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ABSTRACT
A common type of security analysis involves checking whether

a system is capable of establishing a set of security requirements

under a particular threat model. Building an accurate threat model,

however, is a challenging task due to the uncertain and evolving

nature of a malicious environment in which the system is deployed.

In this paper, as a complementary analysis, we propose a systematic

approach for evaluating the design of a system with respect to its

robustness against an adversarial environment; i.e., the degree of

assumptions about attacker capabilities under which the system

is capable of maintaining its security requirements. We argue that

robustness is an important property that should be considered as

part of any secure development process. In this paper, we propose

a formal definition of robustness, and describe a technique for au-

tomatically evaluating the robustness of a system. We demonstrate

potential applications of the robustness concept using an example

involving the OAuth authentication protocol.
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1 INTRODUCTION
A common type of security analysis centers around the following

question: Given a system (S), a desired security requirement (R)
and a threat model (T ) that describes the capabilities of an attacker,

does the system satisfy the requirement under the presence of such

an attacker (i.e., S ∥ T |= R)?
One of the most challenging steps in this process is building an

accurate threat model. Modern software systems are deployed in a
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highly dynamic, heterogenous environment (such as the Internet),

and it is difficult, if not impossible, to identify all relevant ways

in which a malicious actor may attempt to compromise the sys-

tem. To make the matter worse, as the environment evolves over

time, the threat model that the designer originally had in mind

may become invalid, undermining the security of the system. For

example, OAuth, a popular authorization protocol, has been shown

to be vulnerable to new attacks when it became re-purposed for

deployment in mobile applications (beyond the original target of

websites) [9].

In this paper, we propose a complementary type of analysis:

Given a system and a security requirement, what are the strongest
attackers against which the system is capable of satisfying the

requirement? In particular, we use the term robustness (∆) to denote
the capabilities of such attackers. Robustness captures the extent
to which the system can tolerate the behaviors of malicious actors
while providing a desired level of security; i.e., the system is secure

against any attackers that are no more powerful than those in ∆.
On the other hand, under the presence of an attacker that has more

capabilities than captured by ∆, the system may no longer be able

to guarantee the same level of security.

Intuitively, robustness encodes a set of assumptions that the
system makes about potential adversaries in its environment. For

example, such an assumption may describe which of the system

interfaces the attacker is able to manipulate, or whether the attacker

has knowledge of a potentially sensitive piece of information about

users. These assumptions, however, often remain implicit during

a development process, and when violated, may undermine the

security of the system [4, 38]; our goal is to provide a systematic

approach for explicating and reasoning about assumptions.

We further argue that robustness itself can be considered a prop-

erty of software design, and that it enables a new set of security

analysis tasks to be performed as part of a secure deployment cycle:

• Will my system be secure if deployed in the current envi-

ronment? (i.e., is the current threat model T weaker than

∆?)
• Howmuch uncertainty or change in the threat model can my

system tolerate? (i.e., what additional attacker capabilities

in ∆ beyond T can S tolerate?)

• Given a pair of alternative designs (S1 and S2), is one more ro-

bust than the other? (i.e., does ∆1 describe stronger attackers

than ∆2 does, or vice-versa?)

In this paper, to systematize and enable tool support for these

analysis tasks, we first propose a formal definition of robustness.

Then, building on this foundation, we describe a technique for

automatically computing robustness from a formal description of a
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system and its security requirement. We demonstrate our approach

through an example involving the design of the popular OAuth

authorization protocol [25].

2 EXAMPLE
As amotivating example, consider OAuth [25], a popular third-party

web authorization protocol. It is designed to allow an application

(called a client in the OAuth terminology) to access a resource

owned by a user (user-agent) on another application (authorization
server) without needing the user’s credentials. Although the proto-

col was designed for third-party authorization, its most common

usage is for authentication, where the user is given an option of

authenticating themselves with a client by using existing creden-

tials from another organization (e.g., Google, Facebook), instead of

creating a new account with the client.

A high-level overview of the protocol, based on the official spec-

ification for OAuth 2.0 [25], is shown in Figure 1. A typical OAuth

session begins with the user initiating the protocol with the client

(Step 1). The user must then prove her identity to the server through

authentication (Step 2), after which the server provides a unique

authorization code to be forwarded to the client (Steps 3-4). Having

obtained this code from the user, the client then presents it to the

server in order to obtain a corresponding access token (Steps 5-6),

which can subsequently be used to access the user’s resources.

One of the desirable security requirements of OAuth is called

the session integrity property [16]; i.e.,

When the client receives an access token at the end of the
protocol, the token must represent the user who initiated
the same protocol session.

This requirement may be violated, for example, when a malicious

actor (called Eve) is able to deceive the client into associating an

access token intended for a victim user (Alice) with Eve’s account on

the client; consequently, Eve may be able to access Alice’s resources

on without needing the latter’s credentials.

Suppose that we are given the task of analyzing the protocol to

check whether it satisfies the desired security requirement (in this

case, session integrity). A typical next step would involve coming

up with a threat model that describes the capabilities of an attacker.

In the context of OAuth, the attacker may carry out a variety of

malicious actions in order to compromise the requirement. For ex-

ample, the attacker may impersonate a user agent, interacting with

the client to initiate a protocol session and obtain an authorization

code from the server. Alternatively, the attacker may also pose as

the client or the server, in order to manipulate the user agent into

forwarding an authorization code to an unintended location and

undermine session integrity [32, 36].

Coming up with an accurate and comprehensive threat model,

however, is a time-consuming and challenging task. The official

threat model for OAuth 2.0 [18], for example, lists over 40 poten-

tial threats (i.e., attacker actions); devising such a list requires a

significant amount of security expertise, beyond that of an aver-

age software developer. In addition, not all threats are equal, and

only some subset of these may be relevant to a particular security

requirement being established.

A different kind of security analysis is to ask the following: Under

what types of attackers can the protocol ensure session integrity?

Authorization 
ServerClient

User Agent

1 2

34

5

6
1. Initiate authorization process
2. Authenticate with user
    credentials 
3. Return authentication code
4. Forward authorization code
5. Present code for access token
6. Return access token

Figure 1: Overview of OAuth 2.0

This information (which we refer to by symbol ∆) may be useful to

the developer in a number of ways. First, by comparing ∆ to the list

of known threats on a target deployment environment (e.g., web

browser), the developer can decide whether it is secure to deploy

the protocol as it is, or whether additional security measures are

needed to address those threats that do not belong to ∆. As we will
later demonstrate in Section 4.2, the developer may also compare

∆’s of alternative protocols to determine which of them may be

more secure to use.

Our goal is to systemize and enable tool support for this type of

analysis. In the rest of the paper, we report on our preliminary work

towards this goal. In particular, we propose (1) a formal definition

of robustness for security, and (2) an approach for automatically

computing robustness from a formal specification of a system and

a desired security requirement.

3 ROBUSTNESS IN SECURITY
In this section, we first describe our approach to modeling the

behavior of a system and the capabilities of attackers. Then, we

propose a formal definition of robustness as the capabilities of the

most powerful attackers under which system can still satisfy a

desired security requirement.

3.1 Modeling Approach
Processes. In our approach, a system consists of a set of processes
that interact with each other by performing various types of events.
Let P denote the set of processes, E the set of events, andT the set of

traces, each of which is a finite sequence of events. Each process p
is associated with an alphabet (denoted α(p) ⊆ E), which describes

the set of events that it may perform. Trace t is considered a trace

of process p if t describes one possible sequence of events that

can be observed from p. Then, the overall behavior of p, denoted
beh(t) ⊆ T , is defined as the set of all traces of p.

To model interactions between a pair of processes, p and q, we
use the parallel composition operator (p∥q) similar to that of the CSP

process algebra [23]. In this composition, the processes interact by

synchronizing on events that are common to their alphabets; the

overall behavior of the composed process is defined as follows:

beh(p∥q) = {t ∈ T | t ∈ (α(p) ∪ α(q))∗∧

(t ↾ α(p)) ∈ beh(p) ∧ (t ↾ α(q)) ∈ beh(q)}

where (t ↾ X ) is the projection of t onto the event set X .

Types. Each process p is associated with one or more types, which
are used to restrict the kinds of behaviors that the process is allowed

to engage in. The signature of type τ , denoted σ (τ ) ⊆ E, is the set
of events that can be performed by a process that has τ as one of its
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types. More formally, the following constraint is imposed on our

models of systems:

∀p ∈ P , e ∈ α(p) · ∃τ ∈ types(p) · e ∈ σ (τ )

One may find that allowing a process to be associated with multiple

types to be unusual. As we will see later, this allows a malicious

process to take on multiple roles (e.g., in OAuth, impersonating as a

client and an authorization server) with the goal of compromising

a system requirement.

Knowledge. Each process possesses knowledge about various

types of data that are used in the system (e.g., keys, messages,

nonces). The knowledge of a process may grow over time as it

interacts with other processes through events. More precisely, let

data value d ∈ D be an atomic entity that can be transmitted

from one process to another as one of the parameters of an event

(params(e) ⊆ D). Furthermore, each process is assigned a set of

initial knowledge that it possesses at the beginning of the system

execution (init(p) ⊆ D).
Then, the knowledge of the process, denoted knows(p, t), is de-

fined as the set of values that are accessible to p after executing

trace t :

knows(p, t) = {d ∈ D | d ∈ init(p)∨

∃e ∈ E · e ∈ events(t ↾ α(p)) ∧ d ∈ params(e)}

Informally, this states that process p can access a piece of data d
either by possessing it as part of its initial knowledge or engaging

in an event that carries the data as a parameter.

Example. A snippet of a model of the OAuth protocol is shown

below
1
:

P = {Alice, Eve,MyApp,Google}

types(Alice) = {UserAgent} init(Alice) = {aliceUID, alicePwd}

types(MyApp) = {Client} types(Google) = {AuthServer}

init(Google) = {aliceCode, eveCode, aliceUID, alicePwd, ...}

σ (Client) = {InitOAuth, ReturnCode,GetAccessToken}

σ (AuthServer) = {Authenticate,GetAccessToken}

σ (UserAgent) = {InitOAuth,Authenticate, ReturnCode}

The model consists of four processes, which interact with each

other through events that are common to their alphabets. For ex-

ample, Alice and MyApp (which are of type UserAgent and Client,
respectively) can interact with each other by performing two types

of events: InitOAuth and ReturnCode, corresponding to Steps 1 and

3, respectively, of the protocol workflow shown in Figure 1.

3.2 Attacker Capabilities
In our approach, the capabilities of an attacker are expressed in

terms of two concepts: (1) the amount of interactions that it is able

to engage in with other processes, and (2) knowledge about the

system that it may leverage for its attacks. For instance, one type

of attacker on OAuth may be capable of impersonating a client and

interacting with a victim user agent (e.g., Alice) through InitOAuth
and ReturnCode events. The same attacker may initially have access

1
Here, we focus on the structural aspect (i.e., types) of the protocol and omit the

behavioral specification of the processes, since the latter is not one of our contributions.

A paper detailing a trace-based model of OAuth (which also helped inform our model)

can be found in [16].

to some of the information about Alice (e.g., aliceUID, but not her
password alicePwd), and grow its knowledge over time through the

interaction with Alice (e.g., obtaining an authorization code when

Alice invokes ReturnCode on the attacker impersonating the client).

Formally, in our modeling approach, some of the processes in

the system are designated to be untrusted (i.e., untrusted ⊆ P ). For
example, in the OAuth example, we designate a process named Eve
to be one that is potentially under the control of an attacker:

untrusted = {Eve}

The capabilities of the attacker are then represented by the types

and initial knowledge of the untrusted processes. For instance, in

our OAuth example, suppose that we are given the following:

types(Eve1) = {UserAgent} init(Eve1) = {eveUID, evePwd, aliceUID}

The process Eve1 represents an attacker who is capable of acting

like an user agent and interacts with Client and AuthServer processes
through events InitOAuth, Authenticate, and ReturnCode. In addition

to its own ID and password, Eve1 is also given the knowledge of

Alice’s user ID to begin with.

A different type of attacker may be specified as follows:

types(Eve2) = {UserAgent,Client,AuthServer}

init(Eve2) = {eveUID, evePwd, aliceUID}

Under this threat model, Eve2 is capable of impersonating any of

the participants involved in the OAuth protocol. Arguably, Eve2 is
a more powerful attacker than Eve1, since Eve2 can engage in any

of the system events (i.e., α(Eve2) = σ (UserAgent) ∪ σ (AuthServer) ∪
σ (Client)) and has more influence on the protocol outcome.

3.3 Robustness Definition
Before defining robustness, we first define what it means for a

process to be more or less powerful than another.

Definition 3.1. Given a pair of processes, p,q ∈ P , p ≤ q if and

only if types(p) ⊆ types(q) and init(p) ⊆ init(q). Process q is also

said to be at least as powerful as p.

Informally, process q is at least as powerful as p if q can behave

like any of the processes that p can, and q has as much initial

knowledge as p. Note that ordering ≤ forms a partial order over the

set of processes. A pair of processes p and q may be incomparable,
in that p is not more powerful than q, or vice-versa. For instance,
suppose that

types(p) = {UserAgent} types(q) = {Client}

Process p and q are each capable to impersonating different compo-

nents and thus are not considered more powerful than each other.

Then, our notion of robustness for security is defined as follows:

Definition 3.2. Given process S and security requirement R, the
robustness of S with respect to R, denoted ∆(S,R), is a set of pro-
cesses (T ⊆ P ) such that:

(1) For every p ∈ T , S ∥ p |= R,
(2) For every p′ ∈ P such that S ∥ p′ |= R, there exists some

p ∈ T such that p′ ≤ p, and
(3) For every p,q ∈ T such that p , q, ¬(p ≤ q ∨ q ≤ p).
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Formally, statements (1), (2) and (3) together ensure that ∆ is the

set of all maximal elements of the partially ordered set of processes

that, when composed with S , satisfy R.
Informally, the robustness of system S represents the set of the

most powerful attackers under which the system is capable of es-

tablishing security requirement R. Conceptually, ∆ can be thought

of as the “upper bound” on the malicious behaviors in the environ-

ment that the system can tolerate. More powerful the attackers in

∆ are, more desirable it is, since it means that the system can be

securely deployed in a wider range of environments.

In the OAuth example, overall system process S is constructed

as the composition of trusted processes; i.e., S = Alice ∥ MyApp ∥

Google. Then, its robustness ∆(S,R) (where R is a specification of

the session integrity requirement) describes the most powerful

version(s) of Eve under which S can still ensure R.

4 ANALYSIS
4.1 Computing Robustness
We propose an approach for automatically computing robustness

given a model of the system model and a desired security require-

ment. In particular, we assume that the system model and require-

ment are specified in a declarative, constraint-based specification

language like Alloy [26]. Due to limited space, we will omit the

details of how the style of security modeling described in Section 3.1

can be specified in Alloy
2
.

Constraint-based specification. A specification S is a conjunc-

tion of first-order logic constraints (i.e., S = C1 ∧ C2 ∧ ... ∧ Cn )
over some set of variables v1,v2, ...,vk ∈ V . The specification S

is satisfiable if and only if there exists at least one instance that
involves an assignment of values to all of the variables; S is said

to be unsatisfiable if no such instance exists, indicating that the set

of constraints are logically contradictory. An unsatisfiable core UC
is some subset of constraints (i.e.,UC ⊆ {C1,C2, ...,Cn }) such that

UC is unsatisfiable [33]. An unsatisfiable core is said to be minimal
if removing any of the constraints fromUC renders it satisfiable. In

general, a specification may contain multiple minimal unsatisfiable

cores.

Suppose that we are given a constraint-based encoding (CS , CT ,
CR ) of a process-based model from Section 3.1, where CS specifies

the behavior of trusted processes (e.g., Alice, MyApp, and Google in
the OAuth example), CT the untrusted processes (e.g., Eve), and CR
the security requirement to be checked. Then, analyzing whether

the system can establish requirement R under attacker T can be

formulated as the problem of checking the unsatisfiability of the

following specification:

S(S,T ,R) ≡ CS ∧CT ∧ ¬CR

A satisfying instance to S would correspond to a possible system

tracewhere the requirement is violated by the actions of the attacker.

If, on the other hand,S is unsatisfiable, it means no such trace exists

and thus, the system can establish R under attacker T .
Approach. The high-level idea behind our approach to computing

robustness is to use a minimal unsatisfiable core to identify con-

straints over attacker capabilities that are needed to establish the

2
The details of modeling in Alloy can be found in [27], Chapter 5.

given requirement. Let Tw be a process that describes the weakest
attacker; i.e.,

types(Tw ) = ∅ init(Tw ) = ∅

One way to specify such an attacker using constraints is as CTw ≡

Ctypes ∧Cinit , where:

Ctypes ≡
∧

(τ < types(T )) for each type τ ∈ T

Cinit ≡
∧

(d < init(T )) for each data value d ∈ D

Intuitively, each of these constraints encodes a restriction about

the attacker capabilities—namely, that the attacker is not capable

of acting like a process of type τ , or that it does not initially have

access to a particular piece of data d .
For instance, the weakest attacker for the OAuth model can be

specified as follows:

CTw ≡ UserAgent < types(Eve) ∧ AuthServer < types(Eve)∧

Client < types(Eve)∧

aliceUID < init(Eve) ∧ alicePwd < init(Eve)∧

aliceCode < init(Eve) ∧ eveCode < init(Eve) ∧ ...

Under the weakest attacker, the system should satisfy the given

requirement; i.e., S(S,Tw ,R) ≡ CS ∧CTw ∧ ¬CR is unsatisfiable. A

minimal unsatisfiable core (MUC) extracted from this specification

contains some subset of constraints fromCTw ; let us call this subset
MUCT . By definition of a minimal core, if any constraint is removed

fromMUCT , the resulting specification will be satisfiable (i.e., there

will be a violation of the requirement). Thus,MUCT is a minimal

set of constraints on the attacker capabilities needed for the system

to establish its requirement.

Theorem 4.1. Given system S and requirement R, let CS and CR
represent a constraint-based specification of S and R, respectively;
let CTw be a specification of the weakest attacker. Furthermore, let
MUC be a minimal unsatisfiable core for specification S(S,Tw ,R),
and MUCT be the restriction of MUC to those constraints in CTw .
Then, the attacker capabilities represented byMUCT is equivalent to
one of the attackers in ∆(S,R).

Recall that specificationSmay containmultipleMUCs in general.

In particular, each of these MUCs describes one of the maximal

attackers in ∆(S,R) that are incomparable with each other with

respect to the ordering relation ≤ defined in Section 3.3. Thus,

robustness ∆(S,R) can be computed by finding the set of all MUCs

to specification S.

Theorem 4.2. LetM = {MUC1, ...,MUCk } be the set of all min-
imal unsatisfiable cores for specification S(S,Tw ,R), and MT =

{MUCT1 , ...,MUCTk } be their restrictions to the constraints in CTw .
Then, the attackers represented byMT are equivalent to ∆(S,R).

Example. Given CTw for the weakest OAuth attacker above, a

minimal unsatisfiable core to specification S ≡ CS ∧ CTw ∧ CR
consists of the following constraints:

MUCT ≡ AuthServer < types(Eve) ∧ Client < types(Eve)∧

alicePwd < init(Eve)
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The set of constraints in MUCT represents an attacker with the

following capabilities:

types(Eve) = {UserAgent}

init(Eve) = {eveUID, evePwd, aliceUID, eveCode, aliceCode}

This result states that the OAuth 2.0 protocol is robust against any

attacker that is at most capable of impersonating a user agent and

may have access to the authorization codes. However, against a

more powerful attacker, the session integrity of the protocol may

no longer be guaranteed. For example, an attacker who is capable

of impersonating a client or an authorization server may be able to

trick the victim client into associating Alice’s session with Eve’s

account, thus giving the latter access to Alice’s account (some of

these attacks are described in [37]).

Implementation. As a proof-of-concept, we implemented our ap-

proach to computing robustness using the Alloy Analyzer [26], an

analysis engine associated with the Alloy language. The analyzer

works by translating an input specification of a system to a Boolean

satisfiability problem (SAT), which is then solved by an off-the-shelf

SAT solver to find a satisfying instance (if it exists).

If the underlying solver is capable of generating an (minimal)

unsatisfiable core, the Alloy Analyzer takes advantage of this infor-

mation by translating the core (which consists of a set of Boolean

clauses) back to higher-level constraints in the input Alloy specifi-

cation. Our approach to computing robustness takes advantage of

this feature. Given specification S(S,Tw ,R), a MUC produced by

Alloy highlights a minimal subset of the constraints in CTw ; this
subset describes the capabilities of one of the attackers in ∆(S,R).

The Alloy Analyzer, however, currently does not provide a way

to enumerate all of MUCs in a specification, which is required to

compute a complete representation of ∆(S,R). To work around this

limitation, we employ a naive approach for MUC enumeration by

repeatedly invoking the Alloy Analyzer in the following manner:

Given the previously generatedMUCi ⊆ CTw , we remove a single

types or init constraint c ∈ MUCi from CTw and attempt to gener-

ate another core on the modified specification S(S,T ′
w ,R), where

CT ′
w
= CTw − {c}. A MUC to this specification, if it exists, would

highlight a subset (denotedMUCj ) of constraints in CTw that may

overlap with but differs fromMUCi ; these two sets of constraints,

MUCi and MUCk , represent a pair of incomparable attackers in

∆(S,R). This process is then repeated until no more MUC is found

by the analyzer.

Our model of the OAuth 2.0 protocol was roughly 350 lines of

Alloy
3
. On a macOS machine with 2.7 GHz Intel Core i7 and 16 GB

of RAM, it took approximately 27 seconds to compute the robust-

ness for the OAuth protocol and the session integrity requirement.

Given that OAuth 2.0 is a non-trivial protocol used widely on the

web, we believe that the analysis time is reasonable. Furthermore,

the performance of this procedure can potentially be improved by

leveraging more sophisticated ways of enumerating MUCs [28, 29];

we plan to investigate such techniques as part of future work.

3
All of the Alloy models for the OAuth example can be accessed on https://github.

com/eskang/robustness-for-security.

4.2 Comparing Design Alternatives
As another application of robustness, we show how our approach

can be used to compare a pair of alternative system designs in terms

of their robustness.

In particular, we compare two different versions of OAuth—

OAuth 2.0 and its predecessor, OAuth 1.0. Although 2.0 is intended

to be a simpler, more reusable replacement, there has been some

debate on whether 2.0 actually improves over 1.0 in terms of se-

curity [21]. Since both are designed to provide the same security

guarantees, these protocols may appear equally secure if compared

with respect to their security requirements (e.g., they share session

integrity as a common requirement). Instead, we show that robust-

ness can be used to distinguish these two protocols and argue that

one may be more desirable than the other.

OAuth 1.0. Like in 2.0, a typical process in OAuth 1.0 begins with

a user initiating a new session with Client (as in Step 1 of Figure 1).

Instead of directing the user to AuthServer, however, Client first
obtains a request token from AuthServer and associates it with the

current session. The user is then asked to present the same request

token to AuthServer and authorize Client to access their resources.
Once notified by the user that the authorization step has taken

place, Client exchanges the request token for an access token that

can be used subsequently to access their resources.

Robustness for OAuth 1.0. We built an Alloy model of OAuth 1.0

in the same style as for we did OAuth 2.0, and used the approach

based on MUCs to compute the robustness of 1.0 for the session

integrity requirement. The resulting attacker, again named Eve, has
the following capabilities:

types(Eve) = {UserAgent,Client}

init(Eve) = {eveUID, evePwd, aliceUID, ...}

According to our analysis, OAuth 1.0 is robust against an attacker

who is capable of impersonating a client in addition to a user agent.
This suggests that OAuth 1.0 is designed to be more robust than 2.0

against attacks that attempt to deceive a victim user into believing

that it is interacting with a trusted client (while, in fact, the client

is being impersonated by the attacker).

We provide an informal explanation behind this difference be-

tween the two protocols. One of the weaknesses of OAuth 2.0 is

that it relies on the user to deliver a correct authorization code

(Step 3 in Figure 1) from the authorization server back to the client.

This assumption, however, may not necessarily hold in practice;

for example, in many browser-based implementations of the client,

it has been shown that the user may be deceived into forwarding

a wrong authorization code [24], resulting in the user’s session

being associated with the attacker’s authorization code. On the

other hand, in OAuth 1.0, a client knows exactly the request token

that it expects to receive from the client (i.e., the same one that

it obtained from the authorization server at the beginning of the

protocol session). Thus, it needs not trust that the user will always

deliver a correct request token.

5 RELATEDWORK
We are not the first to explore the notion of robustness in the

context of secure system design. For example, several researchers

have proposed a set of informal guidelines for designing security
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protocols that are robust against potential attacks [2, 3, 31]. As far

as we are aware, however, there has been relatively little work on

providing tool support for analysis of system designs for robustness.

Formal modeling and analysis for security (especially protocols)

is a well-establish research area, with a number of specification

languages (e.g., [1, 7, 15]) and tools (e.g., [6, 12, 30, 34]). Most of

these approaches assume some fixed model of the attacker—the

most common one being the Dolev-Yao model [14], which describes

an attacker that can intercept any messages between processes and

synthesize new data (except those that are bound by the constraints

of cryptography, such as complex passwords or keys). Instead of as-

suming a fixed attacker model, our work provides a complementary

analysis by providing information about the range of attacker capa-

bilities under which the system is capable (or not) of establishing a

security requirement.

As mentioned earlier, robustness captures a set of assumptions

that the system makes about its environment in order to establish

its security requirements. The role of assumptions in security, and

vulnerabilities that arise due to a lack of explicit consideration of

them, have been studied in the context of system requirements [13],

API design [38], and computer security in general [4, 22]. Our work

was also inspired by the work of Haley et al. [20], which propose

the idea of trust assumptions as the set of assumptions about various

system components that are needed to establish a requirement, and

which advocate that these assumptions be explicitly articulated as

early as the requirements stage.

Our approach to computing robustness is similar to the idea of

weakest assumption generation in the context of assume-guarantee

reasoning [10, 17]. Given system modelM and property P , the goal
is to generate theweakest assumptionA for the system environment

such thatM ∥ A |= P . One major difference is that in their approach,

behaviors of the system and the environment are specified using

labelled-transition systems (LTSs), whereas we explicitly model the

malicious environment as the process types and initial knowledge

of an attacker. Similarly, Zhang et al. propose a notion of robust-

ness as the set of possible environmental deviations against which

the system is capable of establishing a property [40], but again,

their notion is defined over LTSs and not designed to model the

capabilities of an attacker.

Adversarial robustness is an actively studied topic in machine

learning (ML) [5, 8], but is also a very different type of concept

than our notion of robustness: It mainly concerns the ability of a

ML-based classifier to make correct predictions under adversarial

samples.

6 DISCUSSIONS AND FUTUREWORK
Our approach to modeling attackers, based on the process types

and knowledge, has a number of limitations that merit further in-

vestigation. First, a multi-faceted model that considers not only the

actions of the attacker but also costs associated with those actions

may be needed to capture more realistic attacker profiles. Second,

security vulnerabilities exist across multiple layers of system ab-

straction (e.g., architecture, code, hardware), and our focus here is

mainly on the high-level design and architecture. Finally, the result

of our robustness analysis depends on the fidelity of the system

model and requirement specification. In practice, building a model

that captures all of the system details that are relevant to security

is likely to be infeasible and thus, our approach is best suited as

a complementary analysis to other secure development activities

(such as requirements elicitation, testing, and static analysis).

Our next step is to build on our notion of robustness to develop

techniques for systematically designing robust systems. Recall that
robustness embodies various assumptions that the system makes

about its (potentially malicious) environment. Some of these as-

sumptions may be more difficult to establish than others, depending

on the application domain. For example, on the Internet, it may

not be prudent to assume that the user will never visit a malicious

website and get tricked into exposing potentially sensitive data.

If an existing system relies on such an assumption, the designer

may wish to re-design the system by eliminating or weakening
the assumption, thus improving its robustness. We plan to explore

(semi-)automated approaches to support this redesign process, for

example, by leveraging techniques from model transformation and

repair [11, 19, 35, 39].
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