
Counterexample Classification

Cole Vick1, Eunsuk Kang2(B), and Stavros Tripakis1(B)

1 Northeastern University, Boston, USA
{vick.c,stavros}@northeastern.edu

2 Carnegie Mellon University, Pittsburgh, USA
eskang@cmu.edu

Abstract. In model checking, when a given model fails to satisfy the
desired specification, a typical model checker provides a counterexample
that illustrates how the violation occurs. In general, there exist many
diverse counterexamples that exhibit distinct violating behaviors, which
the user may wish to examine before deciding how to repair the model.
Unfortunately, obtaining this information is challenging in existing model
checkers since (1) the number of counterexamples may be too large to
enumerate one by one, and (2) many of these counterexamples are redun-
dant, in that they describe the same type of violating behavior. In this
paper, we propose a technique called counterexample classification. The
goal of classification is to partition the space of all counterexamples into
a finite set of counterexample classes, each of which describes a dis-
tinct type of violating behavior for the given specification. These classes
are then presented as a summary of possible violating behaviors in the
system, freeing the user from manually having to inspect or analyze
numerous counterexamples to extract the same information. We have
implemented a prototype of our technique on top of an existing formal
modeling and verification tool, the Alloy Analyzer, and evaluated the
effectiveness of the technique on case studies involving the well-known
Needham-Schroeder protocol with promising results.

1 Introduction

In formal verification, counterexamples are an invaluable aid for debugging a
system model for possible defects. Typically, a counterexample is constructed by
a verification tool as a trace (i.e., a sequence of states or events) that demon-
strates how the system violates a desired property. The user of the tool would
then inspect the counterexample for the underlying cause behind the violation
and fix the model accordingly.

In practice, there are a number of challenges that the user may encounter
while using counterexamples to debug and repair a model. First, a counterex-
ample may contain details that are irrelevant to the root cause of a violation,
requiring considerable effort by the user to manually analyze and extract the
violating behavior. Second, the user may wish to investigate multiple different

This work has been supported by the National Science Foundation under NSF SaTC
award CNS-1801546.

c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 312–331, 2021.
https://doi.org/10.1007/978-3-030-92124-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-92124-8_18

Counterexample Classification 313

types of counterexamples before deciding how to repair the model; this is, how-
ever, a challenging task because (1) the number of counterexamples may be too
large to enumerate one by one, and (2) many of these counterexamples may be
redundant in that they describe the same type of violating behavior.

This paper proposes a technique called counterexample classification as an
approach to overcome these challenges. The key intuition behind this approach
is that although a typical model contains a very large (or possibly infinite) set
of counterexamples, (1) many of these can be considered “similar”, in that they
share a common, violating behavior and (2) this similarity can be captured as
a specific relationship between states that is shared by these traces. Based on
this insight, our technique automatically partitions the set of counterexamples
into a finite number of classes, each of which is associated with a constraint
that characterizes one particular type of violation. These constraints are then
presented to the user, along with representative counterexamples, as distinct
descriptions of possible defects in the system, freeing them from manually sorting
through numerous counterexamples to extract the same information.

We have built a prototype implementation of our classification technique on
top of an existing formal modeling and verification tool, the Alloy Analyzer [8].
Our tool accepts a formal model, a specification (that the model currently vio-
lates), and a set of predicates that describe relationships between states in the
model. From these, the tool produces (if one exists) a set of classes that accounts
for all of the violating behavior in the model. As a case study, we have successfully
applied our technique to two variants of the Needham-Schroeder protocol [12],
and were able to classify hundreds of thousands of counterexamples into only a
handful of classes that represent known attacks to the protocol.

Our main contributions may be summarized as follows: a formal defi-
nition of the Counterexample Classification Problem (Sect. 3), a solution to
the Counterexample Classification Problem (Sect. 4), and a case study on a
well-established distributed protocol, Needham-Schroeder (Sect. 5), that demon-
strates the efficacy of our solution.

1.1 Running Example

To motivate our technique, we introduce the following example. Alice and Bob
are sending Messages to each other. Eve is able to view these messages as they are
being sent. The content of a message can be either Plaintext or Encrypted.
Eve is always able to read Plaintext messages, but needs KeyAB, Alice and
Bob’s shared key, to read Encrypted messages. Eve acquires KeyAB by seeing an
Encrypted message, modelling Eve “breaking” the encryption of what should be
a one-time key. A Message may be flagged as Secret, meaning that its content
should not be read by Eve.

We model this example as a transition system, shown in Fig. 1. The transi-
tion system has four states, represented by two state variables, EveKey of type
Key = {∅, KeyAB}, and EveSeenSecret of type Boolean (� for true and ⊥ for
false). The initial state is (∅,⊥) meaning that Eve does not know the key and
has not read any secret.

314 C. Vick et al.

Fig. 1. Transition system of the running example.

Transitions between states are labeled by Messages. A Message is a tuple of
the form (type, sender, secret), where type ∈ {Encrypted, Plaintext} denotes
whether the message is encrypted or not (if encrypted, a message is encrypted
by KeyAB), sender ∈ {Alice, Bob} denotes the sender of the message, and secret
is a Boolean denoting whether the message is secret or not. For example, the

transition (∅,⊥)
(Plaintext,Alice,�)−→ (∅,�) means that Alice sends a Plaintext

(unencrypted) Secret message.1 * indicates that the corresponding field can
take any value within its type, i.e., there are multiple such transitions, one for
each possible value.

We would like this system to satisfy the property that Eve never reads a
Message that is flagged as Secret. This can be expressed as the temporal logic
(LTL) formula

Φ = G(EveSeenSecret = ⊥)

which states that EveSeenSecret = ⊥ holds at every reachable state of the
system, i.e., it is an invariant. As we can see, this is not the case for the model
in Fig. 1. The top two double bordered states are the good states.

Note that this system has infinitely many counterexample traces, as self-loop
transitions can be taken arbitrarily many times.

Take for instance the counterexample traces listed below:

ρ11 = (∅,⊥)
(Plaintext,Alice,�)−→ (∅,�)

ρ21 = (∅,⊥)
(Plaintext,Alice,⊥)−→ (∅,⊥)

(Plaintext,Alice,�)−→ (∅,�)

ρ31 = (∅,⊥)
(Plaintext,Bob,⊥)−→ (∅,⊥)

(Plaintext,Bob,�)−→ (∅,�)

ρ41 = (∅,⊥)
(Plaintext,Alice,⊥)−→ (∅,⊥)

(Plaintext,Bob,�)−→ (∅,�)
1 The traces in this section have labels, i.e. Messages, on their transitions. We do this

to make it clear how messages are sent and how different messages affect the state.
Our formal definition will not include labels as they may be encoded directly into
the state.

Counterexample Classification 315

In ρ11, Alice sends a Plaintext Secret message. Eve is be able to read it, as
it is unencrypted, which leads to a violation of the property. In ρ21, Alice first
sends a Plaintext but non-secret message and then sends a Plaintext Secret
message. In ρ31, Bob first sends a Plaintext but non-secret message and then
he sends a Plaintext Secret message. In ρ41, Alice sends a Plaintext but
non-secret message and then Bob sends a Plaintext Secret message.

These violating traces share important behavior: the fact that either Alice
or Bob sends a Plaintext Secret message. Noticing this, we would like to group
these traces together in the same counterexample class.

Now consider the counterexample traces listed below:

ρ12 = (∅, ⊥)
(Encrypted,Alice,⊥)−→ (KeyAB, ⊥)

(Encrypted,Bob,�)−→ (KeyAB, �)

ρ22 = (∅, ⊥)
(Encrypted,Bob,⊥)−→ (KeyAB, ⊥)

(Encrypted,Alice,�)−→ (KeyAB, �)

ρ32 = (∅, ⊥)
(Encrypted,Alice,�)−→ (KeyAB, ⊥)

(Encrypted,Alice,�)−→ (KeyAB, �)

ρ42 = (∅, ⊥)
(Encrypted,Bob,�)−→ (KeyAB, ⊥)

(Encrypted,Alice,�)−→ (KeyAB, �)

These traces exhibit a different way in which the property can be violated
than the traces shown previously. Now, the violation happens when Alice or
Bob send an Encrypted Secret message after an Encrypted message has already
been sent, i.e. after Eve has broken the encryption. A description of this new class
would be: Eve receives an Encrypted message before receiving an Encrypted
Secret message.

The method and tool presented in this paper generate such counterexample
classes automatically. Our tool does not output class descriptions in English
but represents classes syntactically as trace constraints. A trace constraint is
evaluated over a given trace ρ. If ρ satisfies the trace constraint then we say that
ρ falls into the class that the trace constraint represents. The trace constraints
that represent the two classes discussed above are:

TCPlaintext[ρ] ≡ ∃i ∈ [0..len(ρ)] : ρ.type@i = Plaintext ∧ ρ.secret@i = �
TCEncrypted[ρ] ≡ ∃i, j ∈ [0..len(ρ)] : i < j ∧ ρ.EveKey@i = KeyAB ∧

ρ.type@j = Encrypted ∧ ρ.secret@j = �
where len(ρ) denotes the length of trace ρ and the variables i and j represent
indices to particular positions of states and transitions in ρ. The initial state is
indexed at position s0 and the first transition is indexed at position l0 and leads
to state s1 thus following the general pattern: s0

l0−→ s1
l1−→ s2 · · · .

2 Background

Definition 1 (Symbolic transition system). A symbolic transition system
is a tuple (X, I, T) where:

– X is a finite set of typed state variables. Each variable x ∈ X has a type,
denoted type(x). A type is a set of values.

316 C. Vick et al.

– The initial state predicate I is a predicate (i.e., Boolean expression) over X.
– The transition relation predicate T is a predicate over X ∪ X ′, where X ′

denotes the set of primed (next state) variables obtained from X. For example,
if X = {x, y, z} then X ′ = {x′, y′, z′}. Implicitly, every primed variable has
the same type as the original variable: ∀x ∈ X : type(x′) = type(x).

We let U denote the universe of all values. A state s over a set of state
variables X is an assignment of a value (of the appropriate type) to each variable
in X, i.e., s is a (total) function s : X → U , such that ∀x ∈ X : s(x) ∈ type(x).
A state s satisfies a predicate I over X, denoted s |= I, if when we replace all
variables in I by their values as defined by s, I evaluates to true. For example,
suppose X = {x, y, z} where x and y are integer variables, and z is a Boolean
variable. Let I be the predicate x < y ∧ z. Consider two states, s1 = (x = 3, y =
4, z = �) and s2 = (x = 3, y = 1, z = �). Then, s1 |= I but s2 �|= I.

Similarly, a pair of states (s, s′) satisfies a predicate T over X ∪ X ′ if when
we replace all variables from X in T by their values as defined by s, and all
variables from X ′ in T by their values as defined by s′, T evaluates to true. For
example, suppose X = {x} where x is an integer variable. Let T be the predicate
x′ = x + 1. Consider three states, s0 = (x = 0), s1 = (x = 1), and s2 = (x = 2).
Then (s0, s1) |= T and (s1, s2) |= T , but (s0, s2) �|= T .

Definition 2 (Transition system defined from a symbolic transition
system). A symbolic transition system (X, I, T) defines a transition system
(S, S0, R), where:

– The set of states S is the set of all assignments over X.
– The set of initial states S0 is the set: S0 = {s ∈ S | s |= I}.
– The transition relation R is the set: R = {(s, s′) ∈ S × S | (s, s′) |= T}.

That is, the set of initial states is the set of all states satisfying I, and the
transition relation R is the set of all pairs of states satisfying T . A pair (s, s′) ∈ R
is also called a transition, and is sometimes denoted s → s′.

Definition 3 (Trace). A trace ρ over a set of state variables X is a finite
sequence of states over X: ρ = s0, ..., sk. The length of ρ is k, and is denoted
by len(ρ); note that k may equal 0, in which case the trace is empty. The set of
states of ρ is {s0, ..., sk} and is denoted States(ρ).

Definition 4 (Property). A property Φ over a set of state variables X is a
set of traces over X.

Definition 5 (Traces for an STS). Let STS = (X, I, T) be a symbolic transi-
tion system and let (S, S0, R) be the transition system of STS. The set of traces
generated by STS, denoted Traces(STS), is the set of all traces ρ = s0, s1, ..., sk
over X such that:

– s0 ∈ S0. That is, ρ starts at an initial state of STS.
– ∀i ∈ {0, ..., k − 1} : (si, si+1) ∈ R. That is, every pair of successive states in

ρ is linked by a transition in STS.

Counterexample Classification 317

Definition 6 (Property satisfaction and counterexamples). Let STS =
(X, I, T) be a symbolic transition system and let Φ be a property over X. We say
that STS satisfies Φ, written STS |= Φ, iff Traces(STS) ⊆ Φ. If STS �|= Φ, then
a counterexample is any trace ρ ∈ Traces(STS) \Φ, i.e., any trace of STS which
violates (does not belong in) Φ.

3 Counterexample Classification

3.1 Classes and Classifications

Consider a set of traces P . A class of P is any non-empty subset of P . A
classification of P is a partition of P into (not necessarily disjoint) classes.

Definition 7 (Classification). Consider a set of traces P . A classification of
P is a finite set C of classes of P such that

⋃
c∈C c = P .

Given a set of counterexample traces P , and a classification C of P , a canon-
ical counterexample is a counterexample trace that belongs in exactly one class
of C. A canonical counterexample thus represents the violating behavior of a
particular class as it only appears in that particular class.

Definition 8 (Canonical Counterexample). Given a set of counterexam-
ples traces P and a classification C of P , a canonical counterexample ρ is any
counterexample in P such that: ∀c1, c2 ∈ C : (ρ ∈ c1 ∧ ρ ∈ c2) → c1 = c2. We
denote by c(ρ) the unique class in C that ρ belongs to.

A classification is redundant if it contains classes that have no canonical
counterexample:

Definition 9 (Redundant Classification). A classification C of a set of
counterexamples P is redundant if there exists a class c ∈ C such that c does
not contain a canonical counterexample.

Example 1. Suppose P = {ρ1, ρ2, ρ3, ρ4, ρ5} and C = {c1, c2, c3} with c1 =
{ρ1, ρ2, ρ3}, c2 = {ρ3, ρ4, ρ5}, c3 = {ρ1, ρ4}. Note that C is a valid classification
of P as c1 ∪ c2 ∪ c3 = P . C is a redundant classification, because although c1 has
a canonical counterexample ρ2, and c2 has canonical counterexample ρ4, c3 has
no canonical counterexample.

Often, we would like for a classification to guarantee that each class has a
canonical counterexample, i.e., to be non-redundant. In general, we can transform
every redundant classification into a non-redundant classification. First, we state
the following two lemmas2:

Lemma 1. A classification C of a set of counterexamples P is redundant iff
there exist distinct classes c, c1, ..., cn ∈ C such that c ⊆ ⋃

i=1,...,n ci.

2 Proofs for the following Lemmas and Theorems have been removed due to page
restrictions. The full paper, with proofs, is available here https://arxiv.org/abs/
2108.00885.

https://arxiv.org/abs/2108.00885
https://arxiv.org/abs/2108.00885

318 C. Vick et al.

Lemma 2. Let C = {c1, ..., cn} be a classification of a set of counterexamples
P . C is redundant iff there exists i ∈ {1, ..., n} such that ci ⊆ ⋃

j �=i cj.

Based on Lemma 2, we can construct an algorithm to transform any classi-
fication into a non-redundant classification.

3.2 The Counterexample Classification Problem

In Sect. 3.1, we defined the concepts of classes and classifications semantically.
But in order to define the counterexample classification problem that we solve
in this paper, we need a syntactic representation of classes. We define such a
representation in this section, by means of trace constraints. A trace constraint
is a special kind of predicate that evaluates over traces. A trace constraint is
similar to predicates such as the I (initial state) predicate of a symbolic transition
system, with two key differences: (1) a trace constraint is only conjunctive, and
(2) a trace constraint can refer to state variables at certain positions in the trace
and impose logical conditions over those positions. For example, if X = {x, y}
is the set of state variables, then here are some examples of trace constraints:

– TC1[ρ] ≡ ∃i ∈ [0..len(ρ)] : x@i = y@i: this trace constraint says that there is
a position i in the trace such that the value of x at that position is the same
as the value of y.

– TC2[ρ] ≡ ∃i, j ∈ [0..len(ρ)] : i < j ∧ x@i > x@j: this says that there are two
positions i and j in the trace such that i is earlier than j and the value of x
decreases from i to j.

We call formulas such as x@i = y@i or x@i > x@j, which operate on indexed
state variables, atomic facts. We call formulas such as i < j, which operate on
position variables, atomic position facts. Then, a trace constraint is a conjunction
of atomic facts and atomic position facts, together with an existential quantifi-
cation of all position variables within the range of the length of the trace.

Atomic facts and atomic position facts are defined over a set of user-defined
predicates. Some predicates will be standard, such as equality (=) for integers
and less-than (<) for positions, while other predicates may be domain-specific.
In addition to variables, we allow predicates to refer to constants. For example,
i ≤ 10 says that the position i must be at most 10, and x@2 = 13 says that the
value of x at position 2 must be 13.

For example, recall the Message type from the running example. The user
might want to define a predicate that checks whether two messages have the
same sender. Then, the user can define the predicate SendersEqual which is
parameterized over two variables of type Message and defined as:

SendersEqual[m1,m2] ≡ m1.sender = m2.sender

This predicate may be then instantiated as:

SendersEqual[message@1,message@5]

This checks whether the Message at position 1 has the same sender as the
Message at position 5.

Counterexample Classification 319

Definition 10 (Trace Constraint). A trace constraint over a set of state
variables X and a set V of user-defined predicates is a formula of the form

TC[ρ] ≡ ∃i1, ..., ik ∈ [0..len(ρ)] : ξ0 ∧ ξ1 ∧ · · · ∧ ξn

where:

– i1, ..., ik are non-negative integer variables denoting positions in the trace t.
We allow k to be 0, in which case the trace constraint has no position vari-
ables.

– Each ξj, for j = 0, ..., n, is either an atomic fact over state variables X and
position variables i1, ..., ik or an atomic position fact over position variables
i1, ..., ik using predicates in V .

Given a trace constraint w, and a trace ρ, we can evaluate w on ρ in the
expected way. For example, the trace (x = 0) −→ (x = 0) over state variable x,
satisfies the trace constraint TC1[ρ] ≡ ∃i0, i1 ∈ [0..len(ρ)] : i0 < i1 ∧ x@0 = x@1
but does not satisfy the trace constraint TC2[ρ] ≡ ∃i0, i1 ∈ [0..len(ρ)] : i0 <
i1 ∧ x@0 > x@1. We write ρ |= w if trace ρ satisfies trace constraint w. We also
say that w characterizes ρ when ρ |= w. We denote by c(w) the set of all traces
satisfying constraint w.

Let W be a set of trace constraints. Then, let C(W) = {c(w) | w ∈ W};
i.e., C(W) is the set of all sets of traces that are characterized by some trace
constraint in W .

Consider a symbolic transition system STS and a property Φ that is violated
by STS, i.e., STS �|= Φ. The problem that we are concerned with in this paper
is to find a classification of all traces of STS that violate Φ, such that this
classification is represented by a set of trace constraints defined over V . We call
this problem the counterexample classification problem (CCP):

Definition 11 (Counterexample Classification Problem). Given sym-
bolic transition system STS = (X, I, T), property Φ such that STS �|= Φ, and
user-defined predicates V , find, if there exists, a set of trace constraints W such
that: (1) each w ∈ W is a trace constraint over X and V ; and (2) C(W) is a
classification of P , where P is the set of all traces of STS that violate Φ.

Lemma 3. Let W be a solution to the CCP. Then, every trace constraint w ∈ W
is a sufficient condition for a violation, i.e., ∀w ∈ W : c(w) ∩ Φ = ∅.

3.3 Solvability

The CCP is formulated as to find a set of trace constraints W if one exists (Def-
inition 11). Indeed, while a semantic classification always exists (e.g., a trivial
one is the one containing just one class, the set of all counterexamples P), a
syntactic classification in the form of W might not always exist. Whether or not
one exists depends on the set of user-defined predicates V .

Lemma 4. If the set of counterexample traces P is finite, and V includes equal-
ity =, then CCP always has a solution.

320 C. Vick et al.

Lemma 4 shows that in the presence of equality =, and provided that the set
of counterexamples is finite, CCP always has a solution. But in the absence of
=, CCP may not have a solution.

For example, consider an STS with X = {a} where a is an integer variable
that can be non-deterministically incremented by 1, decremented by 1, or held
constant at each step. Let the initial state be a = 1. Let the property Φ be
G(a = 1), i.e., we require that a is always 1, which is clearly violated by this
system.

Suppose that V only contains the predicate lessThanOne[x], which returns
true if and only if the given integer x is strictly less than 1. Then, we claim that
CCP has no solution. Indeed, note that the set of counterexample traces includes
all traces where at some point either a < 1 or a > 1. But the given V is unable
to generate an atomic fact where a is greater than 1 (notice that negation is not
allowed in trace constraints). Therefore we cannot classify all counterexample
traces, and in particular not those where a > 1.

Now suppose that we change V to {lessThanOne, greaterThanOne}, with
the obvious meanings. Then the following two trace constraints constitute a
solution to CCP:

TC1[ρ] ≡ ∃i ∈ [0..len(ρ)] : lessThanOne[x@i]
TC2[ρ] ≡ ∃i ∈ [0..len(ρ)] : greaterThanOne[x@i]

3.4 Uniqueness of Solutions

The discussion in Sect. 3.3 shows that CCP may or may not have a solution,
depending on the set V of predicates allowed in the trace constraints. In this
section we show that even for a fixed V , CCP does not necessarily have a unique
solution.

Consider the example given just above, in Subsect. 3.3. If we set V to
{lessThanOne, greaterThanOne, �=}, where �= is the not-equals predicate, the
problem now admits at least two solutions. W1 is still a solution, while the sec-
ond solution W2 = {TC3} uses only the �= predicate to characterize the violating
behavior. The trace constraint TC3 is defined as:

TC3[ρ] ≡ ∃i ∈ [0..len(ρ)] : x@i �= 1

4 Classification Method

In this section, we present a method for solving the CCP introduced in Sect. 3.2.
We present an overview of our proposed classification algorithm (Sect. 4.1),
describe optimizations to ensure the generation of a non-redundant classification
with minimal classes (Sect. 4.2), and finally present a solution to the Running
example (Sect. 4.3).

Counterexample Classification 321

Input : An STS, a specification Φ, and a set of predicates V
Output: A set of trace constraints W

1 Func classify(STS, Φ, V):
2 W = ∅
3 while verify(STS ∧ block(W), Φ) == Violated do
4 ρ = counterexample(STS ∧ block(W), Φ)
5 Γ = facts(ρ, V)
6 if Γ = ∅ then
7 return “V cannot sufficiently characterize the violation in ρ”
8 w = traceConstraint(Γ, ρ)
9 if verify(STS ∧ w, ¬Φ) == Violated then

10 return “V cannot sufficiently characterize the violation in ρ”
11 w = minimizeTC(STS, w, Φ)
12 W = W ∪ w

13 W = removeRedundant(STS, W, Φ)
14 return W

Algorithm 1: The counterexample classification algorithm.

4.1 Algorithm Overview

Given an STS, a property Φ, and a set of user-defined predicates V , the goal is
to find a set of trace constraints W such that C(W) is a solution to the CCP
(Definition 11 in Sect. 3.2). We assume, without loss of generality, that V is non-
empty. Indeed, an empty V implies that the only possible trace constraint is the
empty trace constraint, which characterizes the set of all traces. This situation
can be modelled by adding to V a trivial predicate that always returns � (true),
thus having a non-empty V . To guarantee termination, we assume that the set
of counterexamples P = Traces(STS) \ Φ is finite. To avoid the trivial solution
where all traces are violating, we also assume that Traces(STS) ∩ Φ �= ∅.

The pseudocode for the classification algorithm is shown in Algorithm 1.
Procedure classify relies on the existence of a verifier that is capable of checking
STS against Φ and generating a counterexample trace, if it exists. In particular,
classify uses the following verifier functions:

– verify(STS ∧ ϕ,Φ): Returns OK if STS satisfies Φ under the additional con-
straint ϕ, i.e., if Traces(STS∧ϕ) ⊆ Φ; else, returns Violated. The constraint ϕ
is typically a trace constraint. We provide examples of ϕ later in this section.

– counterexample(STS∧ϕ,Φ): If verify(STS∧ϕ,Φ) == Violated, returns a trace
ρ of STS such that ρ |= ϕ and ρ �|= Φ; else, returns an empty output.

The algorithm begins by checking whether STS violates Φ (line 3) and if so,
returning a counterexample that demonstrates how a violation can occur (line 4).
The additional argument to the verifier, block(W), is used to prevent the verifier
from re-generating a counterexample that belongs to any previously generated
classes; we will describe this in more detail later in this section.

Next, given a particular counterexample ρ, the helper function facts generates
the set Γ of all atomic facts and atomic position facts that hold over ρ, by
instantiating the predicates V over the states in ρ (line 5). Then, based on Γ ,

322 C. Vick et al.

traceConstraint builds a trace constraint that characterizes ρ. In particular, this
procedure transforms Γ into a syntactically valid trace constraint w, by (1)
introducing a sequence of existential quantifiers over all positional variables in
ρ and (2) taking the conjunction of all facts in Γ (line 8).

In the next step, the verifier is used once again to ensure that the trace
constraint w sufficiently captures the violating behavior in ρ (line 9). This is
done by checking that every trace of STS that satisfies w (i.e., it shares the same
characteristics of ρ as described by Γ) results in a violation of Φ. If not, it implies
that w is not strong enough to guarantee a violation; i.e., V does not contain
enough predicates to fully characterize ρ. In this case, a solution to the CCP
cannot be produced and the algorithm terminates with an error (line 10).

If w guarantees a violation, it is added to the set of classes that will eventually
form a solution classification to the CCP (line 12). The process from lines 4 to
12 is then repeated until it exhausts the set of all counterexample classes for
STS and Φ.

To prevent the verifier from returning the same type of counterexample as ρ,
classify passes block(W) as an additional constraint to verify, where:

block(W) ≡ ¬(
|W |∨

i=1

wi)

In other words, by including block(W) as an additional constraint, the verifier
ensures that it only explores traces that do not belong to any of the classes in W .
Note that if W is empty (as in the first iteration of the loop), block(W) returns
true (i.e., �).

Once the verifier is no longer able to find any counterexample, the algorithm
terminates by returning W as the solution classification (line 14).

Provided there is a finite number of counterexamples and a non-empty set of
accepting traces, Algorithm 1 terminates because at least one counterexample
is classified at each iteration of the while loop. The following theorems establish
the correctness of the algorithm.

Theorem 1. Any W returned by classify is a valid solution to the CCP.

Theorem 2. If classify returns no solution (lines 7 or 10 of Algorithm 1), then
CCP has no solution for the given V .

Example 2. Recall the example from Sect. 3.3. To make P finite, we assume
that the length of counterexample traces is exactly 2. Then, P = {(a = 1) −−−→
(a = 0), (a = 1) ++−→ (a = 2)}. Let the set of user-defined predicates be V =
{lessThanOne, greaterThanOne}.

Suppose that the verifier returns ρ = (a = 1) −−−→ (a = 0) as the first
counterexample (line 4). Next, facts evaluates the predicates in V over the state
variable a at position 0 and 1 (line 5), producing Γ that contains one fact:
{lessThanOne[a@1]}. Then, the trace constraint w constructed based on Γ is:

TC1[ρ] ≡ ∃i1 ∈ [0..len(ρ)] : lessThanOne[a@i1]

Counterexample Classification 323

It can be shown that any trace of STS that satisfies TC1 is a violation of Φ; thus,
this newly created constraint w ≡ TC1 is added to the set W.

In our example, there is one more counterexample; namely, ρ = (a = 1) ++−→
(a = 2), which can be used to construct the following additional trace constraint:

TC2[ρ] = ∃i1 ∈ [0..len(ρ)] : greaterThanOne[a@i1]

Once TC2 is added to W , there are no more remaining counterexamples, and
the algorithm terminates by returning W = {TC1, TC2}.

4.2 Optimizations

Minimizing Trace Constraints. A trace constraint w generated on line 6 in
Algorithm 1 may be a sufficient characterization of ρ, but it may also contain
facts that are irrelevant to the violation. To be more precise, we consider a fact
f ∈ Γ to be irrelevant if trace constraint w that is constructed from Γ ′ ≡ Γ − f
is still sufficient to imply a violation.

Let us revisit Example 2. Suppose that we add to the set V of user-defined
predicates an additional predicate < over position variables. Then, for the coun-
terexample ρ = (a = 1) −−−→ (a = 0), facts returns Γ = {lessThanOne[a@1], 1 <
2} where 1 and 2 are positions in ρ. Then, the trace constraint generated by
traceConstraint will be:

TC3[ρ] = ∃i1, i2 ∈ [0..len(ρ)] : lessThanOne[a@i2] ∧ i1 < i2

Although TC3 is sufficient to imply a violation, it is less general than the previ-
ously generated TC1 in the absence of predicate < (see Example 2). Indeed, the
constraint i1 < i2 in TC3 forces the condition a < 1 to occur only at positions
i2 > 0, whereas in TC1 the same condition can also occur at position i1 = 0.
Furthermore, this additional constraint can be safely removed from TC3 while
still guaranteeing a violation. Thus, constraint i1 < i2 is an irrelevant fact.

Our algorithm performs an additional minimization step to remove all such
irrelevant facts from w. This additional procedure provides two benefits: (1) it
reduces the amount of information that the user needs to examine to understand
the classes and (2) each minimized class is a generalization of the original class
and covers an equal or larger set of traces that share the common characteristics,
thus also reducing the number of classes in the final classification.

As shown in Algorithm 2, minimizeTC relies on the ability of certain verifiers
(such as the ones based on SAT [8] or SMT solvers [4]) to produce a minimal
core for the unsatisfiability of a formula [15]. In particular, minCore(STS, w,¬Φ)
computes a minimal subset of conjuncts in the symbolic representation of STS
and w that are sufficient to ensure that ¬Φ holds (line 6). The facts (γ) that are
common to this core and Γ represent the minimal subset of facts about ρ that
are sufficient to imply a violation; a new trace constraint is then constructed
based on this subset and returned as the output of minimizeTC (line 7).

Note that if verify on line 4 returns Violated (i.e., ¬Φ does not always hold
under constraint w), this implies that the set of facts in Γ is not sufficient

324 C. Vick et al.

Input : An STS, a trace constraint w, and a specification Φ
Output: A minimized trace constraint

1 Func minimizeTC(STS, w, Φ):
2 if verify(STS ∧ w), ¬Φ) == OK then
3 γ = Γ ∩ minCore(STS, w, ¬Φ)
4 return traceConstraint(γ, ρ)

5 else
6 return “Γ does not sufficiently characterize the violation in ρ”
Algorithm 2: minimizeTC, which removes from trace constraint w all facts
that are irrelevant to the violation depicted by ρ.

to imply a violation of Φ. However, if minimizeTC is invoked from line 9 in
Algorithm 1, this side of the conditional branch should never be reachable.

Non-Redundancy. Although non-redundancy of classification W is not nec-
essary for a valid solution to the CCP, it is a desirable property as it reduces
the number of classes that the user needs to inspect. Thus, the main algorithm
classify also performs a redundancy check at its end (line 11, Algorithm 1) to
ensure the non-redundancy of any solution that it produces.

Input : an STS, a set of trace constraints W , and a specification Φ
Output: a set of trace constraints W ′

1 func removeRedundant(STS,W,Φ):
2 W ′ = ∅
3 for w ∈ W do
4 if verify(STS ∧ block(W \ {w}), Φ) == Violated then
5 W ′ = W ′ ∪ w

6 return W ′

Algorithm 3: removeRedundant checks whether any w ∈ W is redundant and
if it is, removes it.

Function removeRedundant, shown in Algorithm 3, ensures that no trace con-
straint w ∈ W is covered by any other trace constraints in W . Note that when
the while loop in Algorithm 1 is exited, verify(STS ∧ block(W), Φ) returns OK
since W classifies all counterexamples in P . This means that all traces of STS
which do not belong in any of the classes in W satisfy Φ. To find redundant trace
constraints, we iterate over each w ∈ W and check whether STS still satisfies
Φ with w removed from W (line 4, Algorithm 3). If this is the case, then w
is redundant, since W \ {w} already covers P . Otherwise, w must characterize
some ρ ∈ P that the other trace constraints do not, and thus w is added to the
non-redundant set W ′, which is returned at the end.

For example, recall the predicates V = {�=, lessThanOne, greaterThanOne}
from Sect. 3.4. Suppose that classify finds two trace constraints in this order3:

TC1[ρ] ≡ ∃i ∈ [0..len(ρ)] : lessThanOne[a@i]
TC2[ρ] ≡ ∃i ∈ [0..len(ρ)] : a@i �= 1

3 Note that a newly created trace constraint is never redundant.

Counterexample Classification 325

Notice that TC2 classifies all counterexamples that TC1 classifies. Thus, TC1 is
redundant and is not added to the final solution W ′ = {TC2}.

4.3 Solution to the Running Example

Consider the running example presented in Sect. 1.1. For this example, Algo-
rithm 1 outputs the trace constraints TCEncrypted and TCPlaintext in Sect. 1.1
given the set of predicates V = {=, <}. Equality = operates over Messages and
Booleans while < operates on position variables.

Atomic position facts are generated just like atomic facts. Recall the following
counterexample trace that is characterized by TCEncrypted:

ρ = (∅, ⊥)
(Encrypted,Alice,⊥)−→ (KeyAB, ⊥)

(Encrypted,Alice,�)−→ (KeyAB, �)

In the facts procedure, the < predicate would generate two facts, {i1 <
i2, i2 < i3}. These facts impose an ordering on any satisfying counterexample
and capture the timing of the violation.

5 Implementation and Case Studies

5.1 Implementation

We have built a prototype implementation of the classify algorithm (Algorithm 1)
on top of the Alloy Analyzer [8], a formal modeling and verification tool. In
particular, Alloy uses an off-the-shelf SAT solver to perform bounded model
checking (BMC), which is used for the verify procedure in the algorithm. As we
demonstrate in this section, our prototype is capable of characterizing a large set
of counterexamples (hundreds of thousands) with only a handful of generated
classes. These generated classes are provided to the user in the form of trace
constraints, along with representative counterexamples from each class.

Even though our current implementation uses Alloy and BMC, our technique
does not depend on the use of BMC or any particular verification engine and
could be implemented using other tools, provided they are capable of generating
counterexample traces. Our current implementation does rely on the SAT solver
being able to compute minimal unsatisfiable cores (which are used for minimizing
the trace constraints).

5.2 Case Studies: Needham-Schroeder

As a case study, we applied our prototype to the well-known Needham-Schroeder
protocol (NSP) [12], which has been known to be vulnerable to certain types of
attacks [11]. We show how our classification methods can be used to classify the
large number of counterexamples in a formal model of NSP into a small number
of classes that correspond to these types of attacks.

The purpose of NSP is to allow two parties to communicate privately over
an insecure network. NSP has two variants that look to accomplish this goal in

326 C. Vick et al.

different ways. The first variant is the Needham-Schroeder Symmetric protocol,
from now on referred to as Symmetric, and the second variant is the Needham-
Schroeder Public-Key protocol, from now on referred to as Public-Key. The
two variants exhibit different violating behaviors, which allowed us to test our
classification technique on the two separate variants, while not having to write
two drastically different models.

Formal Modeling. We constructed Alloy models of both the Symmetric and
Public-Key variants. Together, both variants total approximately 700 lines of
Alloy code. These models serve as the input to our tool along with a specification
Φ and a set of predicates V 4.

In both variants there are 4 Processes: Alice, Bob, Eve, and a central
Server. The attacker, Eve, can read all of the Messages exchanged between the
Processes. The setup is similar to the running example that has been discussed
throughout the paper. Both variants must satisfy the following specification.

Specification (Φ). We consider only one property across both variants of NSP:
the secret Key KAB shared between Alice and Bob is not leaked to Eve. We
express this property as the following LTL formula:

Φ = G(KAB �∈ Eve.knows)

where p.knows denotes the state variable of a protocol participant representing
the set of Keys that the participant p has access to.

Symmetric. In the Symmetric variant, Alice notifies the Server that she would
like to communicate with Bob. The Server then generates a communication key,
KeyAB, for Alice and Bob and sends it to Alice. This message is encrypted with
Bob’s secret key. Alice forwards this message to Bob so that he will be able to
decrypt the message with his secret key and learn the shared key. Bob then sends a
random nonce to Alice that is encrypted with their shared key. Alice verifies that
she knows the shared key by sending back Bob’s nonce decremented by 1 (Fig. 2).

Public-Key. In the Public-Key variant, Alice notifies the Server that she
would like to communicate with Bob. The Server sends Alice a signed message
with Bob’s public key. Alice sends Bob a message including a nonce that is
encrypted with Bob’s public key. Bob receives this message and asks the Server
for Alice’s public key. The Server sends Bob Alice’s public key. Bob now sends
Alice’s nonce back to Alice along with a new nonce encrypted with Alice’s
public key. Alice confirms that she has her private key by responding to Bob
with his nonce encrypted with his public key.

Predicates. In the experiments described below, we used the following sets of
predicates (V): Generic = {=, <}, consisting of only equality and one ordering
predicate; V1 = Generic ∪ {replay}; and V2 = Generic ∪ {manInTheMiddle}. V1

4 The Alloy models and code for our tool can be found at https://github.com/cvick32/
CounterexampleClassificiation.

https://github.com/cvick32/CounterexampleClassificiation
https://github.com/cvick32/CounterexampleClassificiation

Counterexample Classification 327

Fig. 2. A communication diagram of the Needham-Schroeder Symmetric protocol. A
and B are identifiers for Alice and Bob respectively. There are three keys: KAB , the
shared key between Alice and Bob, KAS and KBS which are each Alice and Bob′s
server key. Alice and Bob also make use of a nonce, NA and NB respectively. Each arrow
reprepresents a Message. {...}K denotes a Message encrypted by key K, and therefore
requiring K to be read successfully. The snaking red lines represent Eve having access
to all Messages that are sent over the network. (Color figure online)

and V2 include all generic predicates plus some specialized predicates that char-
acterize particular behavior in a model. The replay predicate, shown in Fig. 3,
captures counterexamples where Eve sends the same message that was sent ear-
lier by another process. The manInTheMiddle predicate captures counterexam-
ples where Eve passes Alice and Bob’s messages between them with no direct
communication between Alice and Bob.

Predicates like replay and manInTheMiddle could be part of a library of pred-
icates that any user could search and use. For example, replay can be used to
check other communication protocols for replay attacks, provided that they fol-
low a similar message-passing structure. Note that no information concerning
the particularities of the Needham-Schroeder protocol is used in the definition
of replay, meaning that this predicate can be used in a generic way. The same
holds for manInTheMiddle.

Results. Our tool was able to produce classifications for both the Symmetric
and Public-Key variants of NSP, as explained below. We were able to count
up to 270, 000 counterexamples (using the counterexample enumeration feature
in Alloy) for both NSP variants until our program ran out of memory. The results
are shown in Table 1.

Alloy employs bounded model checking for its verification engine; the bound
column in Table 1 shows the upper bound used for the number of steps in traces
explored by BMC. The V column shows the predicate set used in each experiment.

328 C. Vick et al.

Fig. 3. The replay predicate returns � if there are two positions t1 and t2 in ρ such
that t1 occurs before t2 and the Message at t1 is the exact same as the Message at t2
except that Eve is now the sender.

The next column shows the number of classes generated and the last two columns
show the execution time in seconds5. The execution time is split into the time our
tool spent calling Alloy to find counterexamples and all other computations on the
right. We found it instructive to show that the program was spending much of its
time generating counterexamples in Alloy, while all other computations remained
relatively constant for each respective experiment. Note that executions using V2

take much longer than other executions. Most of this time is spent in generating
the facts for manInTheMiddle as that particular predicate ranges over a number of
time steps and all time steps in a counterexample must be checked. We also note
that when using the Generic predicate set no redundant classes were found.

Table 1. Results on the Symmetric (left) and Public-Key (right) NSP variants. All
times are recorded in seconds. All experiments were evaluated on a 2.5 GHz Quad-Core
Intel i7 CPU with 16 GB of RAM.

bound V # classes Alloy time Total time

10
Generic 2 1.92 7.56

V1 3 4.29 10.23

25
Generic 2 9.37 16.24

V1 3 37.26 43.55

50
Generic 2 61.48 70.41

V1 3 220.49 226.37

75
Generic 2 254.38 267.96

V1 3 897.19 903.44

100
Generic 2 653.62 674.66

V1 3 1949.65 1955.133

bound V # classes Alloy time Total time

10
Generic 2 2.96 12.46

V2 3 6.01 100.61

25
Generic 2 12.96 24.04

V2 3 30.64 125.70

50
Generic 2 91.67 97.78

V2 3 157.62 251.89

75
Generic 2 321.95 349.21

V2 3 525.53 615.85

100
Generic 2 850.52 893.71

V2 3 1301.83 1396.92

Symmetric. This NSP variant is vulnerable to a replay attack. This attack has
been addressed in implementations like Kerberos, although the attack was not
found until 3 years after the initial publication of the protocol [5].

Using the Generic predicate set, our tool generated 2 non-redundant
classes. These classes characterize counterexamples where either Alice or Bob

5 Times were measured using the Java built-in System.nanoTime().

Counterexample Classification 329

unknowingly establishes communication with Eve, who then manages to extract
the secret key from this interaction. For example, the trace constraint TCGeneric

shown below represents one of these two classes and characterizes counterexam-
ples where Alice sends a message and at a later state, Eve manages to learn the
secret key:

TCGeneric[ρ] ≡ ∃i1, i2 ∈ [0..len(ρ)] : ρ.msg.sender@i1 = Alice ∧
ρ.Eve.knows@i2 = {KeyAB} ∧ i1 < i2

Although this constraint is a valid characterization of counterexamples (in that
it is sufficient to guarantee a violation of Φ), it is rather an abstract one, in
that it does not describe the intermediate steps that Eve carries out in order to
extract the secret key.

To generate more specialized classes, the user can provide additional predi-
cates beside the generic ones. Using V1 as the predicate set, our tool generated
3 classes: the two classes previously found with Generic, plus a third class repre-
sented by the trace constraint TCReplay shown below:

TCReplay[ρ] ≡ ∃i1, i2 ∈ [0..len(ρ)] : replay[ρ, i1, i2] ∧ i1 < i2 ∧
ρ.msg.encryption@i2 = ρ.msg.encryption@i1 ∧
ρ.msg.key@i2 = ρ.msg.key@i1

Our tool guarantees that we begin our classification with counterexamples that
satisfy whichever predicate we choose, in this case replay. This is helpful as it
constrains our classification to only those counterexamples which satisfy replay,
allowing us to classify a subset of the total set of counterexamples. The constraint
TCReplay describes the type of violation where Eve carries out a replay attack,
where she re-sends the message that was previously sent at step i1 again at step i2
with the identical message content. Note that although TCReplay is a redundant
class with respect to the other two classes generated using the generic predicates,
it serves additional utility in that it provides more specific information about
what Eve does in order to cause a security violation. The user of our tool (e.g., a
protocol designer) could then use the information in these constraints to improve
the protocol and prevent these types of violations.

Public-Key. This NSP variant is vulnerable to a man-in-the-middle attack
[11]. Eve is able to forward messages between Alice and Bob and trick them
into thinking they are communicating directly.

Similarly to the Symmetric variant, we were able to classify counterexam-
ples that demonstrated the man-in-the-middle attack. The classes found in the
Public-Key experiment reflected what we found in the Symmetric variant, i.e.
2 classes that show a general violating pattern with Generic and then 3 classes
where 1 class demonstrates the known violation, using predicate set V2. Our tool
showed that the Public-Key variant is not vulnerable to replay attacks.

In summary, our classification method (1) significantly reduces the amount
of information that the user needs to inspect to understand the different types

330 C. Vick et al.

of violations, by collapsing the large number of counterexamples (≥ 270,000 for
the case study) into a small number of classes and (2) enables the user to inspect
these different violating behaviors in a high-level representation (i.e., trace con-
straints) that can encode domain-specific information (e.g., replay attacks).

6 Related Work

It is well known that predicates can be used to abstract needless detail in certain
problem domains [3,9]. This is the first time, to our knowledge, that predicates
have been used for counterexample classification.

Our work can be considered a kind of automated debugging technique [16]
in the context of model checking. There have been a number of prior works
into locating the relevant parts of counterexample that explain or even cause
a violation [1,2,7]. While our work does not deal with an explicit notion of
causality, the generated trace constraints are sufficient to imply a violation of the
property. The major difference between these works and ours is that they focus
on explaining one or more given counterexamples, while our objective to classify
the set of all counterexamples into distinct classes. Our work is also related and
complementary to [10], which focuses on generating short counterexamples. We
take a different approach by focusing on generating minimal trace constraints,
each of which characterize a set of counterexamples.

The approach in [6] has the similar goal of generating a diverse set of coun-
terexamples. This work relies on a notion of diversity that depends on general
properties about the structure of the given state machine (e.g., counterexamples
that have different initial distinct and final states). In comparison, our notion
of diversity is domain-specific, in that it is capable of classifying traces based on
domain-specific predicates that can be provided by the user. In this sense, these
are two complementary approaches and could potentially be combined into a
single model debugging tool.

7 Conclusion and Future Work

In this paper, we have proposed counterexample classification as a novel approach
for debugging counterexamples generated by a model checker. The key idea
behind our approach is to classify the set of all counterexamples to a given model
and a property into trace constraints, each of which describes a particular type
of violation. Our work leverages the notion of predicates to distinguish between
different types of violations; we have also demonstrated how these predicates can
capture violations that are common within a domain (e.g., attacks on security
protocols) and can facilitate the reuse of domain knowledge for debugging.

For future work, we plan to explore methods based on machine learning (such
as clustering (e.g., [14]) to automatically extract predicates from a given set of
counterexample traces. Another interesting direction is to explore how our clas-
sification method could be used to improve counterexample-guided approaches
to program synthesis (such as CEGIS [13]), by reducing the number of coun-
terexamples that need to be explored by the synthesis engine.

Counterexample Classification 331

References

1. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors
in counterexample traces. In: Proceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2003, pp. 97–105.
Association for Computing Machinery, New York, January 2003

2. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterex-
amples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 94–108. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02658-4 11

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. Association for Computing Machinery, New
York, January 1977

4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

5. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun.
ACM 24(8), 533–536 (1981)

6. Dominguez, A., Day, A.: Generating multiple diverse counterexamples for an EFSM
(2013)

7. Groce, A., Visser, W.: What Went Wrong: Explaining Counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 8

8. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 11(2), 256–290. ACM, New York (2002)

9. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program ver-
ification. In: Handbook of Model Checking, pp. 447–491. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 15

10. Kashyap, S., Garg, V.K.: Producing short counterexamples using “Crucial Events”.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 491–503. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 47

11. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

12. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

13. Solar-Lezama, A., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.: Combinatorial
sketching for finite programs, p. 12 (2006)

14. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp.
109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-
8 11

15. Torlak, E., Chang, F.S.-H., Jackson, D.: Finding minimal unsatisfiable cores of
declarative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 326–341. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68237-0 23

16. Zeller, A.: The Debugging Book. CISPA Helmholtz Center for Information Security,
2021. Accessed 12 Mar 2021

https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1007/978-3-540-70545-1_47
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-642-00328-8_11
https://doi.org/10.1007/978-3-540-68237-0_23
https://doi.org/10.1007/978-3-540-68237-0_23

	Counterexample Classification
	1 Introduction
	1.1 Running Example

	2 Background
	3 Counterexample Classification
	3.1 Classes and Classifications
	3.2 The Counterexample Classification Problem
	3.3 Solvability
	3.4 Uniqueness of Solutions

	4 Classification Method
	4.1 Algorithm Overview
	4.2 Optimizations
	4.3 Solution to the Running Example

	5 Implementation and Case Studies
	5.1 Implementation
	5.2 Case Studies: Needham-Schroeder

	6 Related Work
	7 Conclusion and Future Work
	References

