Consider the following sequent:

a ec +1-1=a+b
Fc +1 - 1=SUC(a+b- 1)
By REDUC.TAC "" [MATCH ‘ SUC x‘]
a ec +1-1=a+b
Fc+1-1=a+b

Applying REDUC_TACto the entire term would redu¢e + 1 - 1‘ to‘ ¢, which,
in this example, is not the desirable outcome.

Equational Rewriting The last of the trioEQUATE_TAC, is intended for rewriting op-
erations that do not fall into the two other categories - d@fimal expansion and term
simplification.EQUATE_TAC may be used to perform any equational rewriting; in this
sense, its behaviour is nearly identicalGBN_REWRI TE_TAC. However, the two tac-
tics differ significantly in their user interfaces. The éattactic accepts a set of conver-
sions for search strategies as well as a list of rewrite rmhestheorem&EQUATE_TAC
achieves nearly the same level of customizability with almgimpler external interface
and does not require the user to commit to memory numerow®csion functions

4 Case Studies

In order to evaluate the effectiveness of our approach imigirng controlled automa-
tion, we have carried out two separate case studies in HOLfirgédegin with a small
proof that is based on one of the logic puzzles in the popwaeiHarry Potter and
the Sorcerer’'s Ston& he details of the puzzle are irrelevant for the purposesofis-
cussion. The original version of the proof that we carrietisabout 280 lines long in
terms of the size of the proof script, and required 8 interiatedemmas.

The original proof script served as the control subject in@se study. We then
carried out the same proof from scratch, but the main diffeeenow was that our four
tactics were available for use by the human prover. It is irtgoa to note that we did
not modify the general, high-level strategies for carrymg the proof between the
two proof scripts. Rather, the focus of our study was to meathe effectiveness of
our approach in automating low-level details in a proof.eifthe proof was re-done,
we gathered statistics such as the size of the proof scriptt@number of tactics or
inference rules that the user had to use in order to sucdyssry out the proof.



The first row in Table 3 illustrates the statistics from thedst of the Harry Potter
puzzle. The data exhibit a considerable amount of redudtiche size of the proof
script. We attribute this improvement mainly to our assuorphandling system, which
allows the user to apply an inference rule directly to an eggion in one step. Using
built-in tools in HOL, the same operation would take two toethsteps on average.

Table 3. Reduction in the Size of Proof Scripts and Number of Funstideed

Size (LOC) No. Functions
Original  Modified Reduction |Original  Modified Reduction
Harry Potter 282 162 43% 13 5 62%
Microbox 2254 1678 26% 30 12 60%

Perhaps more significantly, the outcome of our study in T8daows a large de-
crease in the number of tactics or inference rules that weed during the proof; the
figure “5” in the last column includes the counting of our test Throughout most parts
of the proof, the user was able to perform logical or rewgitiperations using our con-
trolled automation tactics. There were only a few occasi@nere it was necessary to
resort to built-in functions in HOL.

We also carried out a larger case study (2200 line proof8dénipvhich we redid the
Microbox [1] proofs about correctness statements for sqadar microprocessors. The
second row in Table 3 contains the statistics for the corspatietween the original and
the modified version of the proof script for the microprocesorrectness statements.
Similar to the Harry Potter proof, we observed a significergriovement both in terms
of the size of the proof script and the number of functiondudéne figure “12” in
the last column of the table includes all of the four conedltactics that we have
described in this paper. The remaining eight were built-DLHunctions that did not
fit into our definition of controlled automation. These funos included high-level
automated reasoners (€2BOVE_TAC) and miscellaneous facilities such as tactics for
renaming assumptions or dropping unnecessary assumfribomshe goalstack. Based
on the case studies, we believe that our approach holdsdewabie promise in making
theorem proving in HOL a much simpler, less time-consuméasg for both novice and
expert users.

5 Related Work

The purpose of our tactics is not to add expressive or deduptbwer to the HOL
theorem prover. Rather, our goal is to enable users to quipstform many of the
common logical or rewriting operations.

Harrison compared declarative and procedural styles afrém proving [7]. De-
lahaye later compared declarative, procedural, and tersedproofs (for constructive
logics) [3]. Each of these different styles of proof is basted for different types of
reasoning (e.g., forward vs. backward, short proofs vgy loroofs, elegantly crafted



vs. done-and-forgotten). Our work lies within the world ebpedural proof, and re-
lies upon three principal ideas: assumption labelling forpde and robust access to
assumptions, hints as a uniform mechanism to pass infosmétitactics, and packag-
ing low-level rewrite strategies according to user-lewglgoses: definition expansion,
simplification and reduction, and equational substitution

Trybulec’s Mizar theorem prover has long allowed userstielaroof steps [12] [10].
Harrison adapted the idea of labels to do assumption lalgeilti his Mizar mode for
HOL [5] and in HOL-light [6]. Hickey’s MetaPRL supports thabdelling of proof nodes
to denote the type of reasoning that led to the node (e.gapyitine of reasoning, well-
formedness, or antecedent to an assertion) [8].

One of the most valuable hints in our workMBTCH, which allows the user to select
a subterm to operate on. Martin and colleagues used patiathsieta-variables in the
Angel tactic language to identify subterms on which to ofgeaad to extract subterms
from the program to be passed as arguments to tactics [9h Uisgd patterns to steer
tactics and to select which tactic to apply [11]. In ISAR, \&fehuses meta-variables
in proof scripts to refer to terms and includes automaticlinig of standard variables,
such a®??goal[13]. All of these uses of patterns would certainly be berafio hints
or new tactics, but some of the uses could require significhahges to the way that
HOL parses terms.

6 Conclusion and Future Work

In this paper, we have presented the conceptaritrolled automatioras a balanced
medium between high-level automated reasoning and loel-faimitive operations in

the HOL theorem prover. In order to show how we achieve thpe ©f automation, we
have introduced four new HOL tactics, which we nanfidd MTAC, EXPAND_TAC,
REDUC_TAC, andEQUATE_TAC. We have also described special data structures called
hi nt s, which serve as an intuitive, easy-to-use mechanism fasueegrovide these
tactics with information for carrying out the desired opgmas. Two case studies that
we have conducted demonstrate that our tactics significanfirove on the degree of
automation in HOL by reducing the number of functions thaseruneeds to remember.

We have introduced these tactics (in addition to existimgjca and rules in HOL)
to students who are enrolled in the introductory level ceumgormal verification. This
year’s offering is the first time that we have done so. A magsignment in the course
is theorem proving using HOL, and the students are givenréedbm of using our
tactics. So far, an informal survey of students indicates they prefer to use the new
tactics whenever possible over the existing ones in HOL.\Maimdents have positively
expressed that they do not have to cope with the burden ofrméxaeng the names of
numerous tactics and inference rules in HOL. Our current [@do continue introduc-
ing our tactics in future offerings of the course and recédeziback from students on
how we can improve our tools to better assist novice usersdrptocess of learning
interactive theorem proving.
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