
Resilience of Systems under Maximum
Component Deviations

Abigail Hammer1� , Changjian Zhang1 , Vick Dini2 , Ryan Wagner1 ,
Bradley Schmerl1 , Eunsuk Kang1 , and David Garlan1

1 Carnegie Mellon University Pittsburgh PA 15213, USA
2 Politecnico di Milano, Milano 20133, Italy

� arhammer@andrew.cmu.edu

Abstract. Software systems are composed of interacting processes that
share data between each other in order to satisfy system properties.
When these processes deviate and are unavailable to transmit data—due
to events such as software bugs, hardware failures, or security attacks—a
resilient system will continue delivering safety-critical services. Identify-
ing the processes required to satisfy system properties is not a trivial
task as there may exist multiple alternative dataflow paths that each
satisfy the property. In this work, we propose a formal modeling and
analysis technique to compute the sets of minimal processes required
to satisfy dataflow properties. The computation of these sets is reduced
to a maximum satisfiability problem via modeling in AlloyMax, a for-
mal modeling language that performs bounded model checking. We then
present a method to formally define the resilience criteria for a system
by constraining the minimal dataflow required under maximum system
deviations. The efficacy of this work is then evaluated with four case
studies motivated from real-world systems with promising results.

Keywords: Resilience · Software Architecture · MaxSAT · AlloyMax

1 Introduction

A software system consists of a set of interacting components that share data
with each other in order to satisfy various system requirements. During the life-
time of the system, one or more of these components may become unavailable
and fail to fulfill its intended functionality due to abnormal events such as a
hardware failure, software bugs, or a security attack. Ideally, a system that is
resilient is capable of preserving the critical data services, even if non-critical
services fail. For example, consider a Magnetic Resonance Imaging (MRI) system
that is exposed to a ransomware attack: a resilient design would ensure that the
system provides the most essential patient services (e.g., integrity and security
of patient information), even if other services (e.g., patient billing) become tem-
porarily unavailable or degraded. In a brittle design, a single component unable
to transmit data might undermine all critical properties.

In this work, we propose a formal framework to support modeling and anal-
ysis tasks for the systematic, rigorous design of resilient software systems. The

arhammer@andrew.cmu.edu
https://orcid.org/0000-0002-0340-0160
https://orcid.org/0000-0003-1689-6633
https://orcid.org/0000-0003-4874-3965
https://orcid.org/0000-0001-7823-2344
https://orcid.org/0000-0001-7828-622X
https://orcid.org/0000-0001-7891-6885
https://orcid.org/0000-0002-6735-8301
arhammer@andrew.cmu.edu

2 A. Hammer et al.

proposed framework consists of (1) a formal definition of resilience that char-
acterizes the ability of a system to tolerate process deviations – changes to the
data sent and received by a process – while ensuring satisfaction of critical prop-
erties, and (2) an automated model-based analysis to evaluate the resilience of
a given system. To be more specific, in our approach, a system is modeled as
a set of processes (each corresponding to a software or hardware component)
that interact with each other by transmitting various types of data. A process is
considered unavailable when it can no longer send or receive any transmission.

Building on this definition, we propose an analysis method that takes (1) a
formal model of the system (including its processes and associated dataflow con-
nections) and (2) a desired property to be satisfied, and automatically evaluates
the resilience of the system with respect to that property. In particular, we show
how this analysis can be formulated as an instance of the maximum satisfiabil-
ity (MaxSAT) problem [10], where evaluating resilience amounts to computing
the property core—a minimal set of processes that are sufficient to imply a
property—and verifying that the system properties are satisfied.

We also describe how this basic analysis for computing resilience can be
further utilized for rigorously answering various design questions—for instance,
what are the components that are the weakest links in the system, in that their
deviation could undermine a critical property? Given two alternative architec-
tural designs of a system (both satisfying a common property under no devia-
tions), which one of them is more resilient under possible deviations?

To demonstrate the applicability of the proposed resilience definition and
analysis method, we present a set of realistic case studies from multiple safety-
critical domains: (1) a smart hospital bed, (2) a distributed electric vehicle charg-
ing network, (3) a smart electric grid, and (4) a smart factory system. The
outcome of the case studies suggest that our notion can capture resilience of sys-
tem designs across multiple application domains, and that our MaxSAT-based
analysis method scales to models of complex software systems.

The contributions of the paper are as follows: (1) a formal definition of re-
silience for software systems that characterizes the ability of a system to toler-
ate component deviations while ensuring a critical property (Section 3); (2) an
automated, model-based method for computing the resilience of a system by
formulation as a MaxSAT problem (Section 4); and (3) case studies demonstrat-
ing the applicability and utility of the proposed definition and analysis method
(Section 5).

1.1 Running Example

To motivate our approach, we present the following example system with two
alternative designs. A hospital needs to perform MRI scans to diagnose ailments
in patients and observe changes in conditions over time. A medical professional
uses a third party’s Portal as an interface to send a command to an MRI to
Start performing a scan on a patient. A Controller handles the request, and
forwards it to the MRI. Upon completion of the scan, the MRI sends a notifica-
tion back to the Controller that the scan is Done, which is forwarded to the

Resilience of Systems under Maximum Component Deviations 3

MRI

ControllerPortal Scan
Database

Backup
Database

Done,
Scan Data

Start

Scan Data

Scan Data

Scan Data

Start Done

(a) MCSA design, where the MRI up-
loads Scan Data directly to both of the
databases.

MRI

ControllerPortal Scan
Database

Backup
Database

Done,
Scan Data

Start

Scan Data

Scan Data

Start Done,
Scan Data Scan Data

(b) MCSB design, where the MRI sends the
Scan Data to the Controller which up-
loads to the Main Database.

Fig. 1: Two alternative dataflow diagrams for an MRI Control System (MCS).

Portal. Medical professionals can then use the Portal to obtain the Scan Data
via the Controller which obtains the data from the Scan Database. For MCSA
(Figure 1a), the MRI uploads the Scan Data directly to both the Scan Database
and the Backup Database, whereas MCSB (Figure 1b) uploads the Scan Data to
the Controller where it is forwarded to the Scan Database, and then forwarded
again to the Backup Database.

The hospital requires that the MCS is resilient against data loss. If a process
becomes unavailable (due to a software bug or a ransomware attack), the hospital
requires that Scan Data is still securely stored in at least one Database. In MCSA,
not all processes are used to store the Scan Data; as long as the MRI and one
of the two Databases are available, the Scan Data will be stored. In MCSB, the
MRI, Controller, and Scan Database are all needed to store the Scan Data to
at least one Database.

In the event that the Scan Database is unavailable, MCSA will still be able
to save scans to the Backup Database; however, in MCSB, the scans will not be
saved at all. Even though both MCSs are designed to have backups of Scan Data,
MCSA is more resilient than MCSB with respect to the storage of all Scan Data.
By identifying the minimal set(s) of processes to save the Scan Data, we can
evaluate the resilience of the MCS to maximal component deviation.

2 Background

In our approach, systems are modeled as dataflow diagrams, as we are interested
in reasoning about properties that describe how different pieces of data may flow
throughout a system.

Definition 1 (Dataflow Diagram). Derived from the definition by Tao and
Kung [21], a dataflow diagram (DFD) is a quintuple A = (C,D,O,Q,K) where

– C = P ∪S ∪E is a non-empty, finite set of components consisting of disjoint
sets P , the set of processes; S, the set of data stores; and E, the set of
external entities.

– D is a non-empty, finite set of data that flows between components.

4 A. Hammer et al.

– O ⊆ C ×D is the relation that maps each component to the set of data it
produces.

– Q ⊆ C × C × D is the set of dataflows from a source component to a
destination component.

– K ⊆ P∪S is the set of internal processes, and C\K are external components.

For the remainder of the paper, we refer to the components of a dataflow
diagram A as CA, DA, OA, QA, and KA. The size of a diagram is the number of
components; i.e., size(A) ≡ |CA|.

Example 1 (DFD for MCSA). The design MCSA from Section 1.1 contains the
following set of processes and data:

CMCSA = {Portal, MRI, Controller, Database, BackupDatabase}
DMCSA = {Start, Done, Scan Data}

The size of MCSA is 5, and the only external component is the Portal (i.e.,
KMCSA = CMCSA \{Portal}). The MRI produces the Scan Data and Done, so {(MRI,
Scan Data), (MRI, Done)} ⊆ OMCSA , but the Controller only forwards data, so
there is no data d such that (Controller, d) is in OMCSA . The dataflow connec-
tions for the portal are (Controller, Portal, {Done, Scan Data}) and (Portal,
Controller, {Start}), both in QMCSA . For brevity, we do not detail all tuples in
OMCSA and QMCSA .

Definition 2 (Process Deviation). For a pair of DFDs A,A′, and a process
p such that p ∈ CA and p ∈ CA′ , p deviates between A and A′ when there is
a process p′ and data d such that (1) (p, p′, d) ∈ QA ⇐⇒ (p, p′, d) ̸∈ QA′ ,
(2) (p′, p, d) ∈ QA ⇐⇒ (p′, p, d) ̸∈ QA′ , or (3) (p, d) ∈ OA ⇐⇒ (p, d) ̸∈ OA′ .

Definition 3 (Typed Transitive Set of a DFD). The Typed Transitive Set
(TTS) over a relation R : C × C × D is the set of processes p, p′ and data
element d such that p sends d to another process, which then sends it to p′.
Formally, TTS(R : C ×C ×D) ≡ {(p, p′, d) ∈ C ×C ×D | ∃p′′ ∈ C | (p, p′′, d) ∈
R ∧ (p′′, p′, d) ∈ R}.

Definition 4 (Typed Transitive Closure of a DFD). For a given DFD A,
the Typed Transitive Closure (denoted Q̃A) is the closure of the transitive set
that includes QA. Given that QA0

≡ QA, and QAn+1
≡ TTS(QAn

), we define
Q̃A ≡

⋃∞
n=0QAn

.

Example 2 (Typed Transitive Closure for MCSA). In MCSA, the Scan Data
reaches the Controller from the MRI by being sent to the Scan Database, which
sends it to the Controller. Therefore, (MRI, Controller, Scan Data) ∈ ~QMCSA .

Definition 5 (Reachability Predicate). For a pair of processes p, p′, data
elements of type d reaches p′ from p if there is a path of processes from p to p′
that all send d. A data always reaches the process that sends it, so if p produces
d, d reaches p. Formally, a DFD A satisfies canReach for any p, p′, d by the
following: canReach(p, p′, d) ≡ (p, p′, d) ∈ Q̃A ∨ (p = p′ ∧ (p, d) ∈ OA).

Resilience of Systems under Maximum Component Deviations 5

Definition 6 (Dataflow Property). A dataflow property φ over a DFD A is
a first-order logic formula that utilizes the predicate canReach to express the
presence of desired dataflow in a system. In particular, we write A |= φ iff the
evaluation of φ over the set of tuples in canReach is true.

Example 3 (MCS Properties). There are two important MCS properties: (1) φop:
Medical professionals can access the MRI scans through the portal and (2) φdb:
At least one database always receives a scan in order to maintain data integrity.

φop= canReach(MRI, Portal, Scan Data)

φdb= ∃db : Database | canReach(MRI, db, Scan Data)

Threat Model We assume an adversary attacking a system, represented as
DFD A, can cause a set of processes, denoted ĈA ⊆ CA, to deviate such that
for all processes p ∈ ĈA, there is no data sent or received by p.

3 Resilience of Systems
A resilient system is capable of delivering critical services even when some system
processes have deviated. Often, these critical services are dependent on the data
sent to and received from other processes; in this section we detail how the
resilience of these services can be formally defined with dataflow properties.

3.1 Property Core
When a process p in a diagram A deviates and no longer sends or receives
any data, processes that interact with p will deviate as they will not transmit
any data with p. If a set of processes ceases data transmission, the remaining
processes should operate with minimal deviations; these remaining processes
form a subdiagram of A.

Definition 7 (Subdiagram). A subdiagram, A′, contains a subset of the pro-
cesses of a diagram A such that each process deviates minimally. In the subdia-
gram, the processes, data, and dataflows of A′ are a subset of the ones present in
A. If a dataflow relation (p, p′, d) is in QA and both p and p′ are processes in the
subdiagram, then (p, p′, d) is also in QA′ . For any process in the diagram, the
process is internal in the subdiagram iff the process is internal in the diagram.
Similarly, for any process p and data d in the subdiagram, p produces d in the
subdiagram iff p produces d in the diagram. For a diagram A = (C,D,O,Q,K),
a diagram A′ = (C ′, D′, O′,Q′,K ′) is a subdiagram (denoted A′ ⊆ A) such that:

C ′ ⊆ C

D′ ⊆ D

Q′ ⊆ Q

∀p, p′ ∈ C,∀d ∈ D | ({p, p′} ⊆ C ′ ∧ (p, p′, d) ∈ Q) =⇒ (p, p′, d) ∈ Q′

∀p ∈ C ′ | p ∈ K ⇐⇒ p ∈ K ′

∀p ∈ C ′, d ∈ D′ | (p, d) ∈ O ⇐⇒ (p, d) ∈ O′

Example 4 (Subdiagram of MCSA). During an event when an adversary at-
tacks the Portal and Controller in the MCS, neither process transmits or re-
ceives data, and ĈMCSA = {Portal, Controller}. The processes MRI, Scan Data-
base, and Backup Database then form a subdiagram of the MCS when the only
deviations of the processes are to cease communication with ĈMCSA .

6 A. Hammer et al.

Definition 8 (All Subdiagrams of a DFD). The set of all subdiagrams of a
DFD A is denoted as SDA; trivially, A ∈ SDA. Formally, SDA ≡ {A′|A′ ⊆ A}.

We note that the subdiagram in Example 4 does not require all of the processes
in order to satisfy φdb from Example 3. The Backup Database can be removed,
and φdb will still be satisfied. To identify the maximum unavailable processes a
system can withstand, we compute the minimal subdiagrams with respect to the
number of processes; these minimal subdiagrams are denoted as property cores.

Definition 9 (Property Core). For a given dataflow property φ, a property
core of the diagram A is a subdiagram A′ with a minimal number of processes
that satisfies φ; if any process in A′ can be removed and still satisfy φ, it is
not a property core. We define the predicate core(A,A′, φ) to be true iff A′ is
a property core of A w.r.t. φ. Formally, core(A,A′, φ) ≡ (A′ ∈ SDA ∧ A′ |=
φ ∧ ∀A′′ ∈ SDA′ \ {A′} | A′′ ̸|= φ). If A ̸|= φ, then there does not exist a
subdiagram that is a property core of A.

Definition 10 (All Property Cores of a DFD). For a given DFD A and
dataflow property φ, the set of all property cores A that satisfies φ is denoted
PCφ

A; formally, PCφ
A ≡ {A′ ∈ SDA | core(A,A′, φ)}.

Because there may exist multiple dataflow paths in a DFD that independently
satisfy the property φ, it is possible to have multiple property cores of a DFD
w.r.t. φ. These cores may overlap and share processes, but cannot be a subdia-
gram of another core by virtue of the minimality requirement.

Example 5 (MCS property cores). PCφdb

MCSA
contains two cores: the subdiagram

with the MRI and Scan Database, and the subdiagram with the MRI and Backup
Database. The MRI can send Scan Data to the Backup Database even when the
Scan Database, Controller, and Portal processes are unavailable.

In order to send Scan Data to the Backup Database, MCSB must first send
the Scan Data to the Scan Database; this means the only core in PC

φdb

MCSB
is the

core containing the MRI, Controller, and Scan Database.

PC
φdb

MCSA
= {X ∈ SDMCSA |(CX = {MRI, Scan Database}

∨CX = {MRI, Backup Database})}
PC

φdb

MCSB
= {X ∈ SDMCSB |CX = {MRI, Scan Database, Controller}}

If a security attack targets the Scan Database, MCSA can store the Scan Data
in the Backup Database and satisfy φdb. However, without the Scan Database,
MCSB cannot store Scan Data in either Database, leaving the system unable to
satisfy φdb.

3.2 Evaluation of Resilience Criteria with Property Cores
Because MCSA has multiple property cores for φdb, there are redundancies in the
system. Conversely, MCSB has a single core, with limited redundancies – if the
MRI, Scan Database, or Controller are unavailable, the Backup Database may

Resilience of Systems under Maximum Component Deviations 7

be unable to store Scan Data and limit its redundant capabilities. We can then
say that MCSA is more resilient than MCSB.

Safety-critical systems often have resilience criteria to ensure the systems
can withstand deviations of system processes and the system’s environment.

Definition 11 (Resilience Criterion). A resilience criterion ψ is a formula
over the cores of one or more dataflow properties of a DFD A. For a resilience
criterion ψ, the system modeled as diagram A is resilient iff A |= ψ.

We propose that property cores can be utilized to define resilience criteria; differ-
ent attributes of property cores can express different constraints on the required
dataflow, even as the processes in the system are subjected to major deviations.
A subset of these attributes and how they can express resilience are presented
below.

Size of Cores The size of a property core reflects the number of processes
required to transmit the associated data; if the size of a core is equal to the
size of the diagram, then every process in the diagram is required to satisfy
the given property. Should any process become unavailable, the property can no
longer be satisfied. A resilient system allows for some fraction of processes to be
unavailable while satisfying the property.

Example 6 (Criterion 1 for MCS). A desirable resilience criterion states that
not every process is required for φop to be satisfied. Formally, ψop ≡ ∃X ∈ PC

φop

MCS |
size(X) < size(MCS). For both MCSA and MCSB, the Backup Database is not
required to be available to send Scan Data from the MRI to the Portal, and
thus MCSA |= ψop and MCSB |= ψop.

Number of Cores Having multiple cores in a diagram indicates a level of
redundancy within the associated system. If one or more processes in one core
becomes unavailable, the system can still satisfy the dataflow property by relying
on processes that belong to another core. Having more cores in a system allows
for more independent dataflow paths that satisfy a desired property.

Example 7 (Criterion 2 for MCS). To ensure data integrity, it is desirable
that there exist alternate means to save Scan Data; therefore, a resilience cri-
teria states that there are at least two property cores w.r.t. φdb. Formally,
ψdb ≡ |PCφdb

MCS| ≥ 2. Using the cores computed in Example 5, we find PC
φdb

MCSA
|= ψdb

and PC
φdb

MCSB
̸|= ψdb.

Intersection of Cores A diagram may not be considered resilient solely because
it has multiple cores. For a diagram A and property φ, if there exists a process
p such that p is in every core of PCφ

A, then p is a weak link in the system. If
there is an event where p is unavailable, then the system is unable to satisfy
property φ. Conversely, for a different system A′, if there exist two cores, c, c′
in PCφ

A′ such that Cc ∩ Cc′ = ∅, then A′ may be considered more resilient than
A. A diagram where cores share few processes is considered more resilient than
a diagram where all cores share many processes.

8 A. Hammer et al.

Example 8 (Criterion 3 for MCS). A desirable resilience criterion states that
there are two independent dataflow paths to save Scan Data to the databases.
This requires that there exists two cores in PC

φdb

MCS where the intersection of
the processes contain at most the MRI. Formally, ψind ≡ ∃X, Y ∈ PC

φdb

MCS | X ̸= Y∧
(CX ∩ CY) \ {MRI} = ∅. Since PC

φdb

MCSA
has no overlap between processes besides the

MRI, and there is only one core for PCφdb

MCSB
, MCSA |= ψind and MCSB ̸|= ψind.

Boundary of Cores In some domains, a system may only be considered resilient
if it is not dependent on external systems or third party entities. If at least one
core of a diagram does not rely on external processes, then satisfaction of the
associated property is dependent only on the availability of the internal processes.

Example 9 (Criterion 4 for MCS). Saving the Scan Data should only require
local processes to ensure data integrity: ψloc ≡ ∃X ∈ PC

φdb

MCS | X ⊆ KMCS. Neither MCS
requires the Portal to save Scan Data, so PC

φdb

MCSA
|= ψloc and PC

φdb

MCSB
|= ψloc.

4 Property Core Computation as MaxSAT
We formulate the problem of computing a property core as a MaxSAT problem.
Definitions 1–7 are expressed using relations and first-order logic; additionally,
the notion of a property core can be modeled via minimizing the set of processes
in the property core while satisfying a given dataflow property. Any solver capa-
ble of translating a problem to a MaxSAT problem can be utilized to compute
property cores; we select AlloyMax [26].

Alloy [8] is a formal modeling language based on first-order predicate logic
and relational algebra that performs constraint solving over bounded domains.
AlloyMax is an extension of Alloy that can express optimization problems to a
MaxSAT problem [26]. The logic of AlloyMax is expressive enough to specify
DFDs, dataflow properties, and resilience criteria, and the MaxSAT-based anal-
ysis can be used to compute property cores. Because the systems modeled have
finite processes and data, Alloy solving over bounded domains does not affect
the soundness or completeness of the results.

Abstract DFDs Encoding The encoding of an abstract DFD (Definition 1)
in Alloy is shown in Listing 1. The data of a DFD are represented by the Data
signature (line 2), and the processes, data stores, and external entities are repre-
sented as a Process with a relation, owns, to describe the set of data it produces
(line 3). A DFD (line 4) contains relations to represent the different components
of the quintuple, with the set of processes, the subset of internal processes, and
data (line 5); the dataflow connections are represented as a set of relations and Q̃
is modeled as a relation of the DFD (line 6). We impose additional constraints to
disallow unowned data (lines 8–9), unused processes (lines 10–12), unused data
(lines 13–14), or two identical DFDs of the same name (lines 15–17).

Listing 1: Abstract DFD and Constraints in AlloyMax

1 / / a ’ s ig ’ nature def ines a type of atom i n A l l oy
2 abstract sig Data { } / / datatype
3 abstract sig Process {owns : set Data } / / process

Resilience of Systems under Maximum Component Deviations 9

4 abstract sig DFD { / / DFD, w i th f i e l d / r e l a t i o n s : processes ,
5 C : set Process , K : set C, D : set Data , / / i n t e r n a l and datatypes .
6 Q : set C −> C −> D, QTilde : set C −> C −> D } / / da ta f low & TTC
7 / / ’ pred ’ i c a t e s a l low f o r boolean eva lua t ions o f given s igs
8 pred DataOwned [dfd : DFD] { / / a l l data i s owned
9 } / / a l l dat : Data | some proc : Process | dat i n proc . owns }

10 pred Connected [dfd : DFD] { / / processes have some connect ion
11 a l l c : dfd .C | some c2 : Process , d : Data |
12 (c −> c2 −> d in dfd .Q) or (c2 −> c −> d in dfd .Q) }
13 pred Inc ludedDatatypes [dfd : DFD] { / / dfd datatypes are used
14 a l l d : dfd .D | some c1 , c2 : Process | (c1 −> c2 −> d) in dfd .Q}
15 pred Unique [dfd : DFD] { / / each DFD i s unique
16 a l l other : DFD | (o ther .C = dfd .C
17 and other .D = dfd .D and other .Q = dfd .Q) implies (o ther=dfd) }
18 pred WellFormed [dfd : DFD] { / / we l l formed i s connected w/ uniqueness
19 DataOwned [dfd] and Connected [dfd] and / / and owned data
20 Inc ludedDatatypes [dfd] and Unique [dfd] }

Typed Transitive Closure Constraints To express the dataflow reachability,
we encode constraints for the Typed Transitive Closure (Definition 4). In List-
ing 2, we use relational transitive closure to define Q̃ as it is native to Alloy. On
lines 28–30, we use an Alloy function to compute and return the set of process
tuples (p1, p2) such that for a given data d, the tuple (p1, p2, d) is a dataflow in
the given DFD. This function is used on lines 25–27 to compute the reflexive
transitive closure for the given data and DFD. The Q̃ of a DFD is then defined
on lines 21–24 by stating that for any data d and processes p1 and p2, the tuple
(p1, p2, d) is in Q̃ iff (p1, p2) is in the reflexive transitive closure for d.

Listing 2: Constraints for Typed Transitive Closure of a DFD
21 / / QTi lde i s c o r r e c t l y format ted
22 pred QTi ldeVa l id [dfd : DFD] { / / a l l p1−>p2 i s i n typed
23 a l l p1 , p2 : DFD.C, d : DFD.D | / / t r a n s i t i v e c losure o f d
24 p1 −> p2 −> d in dfd . QTilde i f f p1 −> p2 in TTS [d , dfd] }
25 / / r e f l e x i v e t r a n s i t i v e set f o r the given datatype
26 fun TTS [dat : Data , dfd : DFD] : set (Process −> Process) { {
27 l e t qdat = QForDat [dat , dfd] { qdat . * qdat } } }
28 / / processes i n the data f low f o r the given datatype
29 fun QForDat [dat : Data , dfd : DFD] : set (Process −> Process) {
30 {p1 : Process , p2 : Process | (p1 −> p2 −> dat) in dfd .Q } }
31 / / a l l o y ’ f ac t ’ s hold t rue f o r every ins tance of an a l l o y model
32 fact WellFormedDFD { / / v a l i d a t e the QTilde
33 a l l a : DFD | WellFormed [a] and QTi ldeVa l id [a] }

Subdiagram Comparison In Listing 3, two diagrams are compared to check
whether the first is a subdiagram of the latter (Definition 7). On line 35, for
subdiagram A1 and diagram A2, we evaluate if CA1

⊆ CA2
, DA1

⊆ DA2
, and

QA1 ⊆ QA2 . To ensure that dataflow between processes in the subdiagram are
preserved, lines 36–38 check that for all pairs of processes (p, p′) in the subdia-
gram, if a dataflow (p, p′, d) is in QA2

, then (p, p′, d) is in QA1
as well. Line 39

constrains any external component in A2 to be an external component in A1

as well. Since data production is defined as a relation of processes via owns in
Listing 1, we do not constrain it here.

Listing 3: Predicate to Compare Subdiagram and Diagram
34 pred Subdfd [A1 , A2 : DFD] { / / A1 i s subdiagram of A2
35 A1 .C in A2 .C and A1 .D in A2 .D and A1 .Q in A2 .Q
36 a l l phi , ps i : Process , q : Data |

10 A. Hammer et al.

37 ((ph i −> ps i −> q in A2 .Q) and (ph i in A1 .C) and (ps i in A1 .C))
38 implies (ph i −> ps i −> q in A1 .Q)
39 a l l lambda : A1 .C | lambda in A2 .K implies lambda in A1 .K}

Dataflow Property Definition Dataflow properties (Definition 6) are first-
order logic sentences that utilize the predicate canReach. Since Alloy is based
in first-order logic, we define the canReach predicate in Listing 4 to be used for
property definitions (lines 40–41).

Listing 4: Predicate for Dataflow Properties
40 pred canReach [c1 , c2 : Process , d : Data , dfd : DFD] { / / canReach pred
41 (c1 −> c2 −> d) in dfd . QTilde or ((c1=c2) and d in c1 . owns) }

Property Core Computation To compute one property core of a DFD, in
Listing 5, we identify a singleton DFD Core via the keyword one (line 42). On
line 43, we use the minsome keyword to minimize the number of processes that
are in the core. The remainder of the constraints to compute a property core are
modeled with a concrete DFD model.

Listing 5: Constraints for Computation of Property Core
42 one sig Core extends DFD { } / / One s ig to descr ibe generated sub DFD
43 fact { minsome Core .C } / / minimize components o f Core

Concrete DFD Encoding Listings 1–5 provide the constraints for a generic
DFD where the processes, data, and dataflow connections are constrained, but
not defined. For a concrete DFD such as the MCS, the specific processes, data, and
dataflow connections must be modeled explicitly. We refer to Listing 6 for the
computation of property cores for a concrete DFD, utilizing MCSA as an example.

On line 1, the definitions from Listings 1–5 are included. Lines 2–3 are used
to define the Scan Database and Backup Database as a type of Database, and
constrain both to own no data (in Alloy, the second pair of braces that follow a
signature definition can be used to define signature constraints, which apply to
every element of that signature type). The other processes are modeled on lines
4–6. The data types in MCS are defined on line 7, and the DFD for MCSA is defined
on line 8; we ensure that the property core is a subdiagram of MCSA on line 9.
Since the only external process is the Portal, line 10 ensures that the internal
processes exclude only the Portal. The dataflow between processes is modeled
on lines 11–15 and the predicates from Example 3 are modeled on lines 16–19.

The constraints for the property cores are encoded on lines 20–21, and the
core(s) of the DFDs are computed by executing the run command for Run_OP
or Rub_DB. This execution uses the backend MaxSAT solver to compute a
satisfying instance of the encoded constraints; the result can then be viewed via
AlloyMax’s built-in visualizer and evaluator.

Listing 6: MCSA DFD in AlloyMax

1 open DFDs / / Inc lude DFD d e f i n i t i o n s
2 abstract sig Database extends Process { } / / abs t r ac t database
3 one sig Main , Backup extends Database { } {no owns } / / MCS databases
4 one sig MRI extends Process { } {owns = ScanData+Done} / / MRI process
5 one sig C o n t r o l l e r extends Process { } {no owns } / / C o n t r o l l e r process

Resilience of Systems under Maximum Component Deviations 11

6 one sig P o r t a l extends Process { } {owns= S t a r t } / / P o r t a l process
7 one sig Star t , Done , ScanData extends Data { } / / datatypes
8 one sig MCS_A extends DFD { } / / MCS A DFD d e f i n i t i o n
9 fact { Subdfd [Core , MCS_A] } / / core i s a subdfd o f the MCS

10 fact MCS_A_Internal { MCS_A.K = MCS_A.C − P o r t a l } / / i n t e r n a l
11 fact MCS_A_Dataflow { / / MCS Dataf low connect ions
12 MCS_A.Q = MRI −> C o n t r o l l e r −> Done + MRI −> Main −> ScanData +
13 MRI −> Backup −> ScanData + C o n t r o l l e r −> MRI −> Done +
14 Main −> C o n t r o l l e r −> ScanData + P o r t a l −> C o n t r o l l e r −> S t a r t +
15 C o n t r o l l e r −> P o r t a l −> {Done + ScanData } }
16 / / p roper ty op : data from MRI to p o r t a l
17 pred phi_op [dfd : DFD] { canReach [MRI , Por ta l , ScanData , dfd] }
18 pred phi_backup [dfd : DFD] { / / data reaches a database
19 some db : Database | canReach [MRI , db , ScanData , dfd] }
20 run Run_OP { phi_op [MCS_A] and phi_op [Core] } / / OP cores
21 run Run_DB { phi_backup [MCS_A] and phi_backup [Core] } / / db cores

5 Case Study Analysis

To investigate the utility of property cores in evaluation of resilience criteria, we
provide four case studies motivated by real-world systems, as well as the MCS
example. Each case study system is modeled as a concrete DFD in AlloyMax,
and analyzed with the integrated OpenWBO [11] SAT solver. The case studies
include an electric vehicle charging station [6], a smart hospital bed [18], a smart
factory [9], and a smart electric grid [7,20]; these were chosen by examining pub-
lications from the last decade that describe realistic software architectures. Each
software architecture is modeled with a Component and Connector (C&C) archi-
tecture view; this depicts the software processes, hardware components, external
interfaces, dataflow connections, and connector types of a software system [4].
Each system had informal resilience criteria described in their corresponding
publications that were formalized before modeling each system in AlloyMax.

5.1 Electric Vehicle Charging Stations

Electric vehicle charging stations (EVCS) use complex, interconnected systems
that require resilient design principles to ensure scalability, availability, and se-
curity. As electric vehicles continue to grow in popularity, ensuring the safety
of the physical infrastructure as well as the software ecosystem—payment pro-
cessing, energy management, power source integration—becomes paramount for
the EVCS infrastructure. Dini et. al. propose an architecture for the EVCS [6],
designed to provide charging capabilities at all times, and be resilient against
network connectivity issues. If a station is in a remote area, it can still charge
vehicles even when connection to processes in the cloud is precarious.

Dataflow Diagram As depicted in Figure 2, an EVCS is composed of a set of
global network processes, local processes, external components, and vehicle pro-
cesses. For brevity, we do not explicitly differentiate between processes and data-
stores as it has no impact on this model. The vehicle processes are the battery
management system (BMS), which regulates a vehicle’s battery, and the manager
of the EV Supply Equipment (EVSE), which receives charging instructions and
provides the charging station with vehicle information.

12 A. Hammer et al.

Energy
Exchange
Manager

BESS

Smart
Meter

Renewable
Energy

EVSE
Manager

Local
Forecast

Local User
Manager

Local
Manager

EV
Manager

BMS

eMSP

DSO

Global
Manager

Feature

Feature
Manager

User
Manager

Energy
Supplier

EVCS
Manager

Dev Ops

Global
Forecast

Allocate
Energy

Allocate
Energy

Allocate
Energy

Allocate
Energy

Energy
Forecast

Sync Energy

Charging
Instructions

Vehicle
Data

Manage
Energy

Sync
Users

Driver
Auth

User
Forecast

Sync Data

Set
Load,

Manage
Station

Set Load

Grid
Forecast

Credential

Tariff

Update

Update Stat

Set Config

Station Stat
Grid

Forecast

Set Load

Register

Retrieve

(De)Active

Stat

Call

Register Remove

Failure
Forecast

Price
Forecast

User
Forecast

c1

c1

c1

c1
c1

c2

c2

c3

c3

c3

Legend

Vehicle

Global Network

Local Station

External APIs

Fig. 2: Dataflow diagram for an Electric Vehicle Charging Station. There can
exist multiple local stations that connect to the global network, but only one is
shown here for brevity. Similarly, each local station can have multiple electric
vehicles, but only one is shown.

A station controls the energy flow to one or more vehicles and charges cus-
tomers for energy consumption. The energy exchange manager (EEM) receives
information about available energy from renewable energy, the smart meter
connected to an electric grid, and the Battery Energy Storage System (BESS).
The EEM additionally receives the energy forecast for the area, and syncs cur-
rent energy usage with the local manager to provide the EVSE with the allo-
cated energy. The EVSE receives authorization to charge a customer based on the
local user manager’s authentication after syncing user information with the
local manager. The local manager of the stations syncs data with the global
manager to provide updates required for operation.

The global network is responsible for tracking all local stations and man-
aging grid loads. The global forecast process provides future forecasts for
energy prices, grid failures, and user frequency. The feature manager registers
and removes features at the request of the global manager. The user manager
keeps track of the current and active users, and the energy supplier sets the
grid load for all local stations. The EVCS manager configures each local sta-
tion for locally stored users and protocols. External components include the
Distribution System Operator (DSO) for power management and eMobility
Service Provider (eMSP) for payment processing.
Resilience Evaluation A safety property that the EVCS must satisfy states that
a vehicle can charge without overloading the electric grid. This requires at least
one source of energy being provided to the EVSE manager and charging instruc-
tions being provided to the EV manager. Formally, we state φevcs ≡ gridIntact

∧canCharge where

gridIntact ≡ ∃s ∈ {DSO, Energy Supplier} |
canReach(s, Local Manager, Set Load)

Resilience of Systems under Maximum Component Deviations 13

canCharge ≡ ∃s ∈ {Renewable Energy, Smart Meter, BESS} |
canReach(s, EVSE Manager, Allocate Energy)

∧canReach(EVSE Manager, EV Manager,

Charging Instructions)

This architecture was designed to be resilient against loss of internet connection,
so a corresponding resilience criterion states that there exists at least one prop-
erty core that does not include any processes that require an internet connection
- i.e., the processes in the global network. ψevcs ≡ ∃b ∈ PCφevcs

evcs | ∀p ∈ Cb | p ̸∈
Global where Global returns the set of processes comprising the global network
of the EVCS (see Figure 2). Utilizing the AlloyMax solver, we identified six cores:

PC
φevcs

EVCS ≡ {X ∈ SDevcs | ∃a ∈ c2 | ∃b ∈ c3 | CX = c1 ∪ {a, b}}
c1 ≡ {Energy Exchange Manager, EV Manager, EVSE Manager,

Local Manager, Global Manager}
c2 ≡ {DSO, Energy Supplier}
c3 ≡ {Renewable Energy, Smart Meter, BESS}

Informally, every property core contains all processes in c1, as well as one process
within c2, and one process within c3. A visual depiction is shown in Figure 2.
If we consider the core with the DSO and the BESS, to satisfy canCharge, the
BESS sends energy allocation data to the EEM, which then sends it to the EVSE
Manager. To satisfy gridIntact, the DSO sends the load data to the global
manager, which then sends it to the local manager.

However, this set of property cores does not meet the resilience criterion, as
there are at least two global processes in each property core (the global manager
and either the DSO or the energy supplier): i.e., EVCS ̸|= ψevcs. Even though the
architecture was originally designed with the goal of achieving resilience against
network failures, we can see that it fails to be resilient against certain failures;
i.e., those that involve these global processes. Our analysis suggests that the
architecture can be further improved to meet the intended resilience criterion.

5.2 Case Studies Results

For brevity, we present the results of the remaining case studies at a high level3.
Table 1 provides the summary of all of the case study results. We note the
large disparity in computation time shown in Table 1, which is due to the large
differences in model sizes and complexity.

Smart Bed A smart bed is utilized in hospitals where monitors are attached
to a patient, and biomedical data is sent to interfaces for medical professionals
to monitor and analyze. The smart bed [18] connects electronic patches and
3 Artifacts are available at https://doi.org/10.5281/zenodo.17013599

https://doi.org/10.5281/zenodo.17013599

14 A. Hammer et al.

Time (minutes)
Case Study LoC #φ Cores #RC Sat Core comp RC comp Total
MCSA 80 2 1, 2 4 4 < 0.01 < 0.01 0.01
MCSB 70 2 1, 1 4 2 < 0.01 < 0.01 < 0.01
EVCS 212 1 6 1 0 188.87 4.52 193.39
Smart Bed 144 2 2, 3 2 2 82.41 45.78 128.19
Smart Factory 148 2 6, 6 2 2 11.17 2.97 14.14
Smart Grid 52 1 1 1 0 0.08 0.04 0.012

Table 1: Results of each case study, including the lines of AlloyMax code (LoC), no.
of dataflow properties (#φ), no. of cores for each property (cores), no. of resilience
criteria (#RC) and no. of criteria satisfied (SAT). The computation time (comp) of
the AlloyMax models for the cores and RC are shown in minutes.

oximeters to a patient and transmits data via Bluetooth and WiFi to a gateway,
where data is converted to an interoperability standard connection. The biodata
is then displayed on a GUI where a medical professional monitors the patient.

The smart bed requires that data be available to medical professionals, and
the data’s integrity be maintained [18].We derive two resilience criteria to ana-
lyze for the smart bed: (1) medical professionals are able to view data without
requiring internet access, and (2) biodata is saved to several databases even with-
out access to a GUI. After implementing the smart bed architecture in AlloyMax,
we find that both criteria are satisfied, and the smart bed architecture in [18] is
resilient w.r.t. data availability and integrity.

Smart Factory The Industry 4.0 effort seeks to modernize current factory
production to utilize cloud technologies, cyber-physical systems, and data ana-
lytic engines [9]. An architecture [9] for one of these modern facilities—a smart
factory—is designed to support decision making and execution when some pro-
cesses, particularly external processes, are offline. This architecture uses a cloud
controller to send commands to the cyber-physical system manager, which then
executes these decisions with the smart machines. Data from the factory floor
is then collected, sent to an analytic engine, and then uploaded to the cloud for
the managers of the factory to analyze and decide on new actions.

We modeled the architecture in AlloyMax, and encoded two criteria for analy-
sis: (1) actions are sent to the smart machines from the factory managers without
relying on external processes, and (2) data from the factory floor is sent to the
analytics engine for performance analysis without relying on external processes.
Both of these criteria are satisfied in the architecture, and the design is resilient
against failure of external processes.

Smart Grid Modern electric grids are highly interconnected systems that are
crucial to modern infrastructure; many current electric grids contain software
processes that control voltages and the flow of electricity to maintain safe de-
ployment. The National Institute of Standards and Technology (NIST) has com-

Resilience of Systems under Maximum Component Deviations 15

piled criteria [7] for modern smart grids for safe execution during cybersecurity
attacks and voltage surges.

We analyzed an architecture for a smart grid connected to a printer and en-
gineering workstation [20]. This architecture was designed to be resilient against
process unavailability and cybersecurity attacks. In a smart grid, this requires
end components (i.e., the printer and engineering workstation) to receive certain
data in order to regulate the electricity used and prevent a blackout or brownout
of the grid. A resilient smart grid requires at least two paths to deliver this data
to maintain grid integrity [7]. After analyzing the grid in AlloyMax, we found
that this is not the case; the electric grid architecture [20] is not resilient against
process unavailability.

5.3 Discussion of Case Study Results

For the case study systems, we defined DFDs from C&C architectures and spec-
ified the existing resilience criteria using property cores. We formally verified
that the Smart Bed and Smart Factory architectures (as modeled) are resilient,
and identified resiliency flaws in the EVCS and Smart Grid systems. These re-
sults demonstrate that property cores are a promising approach to formalizing
safety-critical resilience criteria and verifying the resiliency of a DFD, and sug-
gest that resilience evaluation via property cores may be feasible for practical
applications.

6 Related Work

The work by Becker and Voss has evaluated architecture models where communi-
cation is lost with processes and require alternate processes to deliver services [2].
This work allows for partial service fulfillment and degraded functionality in or-
der to satisfy a property, whereas our work requires complete service delivery
for a property to be satisfied in a subdiagram. Another prior work has used
dataflow properties to reconfigure architectures in order to ensure service deliv-
ery when components fail [19]. This work identifies all possible configurations of
an architecture where at least one dataflow path is present for service fulfillment,
whereas our work identifies all subsets of processes that ensure fulfillment in the
given configuration.

Tarrach et. al proposes an architecture-level method to identify when ser-
vice failure occurs when a given threat model is successful in an attack. Their
work encodes the dataflow of an architecture using Satisfiability Modulo The-
ory (SMT) formulas [22] and evaluates the repair of a dataflow connection after
corruption by an adversary. Our approach does not attempt to repair a dataflow
connection when an attack is successful, but rather evaluates if service deliv-
ery can still be satisfied without the connection to the corrupted process. The
work by Wagner evaluates the ability of architectures to cease communication
with processes at run-time that have been successfully attacked by an adversary,
while maintaining safety-critical services [25]. Our work instead identifies the
subsets of processes where dataflow cannot be disrupted in order to maintain
these services.

16 A. Hammer et al.

There are prior works that formally verify the resilience of a system using
Petri Nets [1,12], Behavior Interaction Priority systems [3], and Markov Decision
Processes [5]. These works assign each system component a probability of failure
and verify that the system satisfies a resilience requirement that states a thresh-
old for the total probability of service failure. Similarly, our work verifies the
resilience of a system, but identifies the minimal subsets of processes required to
ensure service instead of computing probability of service failure.

Prior works on trusted computing bases identify a minimal set of hardware
and software processes that ensure that a given adversary cannot access secure
data in a system [15,16,23]. These works identify a singular set of components
necessary for secure communication or service delivery, whereas our work iden-
tifies all minimal subsets of processes required for service delivery.

Previous efforts in architecture slicing [17,24,27] propose methods to identify
processes from each layer of an architecture to ensure delivery of services. A
layer of an architecture is a set of processes with related functionality, where
data is sent between layers. These approaches in architecture slicing assume
the transmission of data between layers, and select processes from each layer
to ensure services can be fulfilled; our approach explicitly defines the dataflow
connections to identify the processes required for property satisfaction. Topo-
logical proofs [13,14] identify the minimal core of a system that is required to
satisfy a property. These works evaluate stateful systems with properties reason-
ing over actions in a system, and identify a minimal core that implies a property
is satisfied, unsatisfied, or possibly satisfied. Our work evaluates systems with
properties that reason over the dataflow in a system, and does not reason about
possible satisfaction of a property.

To the best of our knowledge, this work is the first to formally model and
analyze a system to identify the processes needed for dataflow completion against
environmental and software deviations.

7 Conclusion
In this work, we have proposed property cores as a method for evaluating the
resilience of a system. The key idea is to identify minimal subdiagrams of a
DFD that satisfies a given dataflow property. Our work leverages a MaxSAT
solver to compute the minimal process set for property satisfaction, and we have
demonstrated how these property cores can be utilized to define and analyze
formal resilience criteria. Analyzing these criteria can identify weaknesses in the
system architecture and suggest ways to improve its resilience.

Future work includes modeling the propagation of process unavailability
throughout a DFD. The data output from a process may depend on the input
from another process for computation of data, and it is likely that unavailability
of one process may cause other, dependent processes to become unavailable as
well. Additional future work will examine automatic reconfiguration of systems
to prevent the propagation of failure and ensure service delivery in an event all
property cores contain an unavailable process. Lastly, the threat model in this
work can be extended to encompass a wider range of attacks and consequences,
besides the removal of data connections from an unavailable component.

Resilience of Systems under Maximum Component Deviations 17

References

1. Alzahrani, N.A.M., Petriu, D.C.: Modeling fault tolerance tactics with reusable
aspects. In: Proceedings of the 11th International ACM SIGSOFT Conference on
Quality of Software Architectures. p. 43–52. QoSA ’15, Association for Comput-
ing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2737182.
2737189

2. Becker, K., Voss, S.: A formal model and analysis of feature degradation in fault-
tolerant systems. In: Artho, C., Ölveczky, P.C. (eds.) Formal Techniques for Safety-
Critical Systems. pp. 139–154. Springer International Publishing, Cham (2016)

3. Ben Hafaiedh, I., Elaoud, A., Maddouri, A.: A formal model-based approach
to design failure-aware internet of things architectures. Journal of Reliable In-
telligent Environments 10(4), 413–430 (Dec 2024). https://doi.org/10.1007/
s40860-024-00225-z

4. Bertram, V., Maoz, S., Ringert, J.O., Rumpe, B., von Wenckstern, M.: Component
and connector views in practice: An experience report. In: 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and Systems
(MODELS). pp. 167–177 (2017). https://doi.org/10.1109/MODELS.2017.29

5. Chen, X., Zhou, G., Yang, Y., Huang, H.: A newly developed safety-critical com-
puter system for china metro. IEEE Transactions on Intelligent Transportation
Systems 14(2), 709–719 (2013). https://doi.org/10.1109/TITS.2012.2230258

6. Dini, V., Tamburri, D.A., Di Nitto, E.: "Electric Vehicle Fast-Charging Software:
Architectural Considerations Towards Trustworthiness". In: Galster, M., Scan-
durra, P., Mikkonen, T., Oliveira Antonino, P., Nakagawa, E.Y., Navarro, E. (eds.)
Software Architecture. pp. 288–304. Springer Nature Switzerland, Cham (2024)

7. Hastings, N., Marron, J., Bartock, M.: Cybersecurity for smart
grid systems (2023), https://www.nist.gov/programs-projects/
cybersecurity-smart-grid-systems

8. Jackson, D.: Software Abstractions: Logic, Language, & Analysis. MIT Press (2012)
9. Kavakli, E., Buenabad-Chavez, J., Tountopoulos, V., Loucopoulos, P., Sakellariou,

R.: Specification of a software architecture for an industry 4.0 environment. In:
2018 Sixth International Conference on Enterprise Systems (ES). pp. 36–43 (2018).
https://doi.org/10.1109/ES.2018.00013

10. Krentel, M.W.: The complexity of optimization problems. Journal of Computer
and System Sciences 36(3), 490–509 (1988). https://doi.org/https://doi.org/
10.1016/0022-0000(88)90039-6

11. Martins, R., Manquinho, V., Lynce, I.: Open-wbo: A modular maxsat solver,. In:
Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing – SAT
2014. pp. 438–445. Springer International Publishing, Cham (2014)

12. Marussy, K., Majzik, I.: Constructing dependability analysis models of recon-
figurable production systems. In: 2018 IEEE 14th International Conference on
Automation Science and Engineering (CASE). pp. 1158–1163 (2018). https:
//doi.org/10.1109/COASE.2018.8560551

13. Menghi, C., Rizzi, A.M., Bernasconi, A.: Integrating topological proofs with model
checking to instrument iterative design. In: Wehrheim, H., Cabot, J. (eds.) Fun-
damental Approaches to Software Engineering. pp. 53–74. Springer International
Publishing, Cham (2020)

14. Menghi, C., Rizzi, A.M., Bernasconi, A., Spoletini, P.: Torpedo: witnessing model
correctness with topological proofs. Formal Aspects of Computing 33(6), 1039–
1066 (Dec 2021). https://doi.org/10.1007/s00165-021-00564-1

https://doi.org/10.1145/2737182.2737189
https://doi.org/10.1145/2737182.2737189
https://doi.org/10.1145/2737182.2737189
https://doi.org/10.1145/2737182.2737189
https://doi.org/10.1007/s40860-024-00225-z
https://doi.org/10.1007/s40860-024-00225-z
https://doi.org/10.1007/s40860-024-00225-z
https://doi.org/10.1007/s40860-024-00225-z
https://doi.org/10.1109/MODELS.2017.29
https://doi.org/10.1109/MODELS.2017.29
https://doi.org/10.1109/TITS.2012.2230258
https://doi.org/10.1109/TITS.2012.2230258
https://www.nist.gov/programs-projects/cybersecurity-smart-grid-systems
https://www.nist.gov/programs-projects/cybersecurity-smart-grid-systems
https://doi.org/10.1109/ES.2018.00013
https://doi.org/10.1109/ES.2018.00013
https://doi.org/https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1109/COASE.2018.8560551
https://doi.org/10.1109/COASE.2018.8560551
https://doi.org/10.1109/COASE.2018.8560551
https://doi.org/10.1109/COASE.2018.8560551
https://doi.org/10.1007/s00165-021-00564-1
https://doi.org/10.1007/s00165-021-00564-1

18 A. Hammer et al.

15. Mishra, P., Yadav, S.K., Arora, S.: Tcb minimization towards secured and
lightweight iot end device architecture using virtualization at fog node. In: 2020
Sixth International Conference on Parallel, Distributed and Grid Computing
(PDGC). pp. 16–21 (2020). https://doi.org/10.1109/PDGC50313.2020.9315850

16. Mohanty, S., Ramkumar, M.: Securing file storage in an untrusted server - using
a minimal trusted computing base. In: CLOSER 2011 - Proceedings of the 1st
International Conference on Cloud Computing and Services Science. pp. 460–470.
Noordwijkerhout, Netherlands (01 2011)

17. Nouruzi, A., Mokari, N., Azmi, P., Jorswieck, E.A., Erol-Kantarci, M.: Ai-based e2e
resilient and proactive resource management in slice-enabled 6g networks. IEEE
Transactions on Network Science and Engineering 12(2), 1311–1328 (2025). https:
//doi.org/10.1109/TNSE.2025.3528190

18. Nunes, T., Gaspar, L., Faria, J.N., Portugal, D., Lopes, T., Fernandes, P.,
Tavakoli, M.: Deployment and validation of a smart bed architecture for un-
tethered patients with wireless biomonitoring stickers. Medical & Biological Engi-
neering & Computing 62(12), 3815–3840 (Dec 2024). https://doi.org/10.1007/
s11517-024-03155-3

19. Shelton, C., Koopman, P.: Using architectural properties to model and measure
graceful degradation. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Ar-
chitecting Dependable Systems. pp. 267–289. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

20. Stouffer, K., Pease, M., CheeYee, T., Zimmerman, T., Pillitteri, V., Lightman, S.,
Hahn, A., Saravia, S., Sherule, A., Thompson, M.: Guide to operational technology
(ot) security. Tech. Rep. NIST SP 800-82 Rev. 3, National Institue of Standards
and Technology, Gaithersburg, Maryland, USA (Sep 2023)

21. Tao, Y., Kung, C.: Formal definition and verification of data flow diagrams. Journal
of Systems and Software 16(1), 29–36 (1991). https://doi.org/https://doi.
org/10.1016/0164-1212(91)90029-6

22. Tarrach, T., Ebrahimi, M., König, S., Schmittner, C., Bloem, R., Nickovic, D.:
Threat repair with optimization modulo theories (2022), https://arxiv.org/abs/
2210.03207

23. Thotakura, V., Ramkumar, M.: Minimal trusted computing base for manet nodes.
In: 2010 IEEE 6th International Conference on Wireless and Mobile Computing,
Networking and Communications. pp. 91–99 (2010). https://doi.org/10.1109/
WIMOB.2010.5644867

24. Vatten, T.: Investigating 5g network slicing resilience through survivability mod-
eling. In: 2023 IEEE 9th International Conference on Network Softwarization
(NetSoft). pp. 370–373 (2023). https://doi.org/10.1109/NetSoft57336.2023.
10175399

25. Wagner, R.R.: Architecture-Based Graceful Degradation for Cybersecurity. Ph.D.
thesis, Carnegie Mellon University, Pittsburgh, PA, USA (May 2025)

26. Zhang, C., Wagner, R., Orvalho, P., Garlan, D., Manquinho, V., Martins, R.,
Kang, E.: Alloymax: bringing maximum satisfaction to relational specifications.
In: Proceedings of the 29th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. p.
155–167. ESEC/FSE 2021, Association for Computing Machinery, New York, NY,
USA (2021), https://doi.org/10.1145/3468264.3468587

27. Zhong, K., Yang, Z., Yu, S., Li, K.: Deep reinforcement learning-based multi-layer
cascaded resilient recovery for cyber-physical systems. IEEE Transactions on Ser-
vices Computing 17(6), 3330–3344 (2024). https://doi.org/10.1109/TSC.2024.
3478729

https://doi.org/10.1109/PDGC50313.2020.9315850
https://doi.org/10.1109/PDGC50313.2020.9315850
https://doi.org/10.1109/TNSE.2025.3528190
https://doi.org/10.1109/TNSE.2025.3528190
https://doi.org/10.1109/TNSE.2025.3528190
https://doi.org/10.1109/TNSE.2025.3528190
https://doi.org/10.1007/s11517-024-03155-3
https://doi.org/10.1007/s11517-024-03155-3
https://doi.org/10.1007/s11517-024-03155-3
https://doi.org/10.1007/s11517-024-03155-3
https://doi.org/https://doi.org/10.1016/0164-1212(91)90029-6
https://doi.org/https://doi.org/10.1016/0164-1212(91)90029-6
https://doi.org/https://doi.org/10.1016/0164-1212(91)90029-6
https://doi.org/https://doi.org/10.1016/0164-1212(91)90029-6
https://arxiv.org/abs/2210.03207
https://arxiv.org/abs/2210.03207
https://doi.org/10.1109/WIMOB.2010.5644867
https://doi.org/10.1109/WIMOB.2010.5644867
https://doi.org/10.1109/WIMOB.2010.5644867
https://doi.org/10.1109/WIMOB.2010.5644867
https://doi.org/10.1109/NetSoft57336.2023.10175399
https://doi.org/10.1109/NetSoft57336.2023.10175399
https://doi.org/10.1109/NetSoft57336.2023.10175399
https://doi.org/10.1109/NetSoft57336.2023.10175399
https://doi.org/10.1145/3468264.3468587
https://doi.org/10.1109/TSC.2024.3478729
https://doi.org/10.1109/TSC.2024.3478729
https://doi.org/10.1109/TSC.2024.3478729
https://doi.org/10.1109/TSC.2024.3478729

	Resilience of Systems under Maximum Component Deviations

