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ABSTRACT
One active area of research in smart grid security focuses on
applying game-theoretic frameworks to analyze interactions
between a system and an attacker and formulate effective
defense strategies. In previous work, a Nash equilibrium
(NE) solution is chosen as the optimal defense strategy [7,
9], which implies that the attacker has complete knowledge
of the system and would also employ the corresponding NE
strategy. In practice, however, the attacker may have limited
knowledge and resources, and thus employ an attack which
is less than optimal, allowing the defender to devise more
efficient strategies.

We propose a novel approach called an adaptive Markov
strategy (AMS) for defending a system against attackers
with unknown, dynamic behaviors. The algorithm for com-
puting an AMS is theoretically guaranteed to converge to a
best response strategy against any stationary attacker, and
also converge to a Nash equilibrium if the attacker is suffi-
ciently intelligent to employ the AMS to launch the attack.
To evaluate the effectiveness of an AMS in smart grid sys-
tems, we study a class of data integrity attacks that involve
injecting false voltage information into a substation, with
the goal of causing load shedding (and potentially a black-
out). Our preliminary results show that the amount of load
shedding costs can be significantly reduced by employing an
AMS over a NE strategy.

Categories and Subject Descriptors
K.6.5 [Security and Protection]

Keywords
Smart grid security; Markov games; adaptive learning; data
injection

1. INTRODUCTION
Power grid is one of the most critical infrastructures in ex-

istence today, whose disruption could cause severe economic,
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social, and environmental damages [3, 12], making it an at-
tractive target for attackers. Protecting a power grid poses a
number of challenges due to its wide geographical spread and
complex interdependences among its components. To make
the matter worse, modern grid systems are connected to the
Internet, exposing itself to a wide range of cyber-attacks.

One active area of research in smart grid security focuses
on applying game-theoretic frameworks to analyze the inter-
actions between system defenders and attackers [11]. One
commonly adopted game-theoretic model is called a Markov
game [8], where the players’ joint actions lead to probabilis-
tic transitions between states of the system. In the previous
applications of a Markov game to a smart grid attack, a
Nash equilibrium (NE) solution is computed as the optimal
defending strategy [7, 9].

The proposal on adopting a NE strategy is based on one
crucial assumption: the attacker would also employ the cor-
responding NE strategy to attack the system. In prac-
tice, for a system as complex as a smart grid, the attacker
may have neither a perfect knowledge of the system nor the
computational capacity required to compute a NE strategy.
More realistically, the attacker uses its experience and par-
tial knowledge of the system to formulate what he/she be-
lieves to be the best strategy for maximizing the damage.
Thus, it may be possible for the defender to employ a non-
NE strategy that is just as effective, and potentially cheaper.
The technical challenge is determining the attacker’s behav-
ior (initially unknown) and reformulate the defender’s strat-
egy dynamically.

We propose a novel approach called an adaptive Markov
strategy (AMS) for defending a system against attackers
with unknown, dynamic behaviors. Our AMS algorithm
leverages an adaptive online learning technique to observe
the attacker’s behavior and reformulate an optimal defense
strategy dynamically. It is guaranteed to converge to a best-
response strategy against any stationary attacker, and also
converges to a Nash equilibrium if the attacker is sufficiently
intelligent to employ the AMS to launch the attack.

To demonstrate the effectiveness of our approach, we ap-
plied it to a class of smart grid attacks that involve injecting
false voltage information into a grid substation, disrupting
its voltage stability and causing load shedding. We experi-
mentally evaluated the performance of our approach by ap-
plying it to a sample distribution system from the previous
work [7]. Our preliminary results show that the amount of
load shedding cost can be significantly reduced by employ-
ing an AMS over a NE strategy. Although we focus on one
particular type of security attacks in this paper, our learn-
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Figure 1: A high-level architecture of a smart grid. The dotted
area represents a substation.

ing framework is general, and applicable to other classes of
attacks that can be modeled as a Markov game.

The rest of the paper is organized as follows. We give
an overview of related work in Section 2. In Section 3, we
describe the false data injection attack and how this problem
can be modeled as a Markov game. We present the AMS
strategy and its properties in Section 4, and describe an
evaluation of our approach in Section 5. We conclude with
a discussion of future work in Section 6.

2. RELATED WORK
Game theory has been widely used as a mathematical tool

to model and analyse the security issues in critical infrastruc-
tures such as smart-grid systems [11, 3, 12, 10]. The inter-
action between the defender and attacker is usually modeled
as a single-shot Stackelberg game, in which the defender and
attacker are considered as the leader and follower and make
sequential moves. The goal thus is to identify the optimal de-
fending strategy (e.g., the most critical set of components to
protect) for the defender to minimize the potential loss of the
system. However, in practice the defender and attacker may
interact with each other repeatedly and the system evolves
dynamically depending on their actions.

Markov games [8] later are adopted to model the repeated
strategic interactions between the defender and attacker in
smart-grid systems. In [9], one specific physical attack on
the transmission lines of the smart-grid system is considered
and the interaction between the defender and attacker is
modeled as a Markov game, in which the system states (the
status of the transmission lines) evolves based on their joint
actions. A NE solution is adopted as the defending strategy
for the system, which specifies which transmission lines to
protect. In [7], one specific cyber attack (false data injection
attack) is studied and the repeated attacker-defender cyber-
interaction is modeled as a Markov game. Similar to [9],
the NE solution is adopted as the defending strategy which
determines which action to choose to perform intrusion de-
tection. However, adopting the NE solution as the defending
strategy is rational only when the attacker is also choosing
the corresponding NE strategy to launch the attack, which
may not hold in practice.

3. PROBLEM FORMULATION

3.1 Threat Model
One important requirement of a power grid is maintain-

ing a stable supply of voltage throughout its distribution and
transmission lines. Since many modern grids operate close

to their stability limits, even slight instability or disruption
can cause the voltage to drop below a critical level, forcing
load sheddings and in the worst cast, blackouts. In order
to maintain stability, each substation deploys a number of
devices that monitor the voltage level and dynamically regu-
late power. A typical high-level architecture of a smart grid
system, as described in IEC 61850, is shown in Figure 1, with
the dotted box representing one of its substations. A merg-
ing unit collects various analog data from physical sensors
(such as voltage and current levels) and converts them into
digital packets, which are then broadcast over the process
bus. A number of intelligent electronic devices (IEDs), con-
nected to the process bus, look for anomalous readings in the
packets and perform necessary regulatory actions to main-
tain the voltage stability. A static synchronous compensator
(STATCOM) is one common type of device for voltage reg-
ulation, generating (absorbing) power when notified of low
(high) voltage in the load.

Many modern substations allow engineers to perform main-
tenance remotely through a virtual private network (VPN)
or other access mechanisms. While convenient, this also
opens up the substation to a wide range of security attacks,
since anyone on the Internet, having bypassed the VPN, may
manipulate various devices through the workstation.

In this paper, we study on one particular type of smart
grid attacks and corresponding defense mechanisms, origi-
nally proposed in [7].

3.1.1 Attack
We consider scenarios in which the attacker has success-

fully gained access to the workstation by exploiting weakness
in its network perimeter (e.g., misconfigured firewall, weak
password/keys). We assume that the attacker wishes to re-
main undetected, and so chooses not to perform drastic ac-
tions such as shutting down the entire substation. Finally,
we assume that the attacker is not capable of physically
tampering with the substation components (e.g., tripping
transmission lines using circuit breakers).

We focus on one class of attacks, proposed in [7], where an
attacker manipulates the behavior of a voltage regulator by
injecting false voltage data into the process bus. From the
attacker’s point of view, this attack is particularly appealing
since it can be carried out in a stealthy manner; by injecting
a stream of packets with small deviations from normal volt-
age, the attacks may remain undetected by the system until
it results in a catastrophic result (i.e., a blackout), similar
to the way Stuxnet [6] was carried out.

In particular, given the actual voltage v, the attacker con-
structs a series of packet that indicates a voltage value of
kv + b, where k and b are constant multiplicative and ad-
ditive factors determined by the attacker. A STATCOM,
having received the false measurement, may unnecessarily
inject (possibly causing overvoltage) or absorb power from
the load (under-voltage). The effect of an injection depends
on the value of k:

• k < 0: These values of k represent readings that are
an 180-degree out of phase from the actual voltage
values, causing the STATCOM to inject power when it
should be absorbed, and absorb power when it should
be injected into the system.
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• k = 0: The STATCOM will consistently receive a read-
ing of b, falsely believing that the voltage level is stable
and performing no regulatory actions.

• 0 < k < 1: These values of k represent a diminished
version of the actual voltage values, causing the STAT-
COM to apply only partial regulatory actions.

• k >= 0: These values of k represent a false amplifi-
cation of the actual voltage values, causing the STAT-
COM to inject or absorb more power than necessary.

Two factors are under consideration for the attacker when
choosing the value of k’s to be used: (1) it should cause
enough disruption to the system to result in a load shedding,
and (2) it should allow stealthy injection of packets, as large
k values are likely to be easily detected.

3.1.2 Defense
One common mitigation against this type of attack is the

use of encryption to ensure the integrity of the packets. How-
ever, relying on encryption as the sole protection mechanism
may not be sufficient for two reasons: (1) a smart grid sys-
tem has real-time requirements, with each packet being sent
and processed in a span of milliseconds, and so resources
required to encrypt and decrypt every packet may be too
stringent, and (2) encryption keys are often stored as part
of a configuration file, which may be easy to obtain once the
attacker gains the entry to the workstation.

Instead, we consider a threshold-based method for detect-
ing bad data packets [7]. In this method, the IED allo-
cates an internal variable to keep track of the number of
times I − Iref deviates from 0, where I is the current flow-
ing through the current generator in the IED, and Iref is
a fixed reference current. If this number exceeds some pre-
defined threshold (frequency variable τ) over a certain time
period, then the IED concludes that the system may be un-
der attack. The intuition behind this detection method is
that I− Iref should remain close to 0 under normal circum-
stances, and that even in an unstable environment, should
not vary no more frequently than τ .

The suitable values for τ for detecting the injection at-
tack may vary depending on the specific range of the false
voltage data injected by the attacker. Therefore, the chal-
lenge for the defender is to determine the right value for τ
to maximize the detection success rate in response to the
changes of the attacker’s behaviors. We can adopt Markov
game model to analyze this kind of strategic interaction be-
tween the defender and attacker, which will be described in
the next section.

3.2 Markov Games
A Markov game is played between two players—the at-

tacker and the defender—over a possibly infinite sequence of
rounds. During each round, both players perform an action
that may cause changes to the state of the system with some
probabilities. Each player receives a corresponding payoff af-
ter selecting an action simultaneously. In our case, since the
goal of the attacker is to trigger load shedding through false
data injection attack, the attacker’s payoff may be measured
by the amount of load shedding that its action causes to a
grid given the action of the defender. Conversely, the payoff
for the defender is the negation of the amount of load shed-
ding. The Markov game here is zero-sum; that is, the sum
of the attacker’s and defender’s payoffs is zero.

Formally, a Markov game consists of:

• N : a finite number of players. In our setting, there are
two players (defender and attacker), i.e., N = {d, a}.

• Ai: the action space of each player. Ad and Aa rep-
resent the set of defender’s and attacker’s actions, re-
spectively.

• S: a finite set of system states.

• Pr: transition probability function. Given the current
state s and the joint action (d, a), Pr(d, a, s, s′) returns
the probability that the system transits from state s to
s′ when the defender and the attacker perform actions
d and a, respectively.

• Ri: payoff function of the players. Given s ∈ S, a ∈
Aa, and d ∈ Ad, Rd(s, d, a) returns the expected payoff
of the attacker when the joint action (d, a) is performed
under state s. Since we are interested in zero-sum
games, the attacker’s corresponding payoff Ra(s, d, a)
is exactly the negation of Rd(s, d, a), i.e., Ra(s, d, a) =
−Rd(s, d, a).

The behaviors of the attacker and defender from Sec-
tion 3.1 can be modeled as follows. First, the action space
of the attacker can be defined as

Aa = {k1, k2, ..., kNa} (1)

where k1, k2, ... are real constants, Na is the size of Aa, and
for some i ≤ Na, ki corresponds to the injection of a packet
that indicates a voltage level of kib (i.e., falsely magnifying
the voltage reading by a factor of ki).

Similarly, the set of the actions that the defender may
perform is defined as:

Ad = {τ1, τ2, ..., τNd} (2)

where τ1, τ2, ... are integer constants, Nd is the size of AD,
and for some j ≤ Nd, τj refers to the defender deploying the
detection method with the threshold of τj (i.e., the number
of times I − Iref is allowed to cross 0).

A player’s strategy φ is a function that given some state
s, returns a probability distribution over the set of actions
that the player may perform in s.

4. ADAPTIVE PROTECTION
In the previous section, we have shown how we can model

a security attack as a Markov game between the attacker
and the defender. From the system architect, one impor-
tant question is how the system should choose its defending
strategy in order to minimize the amount of damage caused
by the attacker. A conventional approach in the game the-
ory is computing a Nash equilibrium (NE) strategy: that
is, both the attacker and the defender play a strategy that
would maximize the payoffs for both of them [7, 9]. The
rationale for adopting the NE solution is that neither the
attacker nor the defender can do better by choosing a dif-
ferent strategy.

However, in practice, choosing a NE strategy is not neces-
sarily optimal for the defender, since it depends on a num-
ber of assumptions that might not hold. First, computing
a NE relies on a perfect knowledge of the system; however,
in reality, the attacker might not have the capability to col-
lect enough information to construct an accurate model of
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Algorithm 1 Description of AMS

1: Compute NE strategy (π∗
i , ∀i ∈ {d, a})

2: repeat
3: Initialize hprev

a , hcurr
a to nil

4: s = s0, β = false, t = 0
5: Set defender strategy φd as NE strategy (φd = π∗

d)
6: while true do
7: for r : 0 to N t do
8: Play(φd(s))
9: Update(hcurr

a )
10: end for
11: hprev

a = hcurr
a

12: t := t+ 1
13: if Distance(hcurr

a , π∗
a) > εte then

14: break
15: end if
16: end while
17: φd = RandomStrategy()
18: while true do
19: for r : 0 to N t do
20: Play(φd(s))
21: Update(hcurr

a , hprev
a )

22: end for
23: t := t+ 1
24: if β = true then
25: if Distance(hcurr

a , hprev
a ) > εts then

26: break
27: end if
28: end if
29: hprev

a = hcurr
a

30: β := true
31: φ′

d := BestResponseStrategy(hcurr
a )

32: if V (s, φ′
d, h

curr
a ) > V (s, φd, h

curr
a ) + 2|A||S|εt+1

s μ,
∀s ∈ S then

33: φd = φ′
d

34: end if
35: end while
36: until

a smart grid. Second, since the attackers are humans, it
is likely that they would launch attacks based on their in-
tuition or past experience, which might be different from
the NE strategy. Lastly, if there are multiple equilibria, the
players may not pick the same matching strategy.

Instead, an effective defending strategy should be adap-
tive, i.e., it should be able to learn the attacker’s strat-
egy and dynamically compute the best response strategy to
counter the attacking strategy. However, assuming that the
attacker may change its strategy arbitrarily is neither useful
nor practical. Therefore, to make our technique feasible, we
assume that the attacker’s strategy is stationary (i.e., the
probability of choosing each action is unchanged under the
same state)1.
An effective defending strategy must satisfy the following

two desirable properties [2].

Rationality A rational defending strategy must always learn
to play the best response strategy given that the at-
tacker is adopting a stationary attacking strategy. Sat-
isfying this property guarantees that the cost to the

1We allow the attacker to change its strategy to another
stationary strategy during the game.
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Figure 2: Overview of the AMS

system can be minimized as long as the attacker’s
strategy is stationary. Note that a NE strategy is a
special case of stationary strategy.

Convergence The defending strategy must always converge
to a stationary strategy under self-play. This prop-
erty takes into consideration the possibility that the
attacker might be as intelligent as the defender and
employ the same adaptive strategy as the defender.
We can see that under self-play, if both rationality
and convergence properties are satisfied, the defender
and attacker will eventually converge to a NE strategy.
This means that the maximum cost to the system can
be bounded to the cost when the attacker adopts a NE
strategy, even when the attacker is as intelligent as the
defender.

4.1 AMS: Adaptive Markov Strategy
In this section, we propose an algorithm for computing

an adaptive Markov strategy (AMS) for defending a sys-
tem against security attacks. Our algorithm is based on the
AWESOME algorithm [4], which computes adaptive defend-
ing strategies for repeated games only (i.e., a special case of
Markov games where the system has exactly one state); we
extend AWESOME to Markov games where the system may
have any finite number of states.

The overview of the AMS algorithm is shown in Figure 2.
AMS begins by assigning an NE strategy as the defending
strategy, and observes the behavior of the attacker for some
fixed number of rounds (called a period). If the estimated
strategy of the attacker is consistent with its NE strategy,
then AMS keeps the original NE as the defending strategy.
Otherwise, it computes a new best response strategy to play
against its current estimation of the attacker’s strategy. Af-
ter playing the new strategy for another period of rounds,
AMS checks whether attacker’s strategy remains the same as
the one from the previous period; if not, this implies that the
previous estimation of the attacker’s strategy was incorrect,
and so AMS restarts the whole process again by retreating
to the original equilibrium strategy.

Before introducing the AMS algorithm in details, we need
to explain a few terms first. First, to determine whether
the attacker is employing the NE or any other stationary
strategies, we define the distance between two strategies to
compare whether they are the same or not.
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Definition 1. The distance Distance(φ1, φ2) between two
stationary strategy φ1 and φ2 is:

Distance(φ1, φ2) = max |φ1(s, a)− φ2(s, a)|, ∀a ∈ As, s ∈ S
(3)

where As is the action space at state s and S is the state
space, and φ1(s, a) and φ2(s, a) is the probability that action
a is played at state s for strategy φ1 and φ2 respectively.

Second, given two strategies φ1 and φ2, we define the value
V (s, φ1, φ2) of playing strategy φ1 against strategy φ2 under
state s, which is defined as the sum of the discounted ex-
pected payoff obtained over infinite number of interactions.

Definition 2. The value V (s, φ1, φ2) of playing strategy
φ1 against strategy φ2 under state s is defined as follows,

V (s, φ1, φ2) =R(s, φ1(s), φ2(s))+

δ
∑

s∈S

Pr(φ1(s), φ2(s), s, s
′)V (s′, φ1, φ2)

(4)

where δ is the discounting factor reflecting the relative im-
portance of future payoffs and Pr(φ1(s), φ2(s), s, s

′) is the
probability that the system state transits from s to s′ given
that the players choose actions φ1(s) and φ2(s) respectively.
We can construct one equation for V-value of each state
s ∈ S following Definition 2, and thus the value of each
state can be calculated by solving the system of |S| linear
equations using different techniques such as iterative meth-
ods [5].

The AMS algorithm (Algorithm 1) takes place over con-
secutive periods (where each period is some number of round).
Initially, the AMS begins by playing the precomputed NE
strategy2 for the initial period N0 (Line 5) and estimates
the strategy of the attacker based on the actions taken in
this period (Line 7 to 10). If the distance between the esti-
mated strategy hcurr

a and the NE strategy π∗
a of the attacker

is larger than the given threshold (line 13), the attacker is
considered playing a non-NE strategy, and a random strat-
egy is chosen as the defense strategy for the next period
(Line 17).

At the end of the next period, AMS computes the best
response strategy φ′

d against the current estimated strategy
hcurr
a of the attacker based on the last period’s interaction

(Line 31).3 If for every state s ∈ S, the difference between
the V-value of φ′

d against the hcurr
a and that of φd is larger

than the given threshold 2|A||S|εt+1
s μ (where |A||S| repre-

sents the total number of pure strategies of the Markov game
and μ is the payoff difference between the AMS player’s best
and worse outcomes), the current defending strategy φd is
replaced by a more optimal strategy φ′

d (Line 32-34).
At the end of each following period, AMS compares the es-

timated strategy hcurr
a and hprev

a of the attacker in the last
and preceding periods (Line 25). If the distance between
these two is larger than the given threshold εts, it indicates
that the opponent is not playing according to the estimated

2Note that we only need to compute the minmax strat-
egy instead since for a zero-sum Markov game, the min-
max/maxmin strategy for each player is equivalent to its
corresponding NE strategy [13]. The generalized value it-
eration algorithm [13] can be used to compute the minmax
strategy efficiently.
3The generalized value iteration algorithm can be used here
to compute the best response strategy in a Markov game
[13].

strategy hprev
a , and the AMS will restart by breaking from

the second while loop (Line 26). Otherwise, the AMS com-
putes a best response strategy φ′

d based on the last period’s
interaction, and employs φ′

d as its strategy if it is more opti-
mal than φd (Line 31-34). This process repeats as indicated
by the outer Repeat loop.

The remaining question is how the set of parameters of the
AMS algorithm should be adjusted, described as follows.

Definition 3. A schedule of adjusting the parameters
{εte, εts, N t} is valid if

• εte, ε
t
s are decreased monotonically and converge to zero

eventually.

• the value of N t is increased monotonically to infinity.

• Πt∈{1,2,...}(1 − AS
1

Nt(εt+1
s )2

) > 0, where AS is the to-

tal number of actions of the defender summed over all
states.

4.2 Properties of the AMS
As previously mentioned, an effective defending strategy

must satisfy two desirable properties: rationality and con-
vergence. It can be theoretically proved that the AMS sat-
isfies both properties, which are formalized as the following
two theorems:

Theorem 1. Given a valid schedule of adjusting the pa-
rameters, if the attacker employs a stationary attacking strat-
egy, the defender adopting AMS eventually converges to a
best response to the attacker’s strategy with probability one.

Proof. We provide a sketch of the proof, which has two
parts. First, we prove that with a non-zero probability, the
AMS never restarts. We can show that the joint probability
that the AMS not restarts for every period t is greater than
zero based on the triangle inequality and ChevyshevâĂŹs in-
equality theorem. Second, we prove that the probability that
the AMS never restarts and does not converge to a best re-
sponse strategy against the attacker is 0 by continuity and
ChevyshevâĂŹs inequality theorem. By proving both parts,
we can conclude that the AMS always converge to a best re-
sponse strategy against the attacker with probability 1.

Theorem 2. Given a valid schedule, if both the defender
and attacker employ the AMS, they eventually converge to a
NE with probability one.

Proof. The sketch of the proof is as follows. Similar
to the proof of Theorem 1, we prove this theorem by divid-
ing it into two parts. First, we prove that with a positive
probability, the AMS for both players will always be within
the first while-loop in Algorithm 1, i.e., always playing the
corresponding NE strategy. To prove this, we only need to
prove that the probability that the distance between the es-
timated strategy and the precomputed equilibrium strategy is
not greater than the value of Î̧tte for all periods t is larger
than zero.

In the second part, we need to prove is that the probability
that the AMG strategy never restarts but does not converge
to equilibrium strategy is zero. We only need to show that
in this case, one player (attacker or defender) adopting the
AMS will eventually switch its strategy, which would trigger
both players to restart.
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Figure 3: An example distribution system with 1 generator and 4 buses [7], originally from the D-STATCOM model in SimPowerSys-
tems [1].

By combining both parts, we can conclude that the de-
fender and attacker will eventually converge to an NE with
probability one if both of them adopt the AMS.

5. PRELIMINARY EVALUATION
In this section, we describe a preliminary evaluation of the

performance of the AMS for defending a substation against
false data injection. We used a model of 1-generator 4-bus
distribution system shown in Figure 3 (adopted from [7])
as the testbed, and compared the AMS’s performance with
that of the NE strategy proposed in [7, 9]. In this distri-
bution system, the generator supplies electric power to four
loads (L0, L1, L2, L3); a single STATCOM, connected to
the system through Bus 3 (B3), regulates the voltage level
by injecting (absorbing) reactive power to the system based
on voltage feedback.

5.1 Markov Game
For our experiment, we adapted the same Markov game

used in the previous study of the false data injection attack
[7]. To obtain the various parameters of the Markov game
(attacker/defender actions, transition probabilities, and pay-
offs), the authors of the previous work performed a MAT-
LAB/Simulink simulation of the testbed system in Figure 3
under various load conditions. Since the construction of the
Markov game is not our contribution, we only briefly dis-
cuss the Markov model that we adapted for our study and
refer the readers to [7] for more details on how the game was
constructed from the simulation4.
In this game, the state space is abstracted into a set S

of two states, S = {s1, s2}, where s1 and s2 represent the
states in which the system experiences (1) no load shedding,
and (2) some amount of load shedding, respectively. The
defender’s action set is represented by

Ad = {τ1 = 11, τ2 = 32}
which correspond to the two thresholds that the defender
uses to detect an injection attack.

The attacker’s action set is denoted by

Aa = {k1 = 1.1, k2 = −0.8}
which correspond to two false voltage values that the at-
tacker may choose to inject into the STATCOM. The values
for the attacker’s actions were chosen because based on the
output of the Simulink simulation, they were effective in

4In particular, we studied the Markov game generated from
Scenario 2 in Section VI(B) of [7], where load L3 is a variable
load instead of a fixed load.

causing a load shedding, and avoided I − Iref crossing zero
a large number of times.

The transition probabilities and the expected immediate
payoff of the defender and the attacker for each joint action
were also obtained based on the output of the Simulink sim-
ulation. Given a pair of joint actions (ad, aa), the transition
probability from state si to state sj is measured as the ex-
pected probability that the system starts from state si and
ends in state sj in a session due to the execution of the joint
action (ad, aa):

Pr(d1, a1) =

∣∣∣∣
43/45 2/45
1/2 1/2

∣∣∣∣Pr(d2, a1) =

∣∣∣∣
0 1

1/47 46/47

∣∣∣∣

Pr(d1, a2) =

∣∣∣∣
48/49 1/49

0 1

∣∣∣∣Pr(d2, a2) =

∣∣∣∣
25/32 7/32
7/17 10/17

∣∣∣∣

The expected payoff for the attacker/defender under given
state s and joint action pair (aa, ad) is the expected amount
of load shedding by performing those actions from that state;
in [7], this value was computed as the ratio of the total
energy shed (Es) throughout the simulation in that state
over the duration of the load shedding (Ts). Since this is a
zero-sum game, the payoffs for the defender are exactly the
negation of those for the attacker5:

Ra(s1) =

∣∣∣∣
44/46 0
42/49 24/33

∣∣∣∣Ra(s2) =

∣∣∣∣
2 2.50
2 2.15

∣∣∣∣

Rd(s1) =

∣∣∣∣
−44/46 0
−42/49 −24/33

∣∣∣∣Rd(s2) =

∣∣∣∣
−2 −2.50
−2 −2.15

∣∣∣∣

5.2 Experimental Results
To evaluate the effectiveness of the AMS, we compare the

performance of both the AMS and NE defending strategy
under different attacker’s strategies. We considered four dif-
ferent scenarios, where the attacker employs (1) a NE strat-
egy, (2) a strategy where the attacker always performs a1,
(3) an a2-only strategy, and (4) a random strategy. In each
scenario, we ran a simulation of the Markov game for 5000
rounds, and measured the expected load sharing costs of the
defender when it employed the AMS and NE strategy.

Figure 4a shows the dynamics of the expected load shed-
ding costs when the attacker selects the NE strategy and the
defender employs the NE and AMS defending strategy re-
spectively. We can see that both defending strategies result
in roughly the same load shedding cost. This is as expected;
recognizing that the attacker is employing the NE strategy,

5[7] also discusses the cost of false positives of the detection
method for the defender, which we omit here.
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(a) φ0: the NE strategy
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(b) φ1(s1) = φ1(s2) = a1
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(c) φ2(s1) = φ2(s2) = a2
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(d) φ3: choose a1/a2 randomly

Figure 4: Expected load shedding cost of the system when the attacker employs different attacking strategies.
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Figure 5: Expected load shedding cost when the attacker employs
the strategy φ2 for Stages 0 - 2500, and φ1 for Stages 2500 - 5000.

the AMS learns to employ its optimal counterpart NE strat-
egy for the defender.

Figure 4b shows the expected load shedding costs when
the attacker employs a strategy φ1 where he or she always
performs the single action a1, and the defender adopts the
NE and AMS defending strategy respectively. We can ob-
serve that the system’s load shedding cost of the system is
significantly reduced when the system employs the AMS. In-
tuitively, when the AMS recognizes that the attacker uses
such a simple strategy, it also constructs an optimal strategy
that exploits the attack pattern, thus minimizing the load
shedding cost. Similarly, if the attacker employs the strat-
egy φ2 where he always selects a2 (Figure 4c), the AMS
constructs a corresponding optimal strategy that results in
a significantly reduced cost over the NE strategy. The tem-
porary drop-off around the 500th round is due to the fact
that before the AMS can determine to an accurate estima-
tion of the attacker’s strategy, it may temporarily employ a
strategy that is less than optimal.

Figure 4d illustrates the load shedding costs when the
attacker employs the strategy φ3 where he randomly alter-
nates between the two actions, a1 and a2 under each state,
and the defender adopts the NE and AMS defending strat-
egy respectively. Similar to the previous scenario, the AMS
initially incurs a greater cost, but as its estimation of the
attacker’s strategy stabilizes (around the 1500th round), it
continually significantly outperforms the NE strategy.

Lastly, we consider a scenario when the attacker may not
adopt a stationary strategy, and instead switch to a different
strategy during the game. Figure 5 considers the case when
the attacker initially employs the stationary strategy φ2 and
switches to another stationary strategy φ1 in the middle
period (after 2500 round). From Figure 5, we can see that

AMS can learn to exploit the attacker’s dynamic behaviors
to significantly reduce the load shedding cost compared with
NE strategy.

6. CONCLUSION AND FUTURE WORK
In this paper, we discussed why the convention approach

of using a NE strategy in a Markov game might not be an op-
timal choice for the system defender, due to a number of as-
sumptions about the attacker that may not hold in practice,
especially in a system as complex as a smart grid. We pro-
posed a new type of adaptive strategy called the AMS, and
performed a preliminary evaluation of the technique on one
class of security attacks on smart grid systems—injecting
false voltage information.

Further investigation is needed to test the feasibility of
our approach in practical settings. One potential limitation
of the AMS, as currently designed, is the number of rounds
required to converge to an accurate estimation of the at-
tacker and obtain the best response strategy. In a smart
grid, the number of packets transmitted to IEDs per second
is typically in hundreds, and so in the data injection attack,
it is conceivable that the AMS may converge to an optimal
strategy in matter of minutes. However, other types of at-
tacks that are less frequent (e.g., where an attacker’s action
involves physical hampering), a dynamic technique such as
the AMS might not be suitable. We plan to investigate pos-
sible ways to reduce the duration of the convergence (e.g.,
using an approximation). Furthermore, we plan to study
the effectiveness of the AMS on other types of smart grid
attacks, and explore techniques for scaling the computation
of the AMS to larger distribution systems.
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