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Abstract—Decision making in self-adaptive systems often in-
volves trade-offs between multiple quality attributes, with user
preferences that indicate the relative importance and priorities
among the attributes. However, eliciting such preferences accu-
rately from users is a difficult task, as they may find it challenging
to specify their preference in a precise, mathematical form.
Instead, they may have an easier time expressing their displeasure
when the system does not exhibit behaviors that satisfy their
internal preferences. Furthermore, the user’s preference may
change over time depending on the environmental context; thus,
the system may be required to continuously adapt its behavior to
satisfy this change in preference. However, existing self-adaptive
frameworks do not explicitly consider dynamic human preference
as one of the sources of uncertainty. In this paper, we propose
a new adaptation framework that is specifically designed to
support self-adaptation to user preference. Our framework takes
a human-on-the-loop approach where the user is given an ability
to intervene and indicate dissatisfaction and corrections with the
current behavior of the system; in such a scenario, the system
automatically updates the existing preference values so that the
new, resulting behavior of the system is consistent with the user’s
notion of satisfactory behavior. To perform this adaptation, we
propose a novel similarity analysis to produce changes in the
preference that are optimal with respect to the system utility.
We illustrate our approach in a case study involving a delivery
robot system. Our preliminary results indicate that our approach
can effectively adapt its behavior to changing human preference.

I. INTRODUCTION

Self-adaptive systems often make automated decisions that
take multiple, possibly competing quality attributes, also
known as non-functional objectives, from stakeholders into
consideration. For instance, a hospital e-service system may
be associated with the following ones: tangibles, reliability,
responsiveness, confidence, empathy, quality of information,
and integration of communication issues [1]. In certain self-
adaptation frameworks, the developer may encode these qual-
ity attributes by defining functions, each describing the rela-
tionship between the system state and a utility value that indi-
cates the level of satisfaction of a particular attribute [2], [3].
Building on these functions, the overall utility of the system
is then defined by an aggregation function that corresponds to
the weighted sum of utility values for the quality attributes [4].
During adaptation, if multiple candidate decisions are avail-

able, as is often the case in practice [5], [6], the one with the
highest aggregated utility value is selected by the automated
planner.

An important factor in the utility-based approach to adapta-
tion is the preference that indicates the relative importance and
priorities among quality attributes. One common representa-
tion of preference is a vector of weights that are assigned to
the quality attributes in the aggregation function. Typically,
the preference is elicited from stakeholders or users and
configured into the system before the deployment [7], [3], [6],
[8]. In certain applications, however, one’s preference may not
be static; depending on the evolving environmental context, the
user’s preference may also change over time. For example,
for a delivery robot, efficiency (i.e., the delivery speed) may
initially be considered to be the most desirable quality attribute
to optimize, but as the robot enters a hazardous environment
(e.g., a traffic crossing), the user may prioritize safety over
efficiency. Similarly, depending on the monetary value and
fragility of the object that is being carried by the robot, the
importance weights assigned to safety and efficiency may
also vary. In such applications, the underlying self-adaptive
framework must be capable of re-adjusting its strategies in
response to the evolving user preference [9], [10].

There is relatively little prior work on self-adaptive frame-
works that explicitly take into account dynamically changing
human preference. Existing approach (as far as we are of)
supporting this type of adaptation is by allowing the user
to directly manipulate the weights for different quality at-
tributes [11], [9]. A major limitation to this approach, however,
is that users typically find it challenging to express their objec-
tives and preferences in a precise, mathematical representation
(such as numerical weights) [2], [12], [13]. Even if the user
considers one quality attribute to be more important than oth-
ers, they may have a difficult time determining the magnitude
of difference in their importance. In general, their provided
weight vector may be a rough, inaccurate approximation of
the user’s internal preference; this could, in turn, result in the
system sometimes behaving in ways that are not satisfactory
to the user.

However, while they struggle with precisely specifying their



preference, users may be better at recognizing and distinguish-
ing satisfactory system behaviors from those are not [14], [2].
Furthermore, when they recognize an unsatisfactory behavior,
they may be able to correct it by providing an alternative,
more desirable behavior; e.g., giving feedback to a smart light
control system by turning off the light after the system turns
it on against the user’s preference.

In this paper, we propose a novel approach to self-adaptation
that explicitly considers dynamic human preference as one of
the sources of uncertainty. Our approach allows the user to
dynamically update their preference without being aware of
the underlying quality attribute functions or weights. The key
idea behind this approach is the preference update through
human guided correction: When the user recognizes a system
behavior that is not satisfactory (in terms of how well it is
achieving desired quality attributes), they provide feedback to
the system by rejecting the unsatisfactory behavior or provid-
ing an alternative, more desirable behavior. Our framework
then leverages a novel similarity analysis to infer minimal
changes to the preference values that are sufficient to account
for the difference between the existing and user-indicated
behaviors. To realize this approach, we propose a two-layer
self-adaptation framework: in the high-level layer, the system
monitors for and dynamically updates the preference in re-
sponse to an correction by the user. Subsequently, in the lower
layer, the system will re-adjust the adaptive strategy to be
executed by the automated planner based on the new, updated
preference.

We have built a prototype implementation of our self-
adaptive framework. As a case study, we demonstrate our
approach over a delivery robot system with multiple quality at-
tributes such as safety, efficiency, and privacy. Our preliminary
experiments show that our approach can effectively adapt to
changing human preference and while maintaining an optimal
level of the overall system utility.

The rest of the paper is structured as follows. Section II
provides a running example involving a delivery robot and
describes the related work. Section III gives an overview
of the proposed framework while Section IV describes the
preference update algorithm based on similarity analysis. Sec-
tion V presents the results from our preliminary experiments.
Section VI concludes with a discussion of limitations and
directions for future work.

II. MOTIVATING SCENARIO AND RELATED WORK

This section introduces a motivating scenario to illustrate
our approach, and related work on human-involved adaptive
systems and preference oriented self-adaptation.

A. Motivating Scenario

To motivate our approach, we use the example of robot
mission scenario in smart home environment where a robot
performs a series of goods-moving tasks on request of users
from a starting point to a goal location, as shown in Figure 1.
The robot has to arrive at the destination as soon as possible,

while trying to avoid collisions for its own safety and to avoid
driving intrusively through user-occupied areas.

In this scenario, there are three quality attributes considered
by users: safety, to avoid collisions with obstacles; privacy,
to not intrude into user personal spaces; efficiency, the travel
time of the robot when executing a good mission. The robot
has an automated controller to generate an optimal path by
taking the preference of quality attributes into account and then
adaptively move following the path. Efficiency is initially con-
sidered to be the most desirable quality attribute to optimize,
however, with the urgent work to handle by himself, user may
prioritize privacy over efficiency without disturbance from the
robot. Instead of precisely specifying his new preference with
values, user is easier at recognizing unsatisfactory behavior
and complaining when, e.g., robot enters a certain private area,
and correcting the robot’s movement by giving feedback to
robot to avert this area. Based on user feedback, hopefully, the
robot could automatically reason about user’s new preference
and adapt its behavior accordingly to satisfy this change.

In the setting of this example, the safety cost is 1 for each
traversed occluded path segment (i.e., two triangles in Figure
1), 0.5 for each traversed semi-occluded (i.e., one triangle),
and 0.1 for each without obstacles. The privacy cost is 0.5
for each semi-privacy location and 1 for each privacy location
that is visited. The efficiency cost is set to the traveled distance
indicated by the number of segments visited. Based on the cost
ci over a quality attribute QAi, the utility of a path s in terms
of that quality attribute is defined as ui(s) = 10− ci(s).

Fig. 1: Building Map for Motivating Scenario.

The overall system utility of U over a strategy (i.e., a
path from the starting point to the destination) is calculated
depending on the costs in terms of safety, privacy, and travel
time. The path selection relies on the following aggregation
function whose value should be maximized by the generated
plan with preference, i.e., quality attribute weights wi, for

decision making process: U(s) =
n∑

i=1

wi×ui. One preference

condition could be ⟨ 0.3, 0.3, 0.4 ⟩, i.e., the weights set to 0.3
for both safety and efficiency and 0.4 for privacy.

B. Related Work

Our framework addresses the need of self-adaptive frame-
work to manage run-time goal adaptation specifically with
user preference for interactive planning. Relevant related work



is concerned with human-involved adaptive systems and run-
time adaptation of goals especially on preference and utility
functions.

1) Human-Involved Adaptive systems: Automation is one
desirable characteristic of self-adaptation, certain adaptive
systems achieve better satisfaction of system goals when
their adaptation is able to exploit human input [15]. In some
cases, human can provide expertise or knowledge not available
to the system and can detect problems that the system is
unaware of [16], [17]. One way to achieve this synergy for
the system is by placing an operator in-the-loop between the
self-adaptation framework and the environment as a deciding
authority. A variant of human-in-the-loop is human-on-the-
loop, in which the operator plays a less interactive role; in
this approach, he only periodically monitors the interaction
between the system and the environment, and intervenes only
when deemed necessary or unsatisfactory [18]. In this paper,
we focus on self-adaptive systems that employ a human-on-
the-loop approach where user preference is the ground truth
that the system is trying to approximate and his periodical
corrections on system behaviors will invoke the preference
adaptation.

2) Goal Adaptation: In the run-time category, based on
the literature review, few research efforts explore a goal-
based model in the decision-making process [19]. For ex-
ample, Kramer et al. discuss an architecture-based adaptation
approach, which utilizes a goal management layer [20]. This
layer generates a reactive plan to satisfy the goals. Salehie
et al. have also worked on an adaptation approach based on
quality goals, in order to trace and satisfy these goals at run-
time [21]. In another work, Salehie et al. propose a Goal-
Action-Attribute model by explicitly tracing adaptation goal at
run-time which is helpful in adaptation decision making [22].
However, their work deals mostly with the deciding process
by choosing among alternative actions at run-time, i.e., action
selection problem. Besides, an Analytic Hierarchy Process
(AHP) by pairwise comparison of goals is suggested to be
used for prioritizing goals [23].

Utility functions together with user preference have been
widely used for self-adaptive systems as a common mecha-
nism in defining multiple objectives [24]. Human preference
has been investigated and captured in satisfying temporal
logic properties with timing constraints by weighted Signals
Temporal Logic (WSTL) via weights, upon which a system
behavior with incompatible (infeasible) tasks or with perfor-
mance preferences can be reasoned about [25]. One preference
approach is in a way similar to linguistic ranking methods
by specifying one of the following characterizations for every
two objectives: less important; much less important; equally
important; more important; much more important; don’t care.
Then, these linguistic categories are transformed into real
numbers that can be utilized in optimization as objective
weightings with the use of (fuzzy) preference relations and
induced orders [26]. Wohlrab et al. propose a lightweight
method for utility function definition based on goals priorities
elicitation and negotiation, leading to a consensus between

multiple stakeholders [27]. Their approach, however, is in-
tended for development rather than runtime use.

Lin et al. propose a three-level model to learn multiple
inhabitant’s preference in a smart home environment based
on a sequence of inhabitant-device and inhabitant-inhabitant
interactions. Instead of utility based quality-attribute prefer-
ence, their work considers the services each inhabitant prefers
and inhabitants are grouped into several classes where each in
the same class has the same preference[28]. Pan et al. employ
inverse reinforcement learning to analyze the preferences of
taxi drivers when making decisions to look for passengers
and study the dynamics of preferences of different groups of
drivers over time [29]. Compared to their offline learning work
indicating that human has unique preference changing over
time, our work focus on preference online approximation and
estimation based on the feedback on system behaviors from
human.

The need to re-adjust utility function at run time based on
changing user preferences has been raised [10]. Kakousis et
al. define a cost function to enable the optimization of the
quality attribute weights with the minimum variation in each
optimization step based on user feedback [30]. However, their
approach does not explicitly consider human complaints or
corrections during optimization. user preference has also been
incorporated into multi-objective genetic fuzzy rule selection
for pattern classification problems and preference function is
changeable according to the user’s direct manipulation during
evolution [31]. Wohlrab et al. use the predefined rule to adjust
the weights based on the changing context or directly adjust
the weight based on the input of human [9]. Sont et al. provide
a simplified interface for users to directly revise the weights of
existing goals after each round of adaptation so that the adapta-
tion results will be closer to the user’s preference [11]. Instead,
we dynamically estimate human preference based on iteration
algorithm on similarity analysis and human corrections so that
the indicated strategy of updated preference comprises of the
human expectation actions or averts human complaints.

Besides, Sukkerd et al. address the tradeoff rationale of
multi-objective planning by explaining the strategy to end-
users and then assess whether those decisions are in line
with the user’s goals and preference by conducting a human
subject experiment [32]. Their explanations on how competing
objectives make tradeoffs by contrasting their strategy to those
of other rational alternatives with varying preferences could
be adopted in our framework to improve users’ confidence on
system behaviors and decrease their intervention.

III. PREFERENCE ADAPTATION FRAMEWORK

Preferences are usually associated with a high degree
of uncertainty where each individual has unique preference
changing over time. Considering the characteristic of users
good at complaining when they are not satisfied, but not
precisely specifying what they want, we propose a new self-
adaptive framework considering the variation of human pref-
erence. Figure 2 shows a bird eye’s view of our two-layer
adaptation framework where the lower layer controller deals



with the environmental changes while the higher one updates
preference based on the blurry input and behavior corrections
from the user.

Fig. 2: Two-layer Adaptation Concerning Human Preference.

Monitor. Events generated in the environment indicating
natural changes in the environmental factors or indicating
preference changes from human are received. Typical example
of natural events includes a new obstacle at a location on the
map. There are two types of preference related dynamics: 1)
direct input with new linguistic ranking from the user such as
”efficiency is more important than security”, and 2) indirect
complaint with user corrections, e.g., refusing or disliking one
certain step in a path. Monitor gathers and synthesizes these
dynamics through the sensors deployed in the space. Then
it classifies these information and distributes to two layers
separately for the following decision making.

Low Layer Controller. During the environmental changes
decision-making, this controller performs analysis based on
the input of environmental dynamics from Monitor and checks
whether violations or better satisfaction of goals exists. Then,
an adaptation strategy aiming to counteract violations or better
achieves goals defined is reasoned with the quality attribute
aggregation function guided by the preference stored in the
Knowledge. For each environmental adaptation situation, it
generates a strategy if one exists as the adaptation to respond
to unexpected changes, or prompts for a change in the design
of the system if the violation cannot be handled. In this
motivating scenario shown in Section II.A, the goal is to plan
a strategy among all path candidates from starting points to
destination and maximize the overall utility by trading off
three quality attributes. In addition, this controller could be

invoked on request of High Layer Controller for adaptation
strategy simulation with the input of a potential preference
condition and output of the optimal strategy with respect to
this preference.

High Layer Controller. During preference update decision
making, this High-Layer Controller receives user corrections
from Monitor, indicating that the optimal strategy to the
existing adaptation goal (i.e., aggregation utility function with
preference stored in the Knowledge) does not cater to the
user anymore and preference update is required. The update is
based on the similarity analysis by iterating all possible prefer-
ence candidates. For each preference candidate, this controller
will invoke the Low Layer Controller for adaptation strategy
simulation to obtain the candidate’s strategy, which is required
for similarity analysis and preference update. More details will
be addressed at Section IV. In short, the preference candidate
closest to the out-of-date and its indicated strategy conforming
to human corrections with minimal differentiation from the
previous strategy will be selected to update the preference at
Knowledge. The basic idea behind this similarity analysis is
that each individual changes his preference in a small step
within a certain time frame. This is supported and consistent
with those obtained by Pan et al. [29] who inversely learn
from real data the preferences of taxi drivers whose magnitude
of change is not large in a certain period of time. Besides,
linguistic ranking is another possible direct input from users
specifying the characterizations for two quality attributes:
equally important; more important; much more important, etc.
These characterizations can be reflected by rules for preference
candidates checking, and this is useful in reducing the search
space by directly dropping those candidates that do not suit
for the desired ranking.

Executor. During execution, the strategy maximizing utility
based on preference is enacted through actuators. Typical
examples could be setting a new path from the starting point
to the ending point and adaptively adjusting the moving
directions towards the destination.

In this work, we focus on preference adaptation at run
time, especially on dynamics of weights for the aggregation
function, assuming the quality attributes and their correspond-
ing utility functions each indicating its satisfaction level are
settled. Environmental dynamics decision making based on
preference and utility functions has been explored a lot and
interested reader can refer to [33], [5]. Besides, we assume
adequate monitoring in place including environment behavior
and human corrections, as well as an execution environment
through which selected adaptation strategies are enacted.

IV. SIMILARITY-BASED PREFERENCE ADAPTATION

Run time decision making based on the trade-off of multiple
quality attributes is not trivial because user preference is
usually implicit and not easily elicited in a rigorous math-
ematical form. Besides, each person has unique preference
changing over time and this factor builds as additional sources
of uncertainty affecting the behavior of the self-adaptive
system [34]. Thus, we introduce user preference (i.e., each



weight of quality attribute) as an explicit dynamic factor.
Inspired by the finding from existing study [29], the key
idea of our approach to enable automated reasoning about
preference is based on similarity analysis by iterating all
preference candidates and from the out-of-date to pick up the
one with the great similarity and whose corresponding strategy
conforms to human corrections. In this section, we present a
general approach with more details on robot moving scenario,
i.e., path planning problem solved by Reinforcement Learning
(Sec IV.A), and formalize the distance (Sec IV.B) between
preferences and between strategies in the form of path for
similarity analysis. Then, an algorithm of updating preference
will be given with possible linguistic ranking input (Sec IV.C).

A. Adaptation Strategy for a Preference Condition

In an adaptation decision making problem, the Low Layer
Controller will reason about a strategy str ∈ strs achieving
the best possible utility among all possible strategy candi-
dates under the aggregation utility function with a specific
preference condition. A preference is formalized as a vector
in which each element is the weight of a quality attribute
pre = ⟨w1, ..., wn⟩. To this end, the strategy adaptation
is defined by a general and abstract function, mapping the
specific preference to its adaptation strategy:

PREMAPSTR : pre −→ str (1)

Strategy adaptation implementation for the Motivating Sce-
nario. Strategy decision making in the robot scenario is the
path planning problem, defined as Markov decision process
(MDP). Given a preference (w1, ..., wn) and a set of quality
attribute functions {u1, ..., un}, a preference applied MDP is
defined as a 4-tuple M ≜ <S,A, P,R>, where S is a set
of states, A is a set of actions, P : S × A × S → [0, 1] is
the state transition function. R : S × A → R is the quality
attribute function where r(st, at) =

∑
i wiui(s

t+1).
In this scenario, we consider the state transition function is

determinate, meaning that given a state s there must exist a
pair of state-action (a, s′) satisfying P (s, a, s′) = 1. Hence,
the state transition function can be rewritten as P : S×A→ S.
The policy in the MDP is then defined as π : S → A and the
optimal policy for the MDP (also the realization of function
PREMAPSTR) is defined as follows:

π∗ =argmax
π∈Π

T∑
i=0

r(st, π(st))

= argmax
π∈Π

T∑
i=0

n∑
i=1

wiui(s
t+1)

s.t., st+1 = P (st, π(st))

(2)

where T is the terminal time step. Given an optimal policy π∗,
the optimal path, i.e., adaptation strategy str, is defined as a
state sequence ⟨s1, s2, ..., sT ⟩ satisfying ∀t ∈ {1, 2, ..., T −
1}, st+1 = P (st, π∗(st)).

There are two kinds of methods, value-based and policy-
based, for learning the optimal policy by Reinforcement

Learning through accumulating the episodes (i.e., state, action,
reward sequence) [35]. We adopt the value-based method by
learning an optimal state-action value function (also known as
Q function), i.e., q(s, a) = E[

∑T−t−1
k=0 γkRt+k+1|st = s, at =

a], where Rt = r(st, at), and γ ∈ [0, 1] is the discount factor.
The optimal state-action value function can be learned using
Temporal-Difference learning, i.e.,:

q(s, a)← q(s, a) + α[R+ γmax
a∈A

q(s′, a)− q(s, a)] (3)

where R = r(s, a), s′ = P (s, π(s)),α ∈ [0, 1] is the learning
rate and the optimal policy is computed as follows:

π∗(s) = argmax
a∈A

q(s, a) (4)

B. Similarity Between Preferences and Between Strategies

Similarity is also defined by a general, abstract func-
tion PRESIM(p1, p2) between a pair of preferences and
STRSIM(str1, str2) between a pair of strategies. To measure
the similarity between preferences p1 and p2 in n dimensions
where p1 =< w′

1, w
′
2, ..., w

′
n > and p2 =< w′′

1 , w
′′
2 , ..., w

′′
n >,

we use the cosine similarity CosSim of their weights vectors
as the function implementation of PRESIM:

PRESIM(p1, p2) =
p1 ∧ p2

||p1|| × ||p2||

=

n∑
i=1

w′
i × w′′

i√
n∑

i=1

w′2
i ×

√
n∑

i=1

w′′2
i

(5)

Strategy similarity implementation for the Motivating Sce-
nario. For the robot, a strategy of a path is formalized as a
sequence of states: str = ⟨ s1, s2, ..., sx ⟩. However, the length
of different paths are not the same, as shown in Schematic
Figure 3. For instance, str1 takes a detour with more states
than str2, str3, or str4. Thus, it is not appropriate to encode
these strategies as vectors or use cosine similarity to measure
the difference. Fortunately, the similarity measurement, i.e.,
implementation of function STRSIM, can be simplified by
calculating the area between two path plans because every path
has the same starting and ending point. Further consideration
is to normalize the area differentiation in the range [0,1]. To
this end, the similarity between a pair of paths str1 and str2
is implemented as follows:

STRSIM(str1, str2) =
∆Area{str1, str2}

MAXAREA(PATH SPACE)
(6)

where ∆Area{str1, str2} is the area between path str1 and
str2, i.e., the slash shadow area in Figure 3, while MaxArea
is the maximum area for the space of this path planning
problem, i.e. the whole grey area as the path planning starts
from the upper-left corner and ends at the bottom-right corner.



Fig. 3: Typical Paths Examples.

C. Preference Update Algorithm

Recall that the goal of preference update is to find a new
preference candidate, i.e., a vector of quality attribute weights
from the value space, closest to the outdated one and whose
corresponding strategy conforms to human corrections. To this
end, we propose a general algorithm to effectively output the
new preference p2 with its optimal strategy str2 for this class
of preference update problems. Algorithm 1 has as input an
outdated preference p1, a reasoned strategy str1 achieving the
highest utility based on p1, as well as user corrections IC.
Specifically, we consider IC as a set of states in the strategy
being complained and rejected by the user in this motivating
scenario.

The variable p2 to be returned is initialized as well as its
indicated optimal strategy s2 calling the function PREMAPSTR
by invoking the Low Layer Controller for adaptation strategy
simulation. The algorithm then starts by iterating all possible
values of n quality attributes at regular interval v pertaining
that w1 + w2 + ... + wn = 1 (line 3-6). The sampling
interval determines the adaptation accuracy depending on
the application scenarios and constraints of decision making
latency. Obviously, the smaller the interval is, the larger search
space and more number of candidates will be analyzed. Each
preference candidate will be directly discarded if it does not
satisfy the linguistic ranking from human input (lines 7-9).
Then, each remaining candidate will be checked (line 11) if it
is closer to the out-of-date p1 by comparing the return value
from function PRESIM, while its indicated strategy strtmp

(line 10) conforms to the corrections, i.e., not containing
human complaining state sx /∈ strtmp. If so, p2 and str2
are rewritten by the current candidate (lines 12-13). Typical
example can be found in Figure 4 plot (a) where the preference
candidate (⟨0.25, 0.2, 0.55⟩) has minimal distance to the p1
(⟨0.2, 0.3, 0.5⟩) with similarity 0.98 from PRESIM and its indi-
cated strategy averts human rejecting state in str1. In addition,
if the similarity of the current candidate with p1 is equal to
the so-far selected one and both of their strategies avert human
complaints, the one whose strategy is nearer to the outdated
strategy (i.e., STRSIM(str1, strtmp) < STRSIM(str1, str2)))
(line 15), will be re-selected (i.e., p2 and str2 are updated
at lines 16-17), with the underlying idea to reuse existing
strategy as much as possible. After iterating all the candidates,
the algorithm returns the updated preference and strategy (line
23).

Linguistic ranking is the possible direct input from user
specifying characterizations between quality attributes. For any
two quality attribute QAi and QAj , the characterization can

Algorithm 1 The algorithm of Preference Update

Require: outdated preference p1 =< w1
1, w

1
2, ..., w

1
n >,

outdated adaptation strategy str1 with user corrections
IC = (s1, s2, ..., sm);

Ensure: updated preference p2 with new strategy str2;
1: random initialize p2
2: str2 = PREMAPSTR(p2)
3: for w1 in range(0,1,v) do
4: for w2 in range (1− w1,1,v) do
5: ...
6: for wn in range (1− w1 − ...− wn−1,1,v) do
7: if LINGUISTICRANKING(w1, ..., wn) == False

then
8: continue
9: end if

10: strtmp = PREMAPSTR(w1, ..., wn)
11: if ( PRESIM(⟨w1, ..., wn⟩, p1)< PRESIM(p2, p1)

&&
( ∀sx ∈ IC : sx /∈ strtmp ))
then

12: p2 ← ⟨w1, w2, ..., wn⟩
13: str2 ← strtmp

14: end if
15: if ( PRESIM(⟨w1, ..., wn⟩, p1) = PRESIM(p2, p1)

&&
( ∀sx ∈ IC : sx /∈ strtmp ∩
STRSIM(str1, strtmp) < STRSIM(str1, str2)))
then

16: p2 ← ⟨w1, ..., wn⟩
17: str2 ← strtmp

18: end if
19: end for
20: ...
21: end for
22: end for
23: return p2, str2

be reflected by encoding: 1) equally important wi = wj ;
more important wi > wj ; much more important wi − wj >
threshold; less important wi < wj ; much less important
wj − wi > threshold. These characterizations are useful in
reducing the search space by directly dropping those candi-
dates that do not suit for the desired ranking. For instance, a
preference (safety, efficiency, privacy) candidate ⟨0.2, 0.3, 0.5⟩
does not comply with the characterization that ”safety is more
important than efficiency”. Moreover, characterizations are
time-sensitive and if there is no preference candidate satisfy
both linguistic ranking and human corrections, indicating that
characterizations are in conflict with user corrections, the
latest corrections have a higher priority on preference update.
This is because user preference is regarded as an explicit
dynamic factor, which can not be simply hard-coded as static
characterizations as most previous work does.

Algorithm Discussion. This preference update algorithm



with similarity analysis is general to any preference involved
scenarios by customizing the strategy decision making and
similarity between any forms of strategies (i.e., different
implementation of function PREMAPSTR and STRSIM). In
this motivating scenario, user corrections are abstracted and
simplified as a set of states in the strategy denied by the
user. Extensions to other form of corrections, such as rejected
actions, expected actions or states, or even more complicated
combinations, are straightforward by directly substituting the
condition ∀sx ∈ IC : sx /∈ strtmp . In this work, we focus
primarily on user preference is worthwhile to be updated at
run time and provide one general update algorithm based on
similarity analysis. Algorithm optimization or other decision
making methods, such as strategy synthesis with user correc-
tions can further be introduced if suitable for certain scenarios.

V. EVALUATION

To provide tool support for our preference adaptation
framework, we realized a prototypical tool 1 based on robot
good moving scenario in a 10×10 space considering three
quality attributes: safety, efficiency, and privacy, described in
Section II.A, with the iteration interval of 0.05. Thereupon,
we evaluate our approach over three sets of experimentation;
the experimental setup and results obtained are subsequently
presented.

Our evaluation goals are three-fold; we seek to investigate
a) effectiveness. We randomly choose four initial preference
conditions and set up user corrections as one rejecting state
on each adaptation strategy. This experiment illustrates the
effectiveness of our algorithm to deal with preference update.
b) capability. We set ground truth preference as user’s in-
ternal preference and analyze how each preference condition,
exploiting preference update algorithm and similarity analysis,
approaches the ground truth preference with the input of
user corrections, and what the preference update impact on
the overall system utility results. This experiment entails the
capability of our approach to enhance the utility and human
satisfaction. c) performance. This experiment details the
performance of our algorithm and how different linguistic
ranking facilitates preference update by reducing the search
space and decision making time.

A. Experimental Results : Effectiveness

Figure 4 (a-d) depicts the adaptation strategy (red arrow)
with maximum utility for four preference conditions. We can
observe that the robot chooses to take the middle path (i.e.,
red arrow), through the obstacles, when the quality attribute
of safety holds only 0.2 shown in plot (a), while the upper
middle path with comparably fewer obstacles is the choice at
plot (b) when the proportion of safety increases to 0.3. Plot
(c) illustrates the path passing through several private areas
yielding better utility when safety with 0.4 is greater than
privacy with 0.3. The strategy in plot (d) is the farthest path
and detours to avoid any private areas or obstacles. This is
due to very less proportion of efficiency with 0.1.

1https://github.com/sherry1912/PreferenceAdaptation.

Figure 4 also depicts the updated preference with its new
adaptation strategy (blue arrow) based on human correction,
i.e., one denied state in the previous strategy. For the first case,
as shown in plot (a), the new strategy changes to the upper
path. This is because its updated preference (⟨0.25, 0.2, 0.55⟩)
is closest to the outdated one (⟨0.2, 0.3, 0.5⟩) and the new
strategy averts human complaining area. The increasing weight
of safety in a small portion leads to the path with fewer
obstacles. Plots (b-d) are analogous to (a), with generally
small distance to the outdated preference conforming to human
corrections.

However, one correction (i.e., states being complained) on
the adaptation strategy by triggering the High Layer Controller
for preference update does not necessarily approximate human
real preference in practice without additional information.
This is due to the assumption that each individual changes
their preference in a small step not always true. Multiple
times of corrections and preference updates might be required
until there is no additional complaint from user anymore.
One typical case that needs three times of update is the
initial preference condition ⟨0.05, 0.05, 0.90⟩ to ground truth
preference ⟨0.50, 0.40, 0.10⟩, as shown in Figure 5. Preference
update with user correction happens when the current optimal
strategy does not match the adaptation strategy of the ground
truth with the first differentiation between two paths as the
user complaining state. We can observe that the preference
is closer to the ground truth after the first update but the
similarity is only from 0.23 to 0.28, which is quite small due
to the assumption behind our algorithm. The second and third
updates explore the preference further afield with continuous
corrections to the updated strategy. At the end, the preference
reaches a fixed point ⟨0.4, 0.3, 0.3⟩, though different from the
ground truth with similarity 0.93, but these two preferences
share the same strategy for this specific good moving task.
Preference update can be further approximated to the ground
truth with additional corrections when the task changes with
other starting point and destination or environment changes,
such as obstacle movement.

B. Experimental Results : Capability

We further statically analyze a discretized region of all pos-
sible state space with the interval of 0.05 and their similarity
with the ground truth ⟨0.5, 0.4, 0.1⟩ as shown in Figure 6. The
x-axis and y-axis each represents w2 and w1. Each state is the
initial preference condition and plot (a) presents the similarity
results before preference update. Those states where w1 is
around 0 and w2 around 0, mainly distributed in the lower left,
have comparatively low similarity, but this can be gradually
strengthened with preference update as shown from plot (b)
to plot (d). After three corrections and updates, almost all of
the states (i.e., initial preference conditions) have similarity
greater than 0.8 with the ground truth preference, indicating
this preference update framework and algorithm do support
the self-adaptive system approaching user real preference.

Furthermore, we measure the number of preference update
in need by settling each correction as one complaining state in



(a) ⟨0.2,0.3,0.5⟩→⟨0.25,0.2,0.55⟩ (b) ⟨0.3,0.2,0.5⟩→⟨0.35,0.15,0.5⟩ (c) ⟨0.4,0.3,0.3⟩→⟨0.4,0.25,0.35⟩ (d) ⟨0.45,0.1,0.45⟩→⟨0.5,0.2,0.3⟩

Fig. 4: Strategy for Updated Preference with User Corrections (preference = ⟨ Safety, Efficiency, Privacy⟩)

Fig. 5: An Illustration of Three Preference Updates.

the adaptation strategy, and the results are shown in Figure 7.
Plot (a) presents the results for the ground truth ⟨0.5, 0.4, 0.1⟩.
This plot reveals that those states with comparative low
similarity distributed in the lower left require three times of
update to reach the fixed point due to the large distance. States
requiring no update appears in the middle areas, when the
distance is comparatively low with high similarity and their
adaptation strategies are the same as the ground truth. These
results are also explained by the fact that the greater the
differentiation from user expectation (i.e., the ground truth),
the more corrections human are about to give. Plot (b) is
analogous to (a) but with states requiring 3 times mainly
distributed in the upper left. This is because w1 is near 1
in these areas, a little bit far away from the ground truth
⟨0.1, 0.1, 0.8⟩.

To clearly display the impact of preference update,
We quantify the delta of utility between two strate-
gies before and after the preference update in this set
of experiments. We further calculate the ratio between
the delta and the best possible utility for the ground
truth to reduce the impact of the quality attribute func-
tion definition itself and illustrate the percentage variation.

ratio =
Uupdatedstr,GT − Uoutdatedstr,GT

Uoptimalstr,GT

Figure 9 depict the impact of preference update (i.e., ratio)
by employing the fixed values for human real preference (i.e.,
ground truth ⟨0.1, 0.1, 0.8⟩), and analyze a discretized region

of all possible states. In the first round, as shown in plot (a),
the update results are generally positive. This can be observed
in the red upward area where the ratio is greater than 0 (i.e.,
utility delta¿0), up to about 0.35. However, there is a small
proportion of preference conditions (14 in total of 171) that
one preference update might lead to negative results (i.e., ratio
< 0) as shown in the downward area with blue color. A typical
initial preference condition example is ⟨0.2, 0.1, 0.7⟩ and it
will be updated to ⟨0.2, 0.05, 0.75⟩, farther away to the ground
truth. This is due to the algorithm logic that the preference
candidate closest to the previous one and it indicated strategy
not stepping on human complaints will be selected, which
does not always work well. However, the results of these
conditions will gradually get better with the continuous update
by inputting more information and corrections from user. This
is illustrated as the number of states in negative ratio decreases
to 0 in plot (c). Figure 8 shows the utility ratio results for the
ground truth ⟨0.1, 0.1, 0.8⟩. In general, there are small number
of preference conditions leading to negative results in both plot
(a) and (b). After three preference updates, the ratio for every
state is greater or equal to 0, with 109 out of 171 even greater
than 0.33, indicating that preference update enhance utility by
roughly one-third.

C. Experimental Results : Performance

The third set of experimentation illustrates the impact of
linguistic ranking as additional input, as shown in Figure 10.
The overall setting is similar to experimentation in Figure 7.
For plot (a), user informed their expected characterizations
of quality attributes: 1) security equal to efficiency, and 2)
privacy much more important than security. Reasoning about
adaptation strategy for one preference candidate by reinforce-
ment learning technique for this robot scenario takes around
50 episodes, about 0.2s, to convergence. Without linguistic
ranking, the experimentation time frame for one preference
update takes around 35s due to the iteration of all potential
preference candidates (i.e., 171 in total with interval 0.05) as
well as their indicated strategy. It can be reduced to 1s with
linguistic ranking by directly discarding majority of candidates
at iteration that do not meet the characterizations between
quality attributes. Besides, those preference conditions requir-



Fig. 6: Similarity Analysis for Ground Truth Preference ⟨0.5, 0.4, 0.1⟩.

(a) ground truth preference = ⟨0.5,0.4,0.1⟩ (b) ground truth preference = ⟨0.1,0.1,0.8⟩

Fig. 7: Number of Preference Update in Need

20 40 60 80

50−1

0

1

w 1
w 2

ra
tio

(a) first round of update

20 40 60 80

50−1

0

1

w 1
w 2

ra
tio

(b) second round of update

0
20 40 60 80 0

50−1

0

1

w 1
w 2

ra
tio

(c) third round of update

Fig. 8: Analysis Results for Ground Truth ⟨0.5, 0.4, 0.1⟩
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Fig. 9: Analysis Results for Ground Truth ⟨0.1, 0.1, 0.8⟩



(a) ground truth preference = ⟨0.1,0.1,0.8⟩ (b) ground truth preference = ⟨0.5,0.4,0.1⟩

Fig. 10: Number of Preference Update in Need with Linguistic Ranking

ing two or three times of update as shown in Figure 7 just
need one update to the fixed point because user’s input of
linguistic ranking reduces the search space and helps our
algorithm locates and approaches user real preference in a
smaller number of trial. Plot (b) shows the analogous results
by noticing that: 1) security more important than efficiency,
and 2) efficiency more important than security.

In summary, the results of analyzing robot good-moving
scenario have shown that: (i) user preference can be ap-
proached in our proposed framework even if user cannot
accurately express their preferences in a mathematical form,
(ii) the approximation process may not always be smooth as
the first few updates may even cause utility degradation (i.e.,
ratio < 0), however, it will eventually lead to the decreasing
distance to user real preference with increasing similarity by
their feedback and corrections on the adaptation strategy, (iii)
preference update can enhance the overall utility (i.e., ratio
> 0) in most cases and there is ultimately no reduction
in utility even in some worst cases (i.e., ratio = 0), (iv)
linguistic ranking from user input generally facilitates the
approximation process, (i.e., decreasing number of corrections
and preference updates in need) and accelerate the update
speed with shrinking search space by discarding those states
not conforming to the linguistic ranking.

VI. CONCLUSIONS AND DISCUSSION

User preference with uniqueness and dynamic nature has
been considered as one essential uncertainty to design self-
adaptive systems. To this end, we presented a two-layer
general framework to 1) update the preference based on
similarity analysis and resolution of human unsatisfaction,
and 2) reason about adaptation strategy that best matches
the updated preference and achieves the optimal utility under
uncertain environment.

One limitation of our initial evaluation of this work was
based on a theoretical robot good-moving case study, which
has illustrated the potential of this approach. Although we did
not directly correlate our analytical results with actual systems
through an empirical study, our findings are partially supported
by those obtained by Pan et al. [29], whose results illustrate

that self-improving drivers tend to keep adjusting their pref-
erences to increase earning efficiency based on collected data
from DiDi Chuxing Inc (Uber-like company at China). Our
future research is also planned in order to evaluate in the
context of comprehensive self-driving scenarios, using actual
devices and real user feedback.

The second limitation of our approach involves the iteration
of all potential preference candidates with their indicated
strategy, inducing a high overhead which may be not bearable
at run time, especially for those reasoning methods such
as reinforcement learning or Markov Decision Process. To
address this issue, hybrid planning [36] or plan reuse [37]
might be leveraged to reduce the cost of preference planning.
Knowledge base can store the pre-computed plans so that the
controller could potentially reuse to react as quickly as needed.
Besides, if the preference reasoning is only allowed during a
limited time frame, the interval of iteration could be relaxed in
need. Another limitation is the assumption behind the update
algorithm and reinforcement learning that a certain preference
candidate corresponds to only one optimal adaptation strategy,
which may not be true in practice. In these cases, preference
renewal could be deferred until none of its indicated strategies
meet user complaints and corrections.

Our initial investigation suggests a number of additional
research directions, such as considering constraints (including
hard constraints and soft constraints) beyond user preference
in the goal model and conflicts between different types of
constraints and between hard constraints with user complaints;
adopting existing methods such as fuzzy preference relations
with induced orders [26], or preference elicitation and ne-
gotiation [26] to align with user preference offline before
deployment, minimizing the number of preference updates;
and finally, explaining the adaptation strategy to user [32] by
how multiple quality attributes compete each other to improve
user confidence on adaptive system so to make appropriate
corrections in need. This framework could be further adjusted
and extended in any human-involved systems with preference
by customizing the part of similarity analysis between strate-
gies in the algorithm. Scenarios with strategy specified in tactic
language stitch [38] can also be considered in future work.
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[5] J. Cámara, G. A. Moreno, D. Garlan, and B. Schmerl, “Chapter 7 -
evaluating trade-offs of human involvement in self-adaptive systems,”
in Managing Trade-Offs in Adaptable Software Architectures, I. Mistrik,
N. Ali, R. Kazman, J. Grundy, and B. Schmerl, Eds. Boston: Morgan
Kaufmann, 2017, pp. 155 – 180.
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