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STLCG++: A Masking Approach for Differentiable
Signal Temporal Logic Specification

Parv Kapoor , Graduate Student Member, IEEE, Kazuki Mizuta , Eunsuk Kang ,
and Karen Leung , Member, IEEE

Abstract—Signal Temporal Logic (STL) offers a concise yet
expressive framework for specifying and reasoning about spatio-
temporal behaviors of robotic systems. Attractively, STL admits the
notion of robustness, the degree to which an input signal satisfies or
violates an STL specification, thus providing a nuanced evaluation
of system performance. In particular, the differentiability of STL
robustness enables direct integration to robotic workflows that rely
on gradient-based optimization, such as trajectory optimization
and deep learning. However, existing approaches to evaluating and
differentiating STL robustness rely on recurrent computations,
which become inefficient with longer sequences, limiting their use
in time-sensitive applications. In this letter, we present STLCG++,
a masking-based approach that parallelizes STL robustness evalu-
ation and backpropagation across timesteps, achieving significant
speed-ups compared to a recurrent approach. We also introduce a
smoothing technique to enable the differentiation of time interval
bounds, thereby expanding STL’s applicability in gradient-based
optimization tasks involving spatial and temporal variables. Fi-
nally, we demonstrate STLCG++’s benefits through three robotics
use cases and provide JAX and PyTorch libraries for seamless
integration into modern robotics workflows.

Index Terms—Formal methods in robotics and automation, deep
learning methods, software tools for robot programming.

I. INTRODUCTION

MANY robot planning tasks hinge on meeting desired
spatio-temporal requirements, like a quadrotor navigat-

ing specific regions within strict time windows. Signal temporal
logic (STL) [1] presents an attractive formalism to describe
spatio-temporal specifications as it is designed to operate over
real-valued time-series input rather than discrete propositions.
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Fig. 1. We propose STLCG++, a masking approach to evaluating and back-
propagating through STL robustness formulas. The masking approach offers
stronger computational, theoretical, and practical benefits compared to STLCG,
a recurrent approach.

In particular, STL is equipped with quantitative semantics, or
robustness formulas, which measure how well a given robot
trajectory satisfies a requirement. With some smoothing approx-
imations in place, it becomes efficient and stable to differentiate
STL robustness within gradient-based optimization methods—
the key to many robot control and learning applications. As
such, we have seen a growing interest in the inclusion of STL
objectives/constraints in various optimization-based robotics
problems utilizing gradient descent as a solution method, such
as trajectory optimization [2], deep learning [3], and control
synthesis [4].

Recently, STLCG [5] was introduced as a general framework
for encoding any STL robustness formula as a computation
graph, leveraging modern automatic differentiation (AD) li-
braries for evaluation and backpropagation. The STLCG (Py-
Torch) library democratized STL for robotics and deep learning
communities, enabling recent work in gradient-based optimiza-
tion with STL objectives/constraints [6], [7], [8], [9].

To construct the computation graph for any STL robustness
formula, STLCG processes the time-series input recurrently
(see Fig. 1 right), primarily inspired by how recurrent neural
networks (RNNs) [10] process sequential data. While consistent
with the semantics of STL robustness, recurrent processing
leads to the forward and backward passes being comparatively
slower than other non-recurrent operations—a widely observed
drawback of RNNs. These sequential operations limit STLCG’s
capability for efficiently handling long sequence lengths in
offline and online settings, especially when combined with
other demanding computations, e.g., running foundation mod-
els. More recently, attention-based neural architectures, such as
transformers [11], have demonstrated superior performance in
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TABLE I
SUMMARY OF EXISTING PYTHON-BASED STL TOOLBOXES THAT ARE

PUBLICLY AVAILABLE

processing sequential data, particularly on GPU hardware. The
key to the transformer architecture is the self-attention operation,
which operates on all input values simultaneously rather than
recurrently.

Inspired by the masking mechanism in transformer architec-
tures, we presentSTLCG++, a masking approach to evaluate and
backpropagate through STL robustness for long sequences more
efficiently than STLCG, a recurrent-based approach (see Fig. 1
left). STLCG++ opens new possibilities for using STL require-
ments in long-sequence contexts, especially for online com-
putations, paving the way for further advancements in spatio-
temporal behavior generation, control synthesis, and analysis
for robotics applications.

Contributions: The contributions of this letter are fourfold. (i)
We present STLCG++, a masking-based approach to computing
STL robustness, and demonstrate the computational, mathe-
matical, and practical benefits over STLCG, a recurrent-based
approach. (ii) We apply a smooth masking mechanism to enable
differentiation with respect to time interval parameters. To the
best of the authors’ knowledge, this is the first application of
differentiating with respect to time parameters of STL formu-
las. (iii) We demonstrate the benefits of our proposed masking
approaches with several robotics-related problems ranging from
unsupervised learning, trajectory planning, and deep generative
modeling. (iv) We provide two open-source STLCG++ libraries,
one in JAX and another in PyTorch, and demonstrate their usage
via the examples studied in this letter. JAX and PyTorch are
well-supported Python libraries used extensively by the deep
learning and optimization communities.

II. RELATED WORK

As STL has been used for various applications, a variety of
STL libraries across different programming languages have been
developed, including Python, C++, Rust, and Matlab. Given
that Python is commonly used for robotics research, Table I
compares recent STL Python packages regarding automatic dif-
ferentiation (AD), vectorization, and GPU compatibility. Most
libraries offer evaluation capabilities of a single signal, or their
design is tailored towards a specific use case, making it difficult
to extend or apply them to new settings. If users want to perform
an optimization utilizing STL robustness formulas, a separate
optimization package (e.g., CVXPY [12], Drake [13]) is often
required.

RTAMT [14] was introduced as a unified tool for offline and
online STL monitoring with an efficient C++ backend. It has
received widespread support and has superseded other alterna-
tives in terms of usage. However, RTAMT performs CPU-based

signal evaluation and lacks differentiation and vectorization ca-
pabilities, limiting its efficiency in handling and optimizing over
large datasets, where AD and GPU compatibility are crucial.
STLCG was the first to introduce vectorized STL evaluation
and backpropagation by leveraging modern AD libraries. How-
ever, STLCG faced scalability challenges due to its underlying
recurrent computation. STLCG++ addresses these scalability
limitations by eliminating recurrent operations and optimizing
GPU capabilities.

III. PRELIMINARIES

We provide a brief introduction to STL and related terminolo-
gies. See [1], [5] for a more in-depth description.

A. Signals and Trajectories

Signals and subsignals: STL formulas are interpreted over
one-dimensional signals s = (s0, . . . , sT ), a sequence of scalars
sampled at uniform timesteps Δt (i.e., continuous-time outputs
sampled at finite time intervals) from any system of interest.
Given a signal s = (s0, . . . , sT ), a subsignal is a contiguous
fragment of a signal. By default, we assume a subsignal will
start at timestep t and end at the last timestep T . We denote
such a subsignal by st = (st, . . . , sT ). If a subsignal ends at a
different timestep from T , we denote it by sKt = (st, . . . , sK).

Note: The absence of a sub(super)script on s implies that the
signal starts (ends) at timestep 0 (T ).

States, trajectories, and subtrajectories: Given a system of
interest, let xt ∈ Rn denote the state at timestep t. Let x =
(x0, . . . , xT ) denote a sequence of states sampled at uniform
time steps Δt. Similar to how subsignals are defined, we denote
a subtrajectory by xt = (xt, . . . , xT )

From trajectories to signals: In this work, we focus specifi-
cally on signals computed from a robot’s trajectory. As we will
see in the next section, core to any STL formula are predicates
which are functions mapping state to a scalar value, μ : Rn →
R, with st = μ(xt), t = 0, . . . , T . A signal can represent, for
example, a robot’s forward speed.

B. Signal Temporal Logic: Syntax and Semantics

STL formulas are defined recursively according to the follow-
ing grammar [1], [19],

φ ::= � μc ¬φ φ ∧ ψ φU[a,b] ψ
True Predicate Not And Until (1)

The grammar (1) describes a set of recursive operations that,
when combined, can create a more complex formula. The time
interval [a, b] refers to timesteps rather than specific time values.
When the time interval is dropped in the temporal operators, it
defaults to the entire length of the input signal. Other commonly
used logical connectives and temporal operators can be derived
as follows: Or (φ ∨ ψ := ¬(¬φ ∧ ¬ψ)), Eventually (♦[a,b] φ :=
� U[a,b] φ) and Always (�[a,b] φ := ¬♦[a,b] ¬φ).

A predicateμc : Rn → R is a function that takes, for example,
a robot state and outputs a scalar (e.g., speed). Then, given a
state trajectoryx = (x0, . . . , xT ), xt ∈ Rn, we use the notation
x |= φ to denote that the trajectory x satisfies φ according to the
Boolean semantics (2).
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STL also admits a notion of robustness—the quantitative
semantics in (3) describes how much a signal satisfies or violates
a formula. Positive robustness values indicate satisfaction, while
negative robustness values indicate violation.

C. Smooth max /min Approximation

It is often desirable to use STL robustness within gradient-
based optimization (e.g., training deep neural networks or
trajectory optimization). Since the robustness formulas con-
sist of nested max /min operations, smooth approximations
m̃ax/˜min are often used to aid numerical stability. Two typical
smooth approximations are softmax and logsumexp.

m̃axsoft(x) =
N∑
i=1

xi exp
τxi∑N

i=j exp(τxj)
,

m̃axLSE(x) =
1

τ
log

N∑
i=1

exp(τxi),˜min(x) = −m̃ax(−x)

The smoothness can be controlled by a temperature parameter
τ ; as τ → ∞, the smooth approximations approach the true
max /min value. For deep learning, common practice is to
anneal the temperature value so that a more accurate smooth
max /min is used towards the end of the optimization routine.
Soundness of the smooth approximation may be an important
consideration, depending on the specific application. Recent
works proposed sound approximations [20] which STLCG++
can easily support. However, we view these efforts as comple-
mentary to this letter.

D. Robustness Trace

As STL formulas are composed of nested operations, eval-
uating the robustness value necessitates first determining the
robustness value for each subtrajectory and subformula. For

Fig. 2. Illustration of the graph structure of an example STL formula. Input
trajectories are first passed through the predicates and then each subformula
according to the formula structure.

instance, consider ♦φ where φ is the subformula. Evaluating
ρ(x,♦φ) requires the robustness value of φ for all subtrajecto-
ries, i.e., ρ(xt, φ) for all t. Suppose that φ is another temporal
formula, e.g., �ϕ, then we would also require ρ(xt, ϕ) for all t.
Subsequently, we introduce the concept of a robustness trace.

Definition 1 (Robustness trace): Given a trajectory x =
(x0, . . . , xT ) and an STL formula φ, the robustness trace
τ (x, φ) is a sequence of robustness values of φ for each subtra-
jectory of x. That is,

τ (x, φ) = ρ(x0, φ), ρ(x1, φ), . . . , ρ(xT , φ). (4)

Computing the robustness trace of non-temporal operations
is straightforward, as there is no need to loop through time, and
for brevity, we omit that description in this letter.

E. Recursive Structure of STL Formulas

To compute the robustness value of any STL formula φ with
arbitrary formula depth,1 we must first calculate the robustness
trace of its subformula(s), and so forth, since STL formulas are
constructed recursively. Fig. 2 illustrates how the trajectories are
passed through each operation of an STL formula to compute the
robustness trace of each subformula. As such, we need to develop
the “building blocks” for computing robustness corresponding
to each STL operation. Then, by stacking these operations ac-
cording to the formula structure, we can compute the robustness
trace for any STL formula regardless of formula depth.

F. STLCG: Recurrent Computation

We briefly outline the recurrent operations underlying
STLCG; for more details, we refer the reader to [5]. Illustrated
in Fig. 1 (right), STLCG utilizes the concept of dynamic pro-
gramming to calculate the robustness trace. The input signal is
processed backward in time, and a hidden state is maintained
to store the information necessary for each recurrent operation
at each time step. The choice of recurrent operation depends on
the temporal STL formula (either a max or min). The size of
the hidden state depends on the time interval of the temporal
operator and is, at most, the length of the signal. Although
the use of a hidden state to summarize past information helps
reduce space complexity, the recurrent operation leads to slow
evaluation and backpropagation due to sequential dependencies.
Next, we present a masking-based approach that bypasses the
sequential dependency, leading to faster computation times.

1Assuming the formula consists of at least one temporal operation. Although
STL formulas without temporal operators are possible, it is the temporal oper-
ations that make computing robustness challenging.
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IV. MASKING APPROACH FOR TEMPORAL OPERATIONS

We propose STLCG++, a masking approach to compute STL
robustness traces. Fig. 1 illustrates the masking approach, high-
lighting the idea that each value of a robustness trace is computed
simultaneously, rather than sequentially, as we saw withSTLCG.
Mirroring the concept of attention masks in transformer archi-
tectures [11], we introduce a mask M to select relevant parts of
a signal that can be later processed simultaneously rather than
sequentially. In the rest of this section, we describe the masking
operation underpinning STLCG++ and several properties.

A. Notation and Masking Operation

Assume we have a 1D input signal s of length T + 1, and
let K denote the number of time steps contained (inclusive) in
the time interval [a, b] given an STL temporal operator. A mask
M is a 2 or 3 dimensional array, depending on the temporal
operator, whose entries are either 1 or 0. A mask M is applied
via element-wise multiplication to an array S of the same size.
E.g., for a 2D mask, if Mij = 0, the corresponding entries Sij
will be ignored, or is masked out. We also replace the entries
masked out with an arbitrary value, typically a large positive or
negative value. Let M�± S denote the application of mask M
on S and masked out either a large positive (�+) or negative
(�−) number.

B. Eventually and Always Operations

For brevity, we describe the procedure for the Eventually
operation but note that the procedure for the Always operation is
almost identical except a min operation is used instead of max.
Consider the formula ψ = ♦[a,b]φ, and let s = τ (x, φ) denote
the robustness trace of φ. Specifically, st = ρ(xt, φ). Here, φ is
an STL subformula, typically representing a predicate or a more
complex temporal logic expression. Then, we seek to find the
robustness trace,

τ (x,♦[a,b]φ) =

{
max
i∈[a,b]

st+i

}T
t=0

Intuitively, we want to slide a time window [a, b] along s and take
themax of the values within the window. Rather than performing
this set of operations sequentially, we first “unroll” the sequen-
tial operation—turning the 1D signal into a 2D array, second,
we apply a 2D mask to mask out the irrelevant entries dictated
by the time window, and third, we use the max operation over
the unmasked values.

Step 1. “Unrolling” the signal: First, we pad the end of the
signal by the size of the time window K; the reason will be
apparent in Step 3. The padding value s̄ can be set by the user,
such as extending the last value of the signal, or setting it to a
large negative number. Then, we turn the padded signal into a
2D array S by repeating the signal along the second dimension
T times, resulting in a (T +K)× T 2D array. An example is
provided in (5).

Step 2. Construct 2D mask: We construct a mask M that will
be applied to the unrolled signal S . The mask M comprises of
two sub-masks: (i) subsignal mask Msubsig and (ii) time interval
mask Mtime.

Subsignal mask Msubsig: This mask incrementally masks out
the start of the signal as we move along the horizontal (second)
dimension of S . Essentially, Msubsig masks out the upper trian-
gular region with an offset of one to exclude the diagonal entries.

After applying the Msubsig on S , the columns of the unmasked
entries correspond to all the subsignals of s. The entries masked
out by Msubsig are denoted by the red shaded entries in (5).

Time interval maskMtime: This mask masks out all the entries
outside of time interval [a, b] for each subsignal. Mtime consists
of an off-diagonal strip that masks out entries before the start of
the interval (determined by a), and a lower triangular matrix with
an offset that masks out entries after the interval (determined by
b). The entries masked out by Mtime are denoted by the blue
shaded entries in (5).

Final mask M: The final mask is M = Msubsig +Mtime,
resulting in a mask that retains all the entries within the time
interval [a, b] for each sub-signal (unshaded entries in (5)).

Step 3. Apply 2D mask and max operation: Given S and M
from the previous steps, we can compute M�− S , similar to
what is done in the mask attention mechanism in transformer
architectures. Then, we apply the max operation along each
column. Note the padding we did back in step 1 becomes relevant
when the time interval exceeds the length of the subsignal. This is
similar to the approach taken in [5] to handle incomplete signals.
For the Always operation, min and M�+ S are used instead.

Example 1: Consider the STL formulaψ = ♦[1,3](s > 0) and
a signal with 8 time steps, s = [s0, . . . , s7]. The corresponding
unrolled 2D array is shown (5) with padding value s̄, and the
red and blue shaded entries denote the entries masked out by
Msubsig and Mtime, respectively.

After filling the masked entries with a large negative value, and
taking the max column-wise. Let s = [0, 1, 2, 3, 4, 5, 6, 7] and
s̄ = 7, then τ(s, ψ) = [3, 4, 5, 6, 7, 7, 7, 7]. If we set s̄ = −105,
then τ(s, ψ) = [3, 4, 5, 6, 7,−105,−105,−105].

C. Until Operation

We apply a similar masking strategy for the Until operation,
following a similar three-step process described in Section IV-B.
The main differences are (i) the signal needs to be “unrolled” into
three dimensions, and (ii) the operations in Step 3 correspond to
the Until robustness formula.

Consider the formula φU[a,b]ψ where φ and ψ are STL
subformulas. Let sφ = τ (x, φ) and sψ = τ (x, ψ) denote the
robustness trace of φ and ψ respectively for trajectory x. Specif-
ically, sφt = ρ(xt, φ) and sψt = ρ(xt, ψ). Then, we seek to find
the robustness trace,

τ (x, φU[a,b]ψ) =

{
max
i∈[a,b]

{
min

(
min
τ∈[0,i]

sφt+τ , s
ψ
t+i)

)}}T

t=0

Step 1. “Unrolling” the signal: Given a signal s, we construct
a 3D array by repeating the signal along the first and second di-
mensions, resulting in a (T +K)× T ×K array. This unrolling
operation on sφ and sψ results in Sφ and Sψ .
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Step 2. Construct 3D mask: In the Until robustness for-
mula, we need minτ∈[0,i] s

φ
t+τ and sψt+i for i ∈ [a, b] and for

all t. Given i, notice that ρ(xt,�[0,i]φ) = minτ∈[0,i] s
φ
t+τ and

ρ(xt,�[i,i]ψ) = sψt+i which we can compute given the proce-
dure outlined in Section IV-B. However, the outer max requires
us to consider all i ∈ [a, b]. Thus for each formula �[0,i]φ and
�[i,i]ψ, we stack all the 2D masks for each value of i ∈ [a, b]

across the third dimension, resulting in two 3D masks, Mφ and
Mψ of size (T +K)× T ×K.

Step 3. Apply the Until robustness operations: We can now
apply all the operations needed to compute the robustness trace
for the Until operation. After Step 2, we haveSφ,Sψ , and the 3D
masksMφ andMψ . We can computeMφ �+ Sφ andMψ �+

Sψ . Then, we can apply the following set of operations (where
the first dimension = 1).

S1 =

Size [2×T×K]︷ ︸︸ ︷
stack
dim=1

([
min

dim=1
Mφ �+ Sφ, min

dim=1
Mψ �+ Sψ

])
S2 = min

dim=1
S1, (S2 has size [T ×K])

S3 = max
dim=2

S2, (S3 has size [T ])

We see that this set of operations is relatively simple, a series of
min and max operations along various dimensions, and these
operations remain the same regardless of the choice of time
intervals, unlike the recurrent approach.

D. Dependence on Smooth Approximations

Both masking and recurrent approaches output the cor-
rect robustness values when the true min /max operations
and logsumexp approximation are used. However, if the
softmax/softmin approximation is used with a recurrent ap-
proach, the output robustness and gradient values do not
correctly reflect the correct values. This is because, when
recurrently applying softmin/softmax, values applied earlier
in the recurrence will be “softened” more than values ap-
plied later in the recurrence. Not only does nesting the
softmin/softmax operations give a very poor approximation of
the true min /max value, but it also artificially reduces the
gradient for values passed earlier in the recurrence. With the
logsumexp approximation, applying it recursively over multiple
values is the same as applying it once over all the values.
That is, m̃axLSE([m̃axLSE(x), y]) = m̃axLSE([x, y]) where as
m̃axsoft([m̃axsoft(x), y]) 	= m̃axsoft([x, y]). This issue is not ob-
served when using the masking-based approach due to the way
subsignals are processed without recurrence.

E. Practical Benefits

STLCG++ offers several practical benefits over STLCG. We
highlight several reasons why this is the case. (i) Software
design. The recurrent approach required signals to be passed
backward in time. This increased the complexity of software
design and was not often intuitive for end users. With the
masking approach, there is no need to reverse the signal. (ii)
Static graph structure. With the recurrent approach, the choice
of time interval would fundamentally change the dimension of
hidden states, whereas the graph structure remains the same for
the masking approach. Keeping the same graph structure, even

if the intervals change, is essential in compilation. (iii) Vector-
ization and just-in-time compilation. Related to the second
point above, the static graph structure afforded by the masking
approach enables the ability to easily vectorize and just-in-time
compile (JIT) the computation over not just various signal inputs
but also various time intervals. The ability to vectorize and JIT
over different time intervals can be particularly useful in formula
mining applications where we may want to evaluate robustness
formulas with different time intervals simultaneously. (iv) Con-
formity to popular deep learning libraries. By leveraging AD
libraries that empower popular frameworks,STLCG++ becomes
accessible to the broader community and seamlessly integrates
into existing tools.

V. COMPUTATIONAL PROPERTIES OF STLCG++

In this section, we analyze the computational properties of the
approaches STLCG++ (masking-based) and STLCG (recurrent-
based) by measuring the computation time required to compute
robustness values and their gradient. We seek to answer the
following research questions.

RQ1: Does STLCG++ compute robustness traces faster than
STLCG as measured by median computation time?

RQ2: How does STLCG++’s computation time scale with
sequence length compared to STLCG?

We perform experiments on CPU and GPU. Since STLCG++
(masking) involves large matrix computations, we anticipate
STLCG++ to scale favorably on a GPU. As STLCG (recurrent)
utilizes a recurrent structure, it scales with sequence length.
Table II describes six different STL formulas with varying
complexities [21] that we test on. We evaluate computation time
for increasing signal lengths up to T = 512 time steps with a
batch size of 8. We present our results in Fig. 3 and Table III and
make the following observations.

CPU backend: We observe that STLCG++ generally achieves
lower computation times than STLCG. The exception is in φ3,
where STLCG++ is slower than STLCG for longer sequences.
This is because the space complexity for the Until operation is
O(T 3). In Table III, we see that STLCG++ on JAX struggled
with φ3 for long sequence lengths, but was fine with PyTorch.
We hypothesize that it is due to how JAX allocates memory,
especially during just-in-time compilations. Additionally, both
libraries see increasing computation time with sequence length.
For STLCG the computation time increase is expected since
the time complexity is O(T ). For STLCG++, the increased
computation time can be explained by the space complexity
O(T 2) (except for φ3), and such computations are not handled
as efficiently on a CPU.

GPU backend: STLCG++ outperforms STLCG for all formu-
las. Additionally, STLCG++ exhibits essentially constant com-
putation time except for φ3, which hasO(T 3) space complexity.
From Table III, we see thatSTLCG++on GPU provides around
95% and 85% improvement on JAX and PyTorch, respec-
tively. For STLCG, moving from CPU to GPU gives virtually
the same scaling, with no significant improvement/reduction in
computation times.

VI. SMOOTHING TIME INTERVALS

By using the masking operation to capture parts of the sig-
nal within the specified time interval, we can build a smooth
approximation of the mask and differentiate robustness values
with respect to the parameters of the mask that determine
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TABLE II
SUMMARY OF STL SPECIFICATIONS USED FOR EVALUATION INSPIRED BY EXISTING LITERATURE

Fig. 3. Comparison of computation time using PyTorch for masking (M, blue) and recurrent (R, orange) approach on CPU (top row) and GPU (bottom row) as
signal length increases, across six STL formulas. Solid lines denote robustness computation; dashed lines denote gradient evaluation. Results using JAX can be
found on the website.

TABLE III
RELATIVE COMPUTATION TIME OF MASKING APPROACH COMPARED TO

RECURRENT APPROACH

which values are selected. As such, it becomes possible to
perform gradient descent over time interval parameters to find,
for example, a time interval that best explains time-series data.
We showcase two examples in Section VII utilizing this new
capability. Notably, this differentiation was not possible with
STLCG since the choice of time intervals impacted the size of
the hidden state used within the recurrent computations.

Rather than using a mask with 0 and 1’s as described in
Section IV-B and IV-C, we use the following smooth mask
approximation. For a sequence length of T , we have,

˜mask(i; a, b, c, ε)=max(σ(c(i− aT ))− σ(c(i− bT ))− ε, 0),
(6)

where i is the time index, σ(x) is the sigmoid function, the
parameters 0 ≤ a < b ≤ 1 denote the fraction along the signal
of the start and end of the time interval, c denotes the mask
smoothing parameter, and ε denotes a user-defined tolerance.
Fig. 4 shows a visualization of the smooth mask and how the
smoothing parameter c affects the mask.

Fig. 4. Smooth mask for various values of smoothing parameter c.

When optimizing over time interval parameters, we can anneal
the smooth mask parameter c to help with convergence to a
(local) optima on a generally nonlinear loss landscape (see
Section VII-C for more details). As noted before, a benefit
of the masking approach is that the operations can be easily
vectorized. We can simultaneously evaluate the robustness for
multiple time intervals and perform gradient descent on multiple
values. As such, we can envision a use case where we perform
a coarse global search via sampling and then a local refinement
via gradient descent.

For reference, using the vectorized mapping function in
JAX+JIT, the computation time to evaluate 90,000 different
values for (a, b) with a signal of length T = 20 for the formula
�[aT,bT ](s > 0) is 1.87± 0.0164 ms on a M2 MacBookPro.
This averages to around 20.78 μs per time interval value. In
contrast, (sequentially) searching over all possible valid time
intervals for a signal length of 20 (i.e., 190 intervals with
integer interval limits) using the recurrent approach takes about
5.25± 0.0497 s, or roughly 27.6 ms each evaluation. This means
that STLCG++offers more than 1000× improvement in com-
putation time when evaluating STL robustness over multiple
time interval values.
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Fig. 5. Trajectories generated using STLCG++ with STL robustness in the
planning objective. (a) Trajectory with optimized time interval in orange target
region. (b) Generated trajectories using STL guided DDIM.

VII. ROBOTICS-RELATED APPLICATIONS

We showcase a variety of use cases that demonstrate the com-
putational advantages of the masking approach. We developed
two Python STLCG++ libraries, one in JAX [22] and another
in PyTorch [23] and discuss how STLCG++ opens up new
possibilities for robot planning and control.

A. Trajectory Planning With Suboptimal STL Specifications.

Trajectory optimization is essential in robotic systems, en-
abling precise navigation and task execution under complex
constraints. These trajectories must balance user-defined goals
with feasibility and efficiency. Since goal misspecification can
lead to erroneous behavior, infeasibility, or subpar performance,
we show how suboptimal goals (captured through STL speci-
fications) can be refined in addition to solving for an optimal
trajectory. Consider a trajectory optimization problem where

we would like to reach a goal region while visiting a target

region within a fixed time horizon. Additionally, the visit

duration of is to be maximized. Consider a specification

φ = �[aT,bT ](inside ) ∧♦(inside ) which specifies a time

window that the trajectory should be inside . We cast this
trajectory planning problem as an unconstrained optimization
problem,

min
u,a,b

γ1JSTL(x) + γ2JI(a, b) + γ3Jlim(u) + γ4Jeff(u),

JSTL(x) = ReLU(−ρ(x, φ)), JI(a, b) = exp(2(Ĩ − b+ a)),

Jlim(u) =
1

T

T−1∑
t=0

ReLU(‖ut‖2 − ū), Jeff(u) =
1

T

T−1∑
t=0

‖ut‖22,

where x is the state trajectory from executing u with single
integrator discrete-time dynamics. We use a timestep of Δt =
0.1, T = 51, ū = 2 is the system’s maximum control limits,
and Ĩ = 0.2 is a nominal (normalized) time interval size that
we would like to improve upon. We randomly initialized the
control inputs and (a, b)init = (0.14, 0.82). Using coefficients
γ1 = 1.1, γ2 = 0.05, γ3 = 2, γ4 = 0.5, the resulting solution is
shown in Fig. 5(a) with final values (a, b)final = (0.37, 0.84).

The final optimized STL formula is φ = �[20,43](inside )

∧♦(inside ). Using JAX, each gradient step took about

92.3± 3.99 μs on an M2 MacBookPro. With unconstrained
multiobjective optimization, selecting objective weights that
achieve desirable behavior can be tedious. With STLCG++, we
can perform gradient descent computation over various coeffi-
cient values simultaneously and then select the best one.

B. Deep Generative Modeling: STL-Guided Diffusion Policies

We demonstrate the use of STL specifications for guided
diffusion models [24], a recent type of deep generative models
that present a promising approach for robot policy learning
and behavior generation [25]. We build upon [26], which uses
Control Barrier and Lyapunov functions (CBFs and CLFs) to
guide the denoising process of a diffusion model for safe control
sequence generation. In this application, we use STL robustness
in place of CBFs and CLFs as the guidance function. We trained
a Denoising Diffusion Implicit Model (DDIM) model [24],
generating trajectories with 80 time steps.

We used 200 denoising steps and a batch size of 128. We
generated trajectory samples using two different STL guidance
functions,

The resulting trajectories are shown in Fig. 5(b). Although
guided diffusion does not guarantee that the STL specifications
are strictly satisfied, we observe a satisfaction rate of 52.34%,
62.50% for φU and φ∧, respectively. This shows how STLCG++
can enhance diffusion policies to promote safer behavior gener-
ation.

C. Machine Learning: STL Parameter Mining From Data

Formal STL specifications play a crucial role in build-
ing robust robot systems, contributing to controller synthe-
sis [27], fault localization [28], and anomaly detection and
resolution [29]. However, specifications are not often readily
available, making the task of mining specifications from data a
vital problem to study [21]. In this example, we perform STL
specification mining from data. Specifically, we leverage the
differentiability and vectorization over smooth time intervals to
find a time interval that best fits the observed data.

Consider a dataset of (noisy) signals with T = 20 timesteps.
The signals have value 1 between the normalized time interval of
(a, b) = (0.23, 0.59) and zero elsewhere. Some noise is added
around (a, b) and to the signal itself. The goal is to learn the
largest time interval [ā, b̄] such that the signals from the dataset
satisfy φ = �[ā,b̄](s > 0). We frame this STL mining problem
as an optimization problem,

min
0≤a<b≤1

1

N

∑
s∈D

max(−ρ(s,�[aT,bT ](s > 0)), 0) + γ(a− b)

(7)
where γ is a coefficient on the term a− b that encourages the
interval to be larger. We solve (7) via gradient descent, using the
smooth time interval mask discussed in Section VI. Specifically,
we annealed the time interval mask scaling factor and the tem-
perature with a sigmoid schedule, and performed 5000 gradient
steps with a step size of 10−2. To ensure 0 ≤ a < b ≤ 1, we
passed them through a sigmoid function first. Fig. 6 shows a
few snapshots of the gradient steps and the loss landscape as the
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Fig. 6. Masking approach enables a smooth approximation of time intervals, enabling the use of gradient descent over time interval parameters. The contour
plots show the loss landscape given by (7) as a function of a, b, the normalized time interval limits. The solution at gradient descent step 0, 500, 1000, and 5000
are shown. Note that the smooth time mask parameter and approximate max /min temperature values are annealed over the steps.

scaling parameter and temperature increase. We can observe that
our solution converges to the global optimum and is consistent
with the ground truth values (subject to the injected noise).
To give a sense of the computation time, using JAX on a M2
MacbookPro, it took about 122± 0.479 μs per gradient step.

VIII. CONCLUSION

We present STLCG++, a masking-based approach for com-
puting STL robustness using automatic differentiation libraries.
STLCG++ mimics the operations that underpin transformer ar-
chitectures, and we demonstrate the computational, theoretical,
and practical benefits of the proposed masking approach over
STLCG, which uses a recurrent approach. The observed advan-
tages of masking over recurrent operations mirror the advantages
of using transformers over recurrent neural networks for process-
ing sequential data. We also present two STLCG++libraries in
JAX and PyTorch, demonstrating their usage in several robotics-
related problems such as machine learning, trajectory planning,
and deep generative modeling.STLCG++offers significant com-
putational advantages over STLCG, thus presenting new and
exciting opportunities for incorporating STL specifications into
various online robot planning and control tasks that require fast
computation and inference speeds.
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