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ABSTRACT
Many self-adaptive systems benefit from human involvement and
oversight, where a human operator can provide expertise not avail-
able to the system and can detect problems that the system is
unaware of. One way of achieving this is by placing the human
operator on the loop – i.e., providing supervisory oversight and
intervening in the case of questionable adaptation decisions. To
make such interaction effective, explanation is sometimes helpful to
allow the human to understand why the system is making certain
decisions and calibrate confidence from the human perspective.
However, explanations come with costs in terms of delayed actions
and the possibility that a human may make a bad judgement. Hence,
it is not always obvious whether explanations will improve overall
utility and, if so, what kinds of explanation to provide to the op-
erator. In this work, we define a formal framework for reasoning
about explanations of adaptive system behaviors and the condi-
tions under which they are warranted. Specifically, we characterize
explanations in terms of explanation content, effect, and cost. We
then present a dynamic adaptation approach that leverages a prob-
abilistic reasoning technique to determine when the explanation
should be used in order to improve overall system utility.

1 INTRODUCTION
Self-adaptive systems are designed to be capable of dynamically
modifying their structure and behavior in response to changes in
the environment [1, 2]. Although automation is one desirable char-
acteristic of self-adaptation, certain adaptive systems benefit from
human involvement and oversight. For example, a human operator
may be able to detect events that are not directly observable by the
system, or possess knowledge that is external to those already built
into the system. In these cases, the system may be able to respond
more effectively to potential anomalies and achieve greater utility
when its adaptation decisions are guided by a human input [3–5].

One way to achieve this synergy for the system is by placing an
operator in-the-loop between the self-adaptation framework and
the environment as a deciding authority. A variant of human-in-
the-loop is human-on-the-loop, in which the operator plays a less
central role; in this approach, the operator periodically monitors
the interaction between the machine and the environment, and
intervenes only when deemed necessary (e.g., to avert potentially
anomalous behavior) [6]. In this paper, we focus on self-adaptive
systems that employ a human-on-the-loop approach. Note that in
this context the “system” consists of a machine, human operator,
and the environment.

Figure 1 depicts a closed-loop adaptive system in which a human
operator is engaged on-the-loop. The dynamic behaviors exhibited
by the environment (which may be an occurrence of certain events
or changes in the environmental state) are periodically monitored
by a set of sensors. Given these sensor readings, the controller will
perform an analysis of available actions and their potential outcome
on the system utility, and plan corresponding adaptation decisions
to be enacted by the actuators. The role of the human operator on
the loop is to observe the adaptation decision made by the controller
and determine whether this decision is appropriate or potentially
erroneous (i.e., likely to degrade the overall utility or lead the system
into an unsafe state). In the latter case, the operator may interfere in
this control loop by overriding the commands sent to the actuators
or, in the worst case, pausing or shutting down the system.

An important factor behind the operator’s decision to interfere
or not is their level of confidence in the machine; that is, the degree
of one’s belief that the adaptation decision made by the machine,
if followed, will yield a desirable outcome on the system utility.
The operator is more likely to interfere if they have lower confi-
dence in the capability of the machine to produce correct decisions;
conversely, the greater the level of confidence, the more likely the
operator is to allow themachine to carry out its adaptation decisions
autonomously.

Prior works have investigated the role of explanation as a mech-
anism to improve an operator’s trust in the behavior of an au-
tonomous system [7, 8]. Our conjecture, which we investigate in
this paper, is that in the context of self-adaptive systems, appropriate
explanations can be used to aid an operator in dynamically calibrating
their level of confidence in adaptation decisions made by a machine.
When an explanation is provided along with a control decision,
under the right conditions, the operator may gain a higher level of
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Figure 1: A human-on-the-loop self-adaptive system.
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confidence that the machine is following the right course of adap-
tation decision, and thereby be more likely to allow the machine to
continue with its recommended course of decision.

Though explanations might yield positive effects on system out-
comes, they also incur costs to system operation. In particular, the
operator needs time and mental effort to comprehend this informa-
tion. This, in turn, may delay actions or in an extreme case, cause
overload of information to the operator. Hence, given the space
of potential costs and effects of an explanation, it may not always
be apparent when it is beneficial to provide an explanation (e.g.,
whether its potential benefit outweighs the cost), or what type of
information must be provided as part of the explanation. Therefore,
a human-on-the-loop system that uses explanations to steer human
decisions must consider the trade-offs between the costs and effects
of alternative explanations (including not giving one at all) and
select one that is optimal in the given environmental context.

In this paper, we provide a theoretical framework to specify and
reason about the effects of explanations on the human-on-the-loop
in self-adaptive systems. In particular, our framework defines an
explanation in terms of three major components: (1) explanation
content, describing the types of information provided as part of an
explanation; (2) effect, describing how an explanation can impact
the operator’s level of confidence in supervisory control decisions;
and (3) cost, specifying the cost involved in comprehending an
explanation. Using this, we provide an approach for synthesizing
an explanation strategy for human-on-the-loop systems based on
probabilistic model checking [9]. An explanation strategy describes
what explanation (if any) should be provided at a particular point
in the execution of a system. The key idea here is to use non-
determinism to under-specify the components (i.e., content, effect,
and cost) of an explanation candidate, and have the model checker
resolve the non-deterministic choices and synthesize an explanation
strategy so that the expected system utility is maximized.

Our main contributions are:
• A formal framework for designing human-on-the-loop self-
adaptive systems where an explanation can be used to aid the
human operator to improve the utility of the overall system;

• The use of probabilistic model checking to perform the syn-
thesis of optimal explanations,

The rest of the paper is structured as follows. Section 2 provides
a formal definition of explanations, and Section 3 provides a tech-
nique for explanation selection using probabilistic model checking
while Section 4 presents the analysis results and discussion. Sec-
tion 5 discusses related work and Section 6 concludes the paper.

2 EXPLANATIONS: FORMAL FRAMEWORK
In our approach, an explanation is defined as a triple Exp = ⟨ content,
effect, cost ⟩. In the following, we introduce a motivating example
and describe how the three components of an explanation can be
formally modeled. We also motivate why it is important to consider
the trade-offs between the effect and cost of an explanation.

Running example. Consider a self-driving car that is capable of
combining a variety of sensors (such as radar, sonar, camera, etc.) to
perceive pedestrians and other objects in the environment andmove
safely with little or no human input. A software controller interprets
sensory information and identifies appropriate navigation paths

Scenario 1 Scenario 2

Figure 2: Self-driving vehicle scenarios.

and operations. The driver in this system acts as a human-on-the-
loop and may intervene to reduce risks or prevent accidents in
dangerous situations.

Consider two possible scenarios involving a self-driving car, as
shown in Figure 2:

• Scenario 1: Another car is approaching from the opposite
direction, and the driver sitting in the ego vehicle decides
that it would be safer to move the car to the right to avoid a
potential collision. However, the self-driving car makes an
adaptation decision to stop in this situation because it has
detected a child on the right front. For the driver, although
he observes the oncoming car, the child is out of sight (grey
triangle).

• Scenario 2: A large truck is turning right in front of the ego
vehicle. However, the machine makes a decision to go ahead
at full speed because it identifies the truck as a highway
overpass. Though humans can easily distinguish a truck
and an overpass and derive at the safer decision of slowing
down or stopping, the machine is not able to do so due to its
limited perception capabilities. This scenario is similar to a
recent accident involving the autopilot software in a Tesla
vehicle [10], where the system failed to recognize the truck
in time (which would have been seen by a human driver).

In the remainder of this section, we will revisit these two scenarios
in the context of our explanation framework.

2.1 Explanation Content
The content of an explanation corresponds to the type of informa-
tion that the explanation provides to the human operator. In our
approach, an explanation is intended to justify why the system
has made a decision to behave in a particular way (e.g., perform a
particular action or transition to a different state from the current
state). To capture this intent, we encode two types of information in
the explanation content: (1) the current state, and (2) the transition
of the machine that are relevant to the decision being made by the
machine. Let us motivate the design of explanation content using
the following example.

A well-known class of problems, known as automation sur-
prises [11, 12], occur in human involvement when the machine
behaves differently than its operator expects. Two reasons are iden-
tified as accounting for these problems. One is that the operator
may know only a subset of the information that the machine has
(e.g., the presence of child in Scenario 1). The other is due to addi-
tional information from the environment that is hidden from the
machine but known to the operator (for example, the presence of
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a truck instead of an overpass in Scenario 2). Both the machine
and the operator analyze and plan adaptation decisions for a given
situation using their information and reasoning process. But since
they have asymmetric information about the environment, there
might be differences between their adaptation decisions.

To formally define what constitutes an explanation, we first
model the information that the machine and the operator possess.
Machine information is defined as a tuple 𝑀𝐼 = ⟨𝑆𝑀 ,𝑇𝑀 ⟩, where
𝑆𝑀 represents the set of states while 𝑇𝑀 is the transition function.
For example, 𝑆𝑀 may encode the status of sensors and actuators
inside a self-driving car, and 𝑇𝑀 may describe how the action of
the controller modifies the states of the actuators. Similar to the
machine information, environment information is defined as a tuple
𝐸𝑁𝑉 𝐼 = ⟨𝑆𝐸 ,𝑇𝐸⟩, representing the state of the environment and
how this state will change based on the actions of the agents in the
environment, respectively.

Then, the information possessed by the human operator is de-
fined as a tuple 𝐻𝐼 = ⟨𝑆𝐻 ,𝑇𝐻 ⟩, where the state in the operator’s
mind is the union of partial environment state and partial machine
state, i.e., 𝑆𝐻 = 𝜌𝑆 (𝑆𝑀 ) ∪ 𝜌𝑆 (𝑆𝐸 ). For example, in Scenario 1, the
driver can observe the oncoming car, which is part of machine
information since the oncoming car can be detected by the sensors.
However, the driver may additionally be able to access part of the
environment state (which cannot be observed by the machine), such
as the incoming truck. The transition set in the operator’s mind,
i.e.,𝑇𝐻 = 𝜌𝑇 (𝑇𝑀 ) ∪𝜌𝑇 (𝑇𝐸 ) is also the union of partial environment
transition and partial machine transition.

The explanation provided by the machine to the operator con-
tains partial information about the machine state (𝜌𝑆 (𝑆𝑀 )) and
transition (𝜌𝑇 (𝑇𝑀 )), describing why the machine has decided to
perform a particular action. For instance, sensorLeftFront = car&
sensorRightFront = child represents the state in which the ego vehi-
cle has detected another car in its front left and a child in the front
right. In addition, sensorLeftFront ≠ null& sensorRightFront ≠

null =⇒ Stop is a representation of a machine transition, which
states that the ego vehicle will stop when it has detected objects in
both its front right and left.

2.2 Explanation Effect
In our approach, wemodel the effect of an explanation as calibrating
the operator’s belief that the system is behaving in a desirable or
undesirable way.

There are two cases that we consider. First, an explanation can
potentially enable the operator to gain more confidence that the
system is making the right adaptation decision. Here, the right deci-
sion is one that would lead the system into a state with a desirable
outcome (e.g., a high utility value). With additional information
supplemented by an explanation, the operator is more likely to
accept the machine decision without interfering in it, especially
when the operator has limited observations about the system.

On the other hand, the machine may sometimes make an adap-
tation decision that is undesirable, in that it leads the system into
a state with a low utility. This may occur, for example, due to de-
sign faults or security attacks that cause the machine to make a
suboptimal decision. In these cases, additional information in an
explanation may inform the operator of this undesirable behavior

right wrong
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Figure 3: Effect of an explanation as influencing the proba-
bilities that the operator agrees or disagrees with the deci-
sion by the machine.

and encourage them to intervene; we capture this as having the
effect of decreasing the operator’s confidence in the machine.

The explanation effect is formally defined as function expEff:
⟨𝑃𝑟, 𝑃𝑟 ⟩ → ⟨𝑃𝑟, 𝑃𝑟 ⟩, mapping a pair of probabilities (i.e., proba-
bilities of true-positive 𝑥 and true-negative 𝑦) to another pair of
probabilities. False-positive, denoting the likelihood that the opera-
tor approves a wrong adaptation decision by the machine, can be
determined by the true-negative (i.e., 1−𝑦). Similarly, false-negative
can be determined by the true-positive (i.e., 1−𝑥 ) and describes the
situation of unnecessary human interference following a correct
adaptation decision from the machine. These are also known as
type I and II errors in statistical hypothesis.

Initially, the operator is assigned some true-positive and true-
negative probabilities based on their existing view of the system.
For example, the driver may equally oscillate between their own
adaptation decision and machine adaptation decision if they cannot
judge which is more reliable, yielding the true-positive and false-
negative values of 0.5 each in Scenario 1 and the true-negative and
false-negative of 0.5 in Scenario 2.

The effect of an explanation on the operator is modeled as re-
ducing the probabilities of the operator making false-negative and
false-positive errors (i.e., the probabilities of true-positive and true-
negative, respectively, will be increased). In Scenario 1, given the
information about the presence of the child in front of the vehicle,
the driver is more likely to believe that stopping is a better action
than turning right, thus decreasing the probability of operator in-
terference. In contrast, the driver may be encouraged to intervene
and apply the brake in Scenario 2 if an explanation reveals that the
vehicle (mistakenly) assumes the presence of an overpass instead
of the truck. Figure 3 summarizes explanation effects as causing
changes in false-negative or false-positive probabilities by Δ𝑥 and
Δ𝑦, respectively.

2.3 Explanation Cost
Explanation does not come for free; it also incurs costs. In particular,
the operator needs time and energy to comprehend this information.
In a self-driving system, prompt response from the driver is vital
in an emergency, and an explanation might delay the reaction time
and distract the driver due to the overload of information. Given
this, it is not immediately apparent when to explain; the system
needs to consider the trade-offs between the costs and benefits that
a particular type of explanation brings. In this work, we simplified
the cost as an abstract value that could represent, for example, the
human annoyance due to the overload of information, or delays due
to the time spent on explanation comprehension. More discussion
on explanation cost can be found in subsection 4.1.

Hence, given a pool of explanation candidates, by balancing
the effect and cost that the explanation brings for the system, the
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explanation with the highest utility will be selected to the operator,
or no explanation will be provided if the cost outweighs its benefits.

3 EXPLANATION SELECTION
In this section, we describe an approach to the explanation selec-
tion problem; i.e., deciding what information to include as part
of an explanation to the operator. In the running example, intu-
itively, a good explanation for Scenario 2 might only point out the
mis-identification of an overpass, assuming the driver is experi-
enced. However, for a novice driver, an explanation that includes
more details might be more useful, although a more verbose expla-
nation may incur additional operator cost in comprehending the
information. Thus, selecting an explanation must take into account
potential trade-offs between its potential benefit and cost.

The key idea of solving the explanation selection problem is to
leave the explanation under-specified in the model through non-
deterministic behavior [13, 14]. In this work, we use the PRISM
tool [15], which supports reasoning about well-known behavioral
specifications, such as Markov Decision Processes (MDPs) [16]
and probabilistic timed automata (PTAs) [17], along with support
for non-determinism. In particular, PRISM is used to synthesize a
strategy that maximizes the expected utility.

In our approach the human operator and machine are specified
as processes that are composed in the MDP model. Processes are
abstracted and simplified, containing only the variables that are
necessary to compute the value of the utility and to keep track of
how the machine and human changes when the explanation is used.
In this model, we only focus primarily on whether an explanation is
worthwhile to be provided, as the extension tomultiple explanations
is straightforward.

3.1 Machine Model
The machine is modeled over its evolution of one decision-making.
A part of machine behavior is shown in Figure 4. Four steps will be
considered in one horizon. First, the machine makes an adaptation
decision, which is probabilistic. That decision might be a correct
or an incorrect one. (For example, it would be optimal to stop the
car in Scenario 1, and incorrect to go ahead in Scenario 2. If it is
the right decision, as illustrated in the upper part of the figure
(the other option is not shown for simplicity), the machine can
provide an explanation to the operator or choose not to, which is

Figure 4: Fragment of machine behaviors.

the explanation strategy the machine can choose to resolve the
non-determinism. After that, the final action is executed, such as
stopping the car if without human interference. The probability of
interference is based on the human operator’s capability for making
correct oversight decisions (i.e. the probability of true-positive and
false-negative). Finally, the successor state after the final action will
be assigned an utility value over the look-ahead horizon. Usually,
the optimal states, such as two states with annotation “case_TP" will
be assigned with higher utility where the machine makes a correct
adaptation decision and performs that decision without human
interference. In contrast, false-negative states (with the annotation
“case_FN") will typically accrue less utility as human erroneously
rejects the right system decision.

1 module machine
2 macStep : [ 0 . . 4 ] i n i t 0 ;
3 macDec is ion : [ 0 . . 2 ] i n i t 0 ;
4 macCase : [ 0 . . 4 ] i n i t 0 ;
5

6 [ ] macStep = 0 & macDec i s ion = 0 −>
7 ProMac : ( macStep ' = 1 ) &(macDecis ion '= good )
8 + (1−ProMac ) : ( macStep ' = 1 ) &(macDecis ion '= bad ) ;
9

10 [ g i v e _ e x p l a n a t i o n ] macStep =1 −> ( macStep ' = 2 ) ;
11 [ no_exp l ana t i on ] macStep =1 −> ( macStep ' = 2 ) ;
12

13 [ ] macStep =2 & macDec i s ion=good −>
14 TP : ( macStep ' = 3 ) &(macCase '= case_TP )
15 + FN : ( macStep ' = 3 ) &(macCase '= case_FN ) ;
16 [ ] macStep =2 & macDec i s ion=bad −>
17 TN : ( macStep ' = 3 ) &(macCase '= case_TN )
18 + FP : ( macStep ' = 3 ) &(macCase '= case_FP ) ;
19

20 [ per form ] macStep =3 −> ( macStep ' = 4 ) ;
21 endmodule

Listing 1: Machine model

Generating the PRISM code representing the MDP for the ma-
chine behavior is straightforward. Listing 1 shows its specification
in PRISM. Three variables represent the state of the machine. The
first one is “macStep" encoding the different four steps mentioned
previously. The transition out of each step can be encoded directly
as commands in PRISM1. Variable “macDecision" denotes the adap-
tation decision that the machine makes. The first command (line
6-8) will advance the step of adaptation decision making, leading to
a probabilistic behavior. With the probability of “ProMac" which is
defined and initialized as a global variable, the machine makes a cor-
rect decision. The action “give_explanation" and “no_explanation"
in lines 10-11 are used to synchronize the transitions between the
machine and the human. These two commands overlap with the
same guard introducing non-determinism in explanation selection.
“macCase" records the state the machine will enter after the explana-
tion selection. With the probability of “TP" and “FN", the machine
will enter an optimal or suboptimal state with interference when
the machine decision is correct in lines 13-15. Meanwhile, the prob-
ability will be “TN" and “FP" when the machine decision is wrong.

1MDPs are encoded in PRISM with commands like: [action]guard→ 𝑝1 :𝑢1 +... + 𝑝𝑛
: 𝑢𝑛 where guard is a predicate over the model variables. Each update 𝑢𝑖 describes
a transition that the process can make (by executing action) if the guard is true. An
update is specified by giving the new values of the variables and has an assigned
probability 𝑝𝑖 ∈ [0, 1]. Multiple commands with overlapping guards (and probably,
including a single update of unspecified probability) introduce local non-determinism.
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Finally, the machine will perform the last step, representing the
expected utility the machine will obtain in this decision making,
which will be described and calculated in the reward subsection 3.3
below.

3.2 Human Model
The specification of the human module is shown in Listing 2. Lines
7-8 describe two variables “HuYes_MacGood" and “HuNo_MacBad"
that capture the human’s confidence in machine decisions. They
range from 0 to 100, as variables in the processes in PRISM cannot
be specified as a decimal. They are initialized with some constants
that represent the initial confidence a human has based on his
existed information at the time the machine adaptation decision is
invoked; that is, at the beginning of the decision horizon. And the
probabilities of TP, FP, TN, and FN can be acquired by normalizing
these two variables as shown as formula in lines 1-4. For example,
the initial four probabilities for a driver novice could be all 50% with
random guessing. Another Boolean variable “exp_received" denotes
the status of receiving an explanation or not and is initialized with
a false value.

1 fo rmula TP = HuYes_MacGood / 1 0 0 ;
2 fo rmula FN = 1−(HuYes_MacGood / 1 0 0 ) ;
3 fo rmula TN = HuNo_MacBad / 1 0 0 ;
4 fo rmula FP = 1−(HuNo_MacBad / 1 0 0 ) ;
5

6 module human
7 HuYes_MacGood : [ 0 . . 1 0 0 ] i n i t in i t i a l_HuYes_MacGood ;
8 HuNo_MacBad : [ 0 . . 1 0 0 ] i n i t in i t i a l_HuNo_MacBad ;
9 e xp_ r e c e i v e d : boo l i n i t f a l s e ;
10

11 [ g i v e _ e x p l a n a t i o n ] t r u e −>
12 ( HuYes_MacGood '= HuYes_MacGood+Del ta_X )
13 &(HuNo_MacBad '=HuNo_MacBad+Del ta_Y )
14 &( exp_ re ce i v ed '= t r u e ) ;
15 [ no_exp l ana t i on ] t r u e −>
16 ( HuYes_MacGood '= HuYes_MacGood )
17 &(HuNo_MacBad '=HuNo_MacBad ) ;
18 endmodule
19 \ v space { −0 . 2 1cm }

Listing 2: Human model

Lines 11-14 describe a command that captures how the hu-
man confidence can be calibrated and updated with the action
“give_explanation” synchronized with machine module, i.e., adding
the effect of an explanation “Delta_X" and “Delta_Y” to two vari-
ables representing human confidence. Correspondingly, the value
of the formula in lines 1-4 will be updated to reflect these changes,
which will affect the probabilistic behavior of the machine (line
13-18 in Machine module). The variable “exp_received” will also
be set to true. On the contrary, lines 15-17 depict the command
where no explanation is received from the machine, and here all the
variables will remain the same. So does the confidence in machine
decision. Here we assume one decision making is a short period
where human’s confidence in the machine will not degrade even
if machine decision making is different and opaque to the human.
However, when the time passes without explanation, the complex
analysis, and planning of the machine will probably make human
operators lose trust, i.e., reducing the probability of true-positive
and true-negative.

Here only one explanation with its effect is shown both in hu-
man and machine modules. As described in section 2, a pool of
explanation candidates with various effect, i.e., different “Delta_X”
and “Delta_Y” values can be specified as commands for possible
explanation candidates in the explanation selection problem.

3.3 Explanation Selection
Explanation selection is carried out after the machine model has
made an adaptation decision. The input to the probabilistic model
checker is the composition of above two modules. Then, we need
to specify the property of the model that must hold under the
generated strategy. In this case, the desired property is to maximize
overall system utility. In PRISM, this property is expressed as

𝑅
𝑠𝑦𝑠𝑈𝑡𝑖𝑙𝑖𝑡𝑦

𝑚𝑎𝑥=? [𝐹𝑐𝑒𝑛𝑑]

where “sysUtility" is the reward structure specified in Listing 3,
and end is a predicate that indicates the end of the execution in a
decision horizon. Such a reward construct in lines 9-12 assigns the
value, which is the sum of machine performance and human cost to
the transition labeled with action “execute”. Machine performance
is decided by the state in which the machine will enter in lines 1-5.
For example, the utility of “Utility_Case_TP” will be assigned if the
machine enters a case “caseTP” where it makes the right decision
without human interference. These utility values are specific to
different situations – such as in self-driving system, the mistakes of
turning right (i.e., false negative) in Scenario 1 or going ahead with
the full speed (i.e., false positive) in Scenario 2 is pretty high, and the
differences between utility of “case_TP” and “case_FN” and between
utility of “case_TN” and “case_FP” will be significant since these
are all critical decisions. However, the differences might be minor
in non-critical systems. The human cost is an abstract value based
on whether the human receives an explanation and translated with
a positive shift because PRISM does not allow negative rewards.

1 fo rmula machine_per formance =
2 ( macCase=caseTP ? U t i l i t y _Ca s e _TP : 0 )
3 + ( macCase= caseFP ? U t i l i t y _C a s e _ F P : 0 )
4 + ( macCase=caseFN ? U t i l i t y _Ca s e _ FN : 0 )
5 + ( macCase=caseTN ? Ut i l i t y _Ca s e_TN : 0 ) ;
6 fo rmula human_cost =
7 ( e xp_ r e c e i v ed = t r u e ? 0 : Cost ) ;
8

9 rewards " s y s U t i l i t y "
10 [ e x e cu t e ] t r u e :
11 machine_per formance+human_cost ;
12 endrewards

Listing 3: Reward structure

4 ANALYSIS
To further investigate under what conditions an explanation should
be provided, we statically analyze the MDP model described above
with a region of the state space, which is projected over three
dimensions that correspond to the 1) cost of mistakes; 2) explanation
effect; 3) cost of explanation (with values in the range [0,1], [0,100%],
[0,1] respectively). To be more specific, cost of mistakes denotes
subtracting the high utility value with correct cases (“case_TP"
and “case_TN") from the low utility with incorrect cases (“case_FN"
and “case_FP") and with normalization; explanation effect averages
the value of “Delta_X" and “Delta_Y"; cost of explanation is the
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single abstracted value representing the cost explanation brings.
We plot two three-dimensional graphs with R [18], as shown in
Figure 5. These two cubes encompass all the condition points where
it is beneficial to explain, while the remaining part of the three-
dimensional state space represents the unnecessary conditions.
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Figure 5: (a) Explanation conditions for a novice (left); (b)
explanation conditions for an expert (right).

We can conclude the following from the graphs: 1) when the cost
of mistakes is close to zero, there is more space where the explana-
tion will not be provided than those in a high cost of mistakes; 2)
when the explanation effect is not obvious (i.e., near zero), which
means the human cannot gain much useful information from the
explanation to increase the probabilities of true-positive and true-
negative, explanation is not necessary for these conditions; 3) when
the cost of explanation increases, the chance of explaining will
decrease with the gradually decreasing horizontal cross-sectional
area of the cube as it is less likely the benefits could outweigh its
cost. These conclusions are all consistent with our intuitions.

In addition, graph (a) depicts the conditions for a novice, while
(b) is for an expert, who has more information than the machine
does and is initialized with higher initial probability of true-positive
and true-negative. The differences between two graphs show that
the cube volume for a novice is greater than that for an expert as
the cube height is around 1 while it reaches 0.8 at most for the
expert. Moreover, the area of each horizontal cross-section for an
expert is much smaller than each for a novice. This matches our
expectation that a novice operator may need to be provided with an
explanation more frequently than an expert with more knowledge
about the system operation. The interested reader is referred to [19]
for more details on an applied case study.

4.1 Limitations and Discussions
Our framework relies on an assumption that the probabilities be-
hind confidence levels as well as explanation effect can be accu-
rately measured. In our group, an ongoing research project with
an empirical user case study is exploring how such probabilities
may be obtained through experimentation [20]. In addition, the
cost of an explanation may not be easy to measure for different
operators. One way to overcome this challenge is by assigning the
cost based on the complexity of information in the explanation
content, e.g., the amount of the information. A qualitative estimate

of time for the operator to understand the explanation could be
another approach [21].

Another current limitation of our study is that to simplify the ex-
planation selection problem, the overall system utility is computed
as a single objective by merging multiple attributes. However, it
may not always be appropriate to compare and aggregate certain
types of attributes, such as human cost and system performance. In
such cases, formulating explanation selection as a multi-objective
optimization problem with Pareto-optimal solutions as alternative
candidate explanations may be a more suitable approach [22]. In
addition, our initial investigation suggests a number of further re-
search questions to be explored, such as how to find the optimal
information as an explanation candidate, to maximize the overall
utility, and how to take the time delay between decision making
and human interference into consideration.

5 RELATEDWORK
Research on explanation has surged recently especially in the field
of artificial intelligence, with the notion of eXplainable Artificial In-
telligence (XAI) [23]. However, over three decades ago, explanation
has been investigated with prosperity in expert systems [24–26].
There also exists an extensive literature on explainable agents and
robots, with applications in factory environments [27], military mis-
sions [28], human players [29], training [30], e-health [31] and rec-
ommendation systems [32]. However, in the context of self-adaptive
systems, explanations have been relatively little studied. This di-
rection is necessary to support any human-system interaction and
confirmed by the ratification of General Data Protection Regulation
(GDPR) law which underlines the right to explanations [33].

Several existing works investigate methods to explain why a sys-
tem produces particular behaviors. The work in [34] describes how
the state of the machine is captured in a human’s mind. When the
behavior of an agent is not explained, the human’s understanding
may not be consistent with the real system state, which could lead
to dangerous situations. Also, lack of a mental model for the human
estimating the actions of robots may lead to safety risks [35, 36].
Lin et al. propose an automatic explanation technique for differ-
ent types of explanations and decision models [21]. Chakraborti et
al. introduces the model reconciliation problem as aiming to make
minimal changes to the human’s model to bring it closer to the
robot’s model [37]. Elizalde et al. propose an approach that identi-
fies factors that are most influential to the decision making with
MDP [38]. Khan et al. present an approach for explaining an opti-
mal action in policy by counting the frequency of reaching a goal
by taking the action [39]. Sukkerd et al emphasized contrastive
justification based on quality attributes and presented a method
for generating an argument of how a policy is preferred to other
rational alternatives [40]. However, most of their work only focuses
on the explanation generation and does not capture the explanation
effect nor the cost of an explanation.

6 CONCLUSIONS
Within the context of self-adaptive systems, some human involve-
ment as an operator is crucial. The machine may behave differently
than the human operator expects, resulting in the problem known
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as automation surprises. In order to calibrate the operator’s con-
fidence in machine adaptation decisions, we present a theoretical
framework for explanations and a technique for synthesizing ex-
planations based on probabilistic model checking. In our future
research, we plan to further elaborate on the theoretical aspects
of our framework (e.g., the cost and effect of an explanation) and
demonstrate its applicability by applying it to practical scenarios.
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