
An Architectural Mechanism for Resilient IoT Services
Hokeun Kim

University of California, Berkeley
hokeunkim@eecs.berkeley.edu

Eunsuk Kang
University of California, Berkeley

eunsuk@berkeley.edu

David Broman
KTH Royal Institute of Technology

dbro@kth.se

Edward A. Lee
University of California, Berkeley

eal@eecs.berkeley.edu

ABSTRACT
Availability of authentication and authorization services is criti-
cal for the safety of the Internet of Things (IoT). By leveraging an
emerging network architecture based on edge computers, IoT’s
availability can be protected even under situations such as network
failures or denial-of-service (DoS) attacks. However, little has been
explored for the issue of sustaining availability evenwhen edge com-
puters fail. In this paper, we propose an architectural mechanism
for enhancing the availability of the authorization infrastructure
for the IoT. The proposed approach leverages a technique called
secure migration, which allows IoT devices to migrate to other local
authorization entities served in trusted edge computers when their
authorization entity becomes unavailable. Specifically, we point
out necessary considerations for planning secure migration and
present automated migration policy construction and protocols
for preparing and executing the migration. The effectiveness of
our approach is illustrated using a concrete application of smart
buildings and network simulation, where our proposed solution
achieves significantly higher availability in case of failures in some
of the authorization entities.

CCS CONCEPTS
•Computer systems organization→Availability; Fault-tolerant
network topologies; • Security and privacy→ Authentication; Au-
thorization; Denial-of-service attacks;

KEYWORDS
Internet of Things, Network security, Availability, Denial-of-service
attacks, Authorization, Authentication

ACM Reference Format:
Hokeun Kim, Eunsuk Kang, David Broman, and Edward A. Lee. 2017. An
ArchitecturalMechanism for Resilient IoT Services. In Proceedings of Proceed-
ings of the First ACMWorkshop on the Internet of Safe Things (SafeThings’17).
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3137003.3137010

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SafeThings’17, November 5, 2017, Delft, The Netherlands
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5545-2/17/11. . . $15.00
https://doi.org/10.1145/3137003.3137010

1 INTRODUCTION
Authentication and authorization play key roles in ensuring safe
and secure operations of the Internet-of-Things (IoT) devices in
an open, potentially malicious environment. In the context of the
IoT, most of existing approaches to providing authorization and
authentication rely on remote and centralized cloud servers to
provide these services. This means, however, that any device relying
on these critical services may be adversely affected by a failure or
an attack on one or more of the servers. An example illustrating this
risk is the recent Google OnHub incident [14], where a failure in
the company’s authentication servers caused IoT gateway devices
(called OnHub) to become unavailable, in turn leading to failures in
all IoT devices connected to these gateway devices.

Cloud	servers	 Edge	computers	
(Internet	gateways)	

IoT	devices	(Things)	

More	available	resources	
Higher	latency		

Less	stable	connec?ons	

Easier	to	keep	data	private	

Restricted	resources	
BeCer	connec?vity		
Lower	latency	

More	challenging	to	
guarantee	data	privacy	

BeCer	context	awareness	
(of	local	system)	

Limited	context	awareness	
(of	local	system)	

Figure 1: Characteristics of cloud, edge, and things

An alternative system architecture, in part designed to reduce
this dependency on remote, centralized servers, is called edge com-
puting [21] or fog computing [11]. In this approach, individual com-
puting devices called edge computers serve as an Internet gateway to
local, neighboring devices; these edge computers may be deployed
as a wide range of devices, including smart home routers, laptops,
or smart phones. Figure 1 illustrates different characteristics of the
cloud servers, edge computers, and IoT devices. As pointed out by
Lopez et al. [6], benefits of adopting edge computing include better
privacy, lower latency for real-time applications, less dependency
on cloud servers and its connections, and better context awareness
and manageability of the local systems.

Previously, we proposed an authorization infrastructure of the
IoT called Secure Swarm Toolkit (SST) [8]. SST leverages a net-
work architecture with special edge computers called Auths, which
provide authorization services to local IoT devices. In this prior
work, we showed how SST can provide strong confidentiality and
integrity guarantees for communication among IoT devices.

In this paper, building on our prior work, we propose a novel
approach for providing resilience against availability attacks or

https://doi.org/10.1145/3137003.3137010
https://doi.org/10.1145/3137003.3137010

SafeThings’17, November 5, 2017, Delft, The Netherlands H. Kim et al.

failures on an IoT network—e.g., a denial-of-service (DoS) attack de-
signed to render critical services such as authorization unavailable
to IoT devices. In particular, our approach leverages a technique
called secure migration, which allows IoT devices to continue to re-
ceive critical services even when some of the Auth devices become
unavailable due to an attack or other failures.

The contributions of this paper are as follows:
• An innovative architectural mechanism for building IoT services
that are resilient against availability attacks and other failures,
including a secure migration technique which allows IoT enti-
ties to migrate to trusted authorization entities to continue IoT
services when some of the authorization entities are unavailable.

• A novel approach for finding effective migration policy by lever-
aging a Integer Linear Programming (ILP) solver and considering
access requirements and constraints of IoT networks (Section 3).

• Experiments based on a concrete scenario in smart buildings,
demonstrating the effectiveness of our approach against avail-
ability attacks (Section 4).

2 PROBLEM AND CONTEXT
IoT devices are heterogeneous, in that they vary over the level of
safety and security requirements as well as available computational
resources and energy capacity. For example, a smart door lock that
authenticates users with their cellphones may rely on secure com-
munication with strong encryption, whereas temperature sensors
in the same building may not require the same level of security.

Important parts of an IoT infrastructure are special devices called
gateways. A gateway facilitates communication between IoT de-
vices by providing a variety of services such as authentication,
authorization, device discovery, and data aggregation. Depending
on the design of the infrastructure, a gateway may be deployed as
a cloud-based server or as a local network entity (e.g., a router) to
which IoT devices can connect to.

2.1 Threat Model
We assume the existence of an active network attacker with an
ability to discover and send packets to gateway devices on the
Internet. In particular, the attacker seeks to disrupt the availability
of IoT devices connected to a gateway by carrying out various
denial-of-service (DoS) attacks on it, such as flooding or distributed
denial-of-service (DDoS) attacks. In our model, we primarily focus
on availability attacks and failures, instead of confidentiality or
integrity attacks (addressed by our previous work, SST [8]).

In addition, we exclude insider attacks; i.e., malicious acts by an
individual who has physical or network access to IoT and gateway
devices on the local area network. For instance, we assume that a
local gateway placed inside a building is protected from physical
tamperings, and that local network users are trustworthy. This
allows us to assume that local gateways can be leveraged to perform
critical steps in mitigating against an availability attack.

2.2 Proposed Architectural Mechanism
The key distinguishing feature of SST is a locally centralized, globally
distributed architecture [9]: It consists of a set of local authoriza-
tion entities called Auths [10], each of which is deployed on edge
computers. An Auth enforces access policies and provides security

Auth (on	edge	computer)

Entity	(on	IoT device)

Trust	between	Auths
Communication	between	 entities	

(b)	Current	SST

tjAi

Ai

tj
tj is	authorized	by	Ai

A2 t6

t4
t1 t3

A1

t5t2

A2 t6

t4
t1 t3

A1

t5t2

(c)	SST	+	Proposed	approach

A2 t6

t4
t1 t3

A1

t5t2

(a)	Normal	operation

A1 fails

Figure 2: (a) SST in normal operation (b) Current SST in case
of Auth failure (c) Proposed approach for enhancing avail-
ability of SST in case of Auth failure

services to local IoT devices (entities). Figure 2 (a) shows an example
of a small IoT network in normal operation using SST, with two
Auths (A1 andA2) and 6 entities (t1 through t6). IfA1 in the current
SST design fails due to a DoS attack, authorization services for
registered entities will become unavailable as shown in Figure 2
(b). This will also affect availability of other entities. For example,
communication between t4 and t3 will be disrupted.

However, this does not fully utilize the globally distributed archi-
tecture of SST. Our goal is to provide enhanced availability of IoT
authentication and authorization services through a mechanism
that leverages SST’s globally distributed architecture. The archi-
tectural mechanism proposed in this paper includes backing up
information for authorization services to other trusted Auths and
securely migrating IoT entities to continue the IoT services even
in case of Auth failures as shown in Figure 2 (c). The proposed
mechanism is detailed in Section 3.

3 APPROACH
We propose an approach called a secure migration technique for
restoring the availability of IoT devices during failures in some
Auths by exploiting the architectural characteristics of SST. In par-
ticular, we accomplish this goal by having Auths take over other
Auths’ authorization tasks when the latter group becomes unavail-
able due to an attack. Before any failure occurs in Auths, each Auth
backs up information and necessary credentials to trusted Auths.
When an Auth failure occurs, its registered entities detect the fail-
ure and migrate to other trusted Auths as depicted in Figure 2 (c)
so that they can continue to use authorization services.

3.1 Considerations for Migration Policies
Although the high-level idea behind migration may appear straight-
forward, determining migration policies is a non-trivial problem
due to a number of factors that need to be considered:
Auth trust relationships: SST introduces an explicit notion of
trust between a pair of Auths, and enables an entity from AuthA to
communicate to an entity in another AuthA′ if and only ifA andA′

trust each other. This communication constraint imposed by trust
must be maintained during migration while satisfying individual
entities’ requirements. Consider Figure 3 (a), where entities t4 and
t5 are required to communicate with each other. Suppose that A1
becomes unavailable. If we arbitrarily decide to migrate t4 to A2,
then t4 will no longer be allowed to communicate with t5, since

An Architectural Mechanism for Resilient IoT Services SafeThings’17, November 5, 2017, Delft, The Netherlands

A2

t5

A3

A1

t4

When	A1 fails,	migrate
t4 from	A1 to	A2

(a)
t4 can't	communicate	with	t5	after	migration

A2
t6

t3

t2 t7

A1

t5

t1

t4

(b)

A2

t3

A1

(c)

•Which	Auth is	directly	reachable	through	
wireless	communication?
• Is	Auth equipped	with	HW	security	support	
(e.g.,	TPM	or	Intel	SGX)?
• Is	Auth located	in	a	restricted-access	area?

A1's	signal	range A2's	signal	range

? ?

Figure 3: Considerations for migration policies (a) Trust
amongAuths (b)Workload forAuthorization (c) Auth’s char-
acteristics (Figure legends are the same as Figure 2)

there exists no trust relationship between A1 and A3. A proper
migration policy may instead involve migrating t4 to A3. Note that
the trust relationship among Auths is not necessarily transitive.
Managing Auth’s workload for authorization: Let us consider
a different scenario where entities who have lost connection with
their original Auths are placed within the signal ranges of AuthsA1
and A2 as depicted in Figure 3 (b). In this scenario, t5, t6 and t7 are
within signal ranges of both Auths, thus they can migrate to either
of Auths. An arbitrary migration decision may lead to a situation
described in Figure 3 (b) where all 7 entities will have migrated
to only A1. However, this type of decision may adversely affect
the performance of the overall network, depending on the opera-
tional conditions of Auths. Each Auth may have an inherent limit
in its resource capacity to perform authorization tasks for entities,
for example, A1 may be required to run other computationally-
intensive tasks, or it may be running on a battery-powered edge
computer with a limited energy budget. Therefore, assigning en-
tities within A2’s signal range (t5, t6 and t7) to A2 may lead to a
greater performance for the overall network.
Characteristics of Auth: Another important factor to be consid-
ered in a migration policy is various aspects of Auth from the
viewpoint of each entity, as shown in Figure 3 (c). One example
is reachability, which includes whether an Auth supports underly-
ing network protocols that an entity is using and whether Auth is
within the wireless signal range. Another example of Auth charac-
teristics is the levels of security guaranteed by an Auth, compared
with those required by an entity. These include whether the Auth is
equipped with hardware security support such as a TPM (Trusted
Platform Module) or Intel’s SGX (Software Guard Extensions) and
whether the Auth is located in a restricted-access area for extra
physical security.

3.2 Policy Construction
When an Auth becomes unavailable due to an attack, we say that
entities belonging to that Auth are dangling. A migration policy
is an assignment of each dangling entity to one of the remaining
Auths in the network. As discussed in Section 3.1, a valid policy
must ensure that the new network resulting frommigration satisfies
a number of hard constraints (e.g., trust relationships).

We formulate the problem of constructing a valid migration
policy as a problem in Integer Linear Programming (ILP). An ILP
problem has two parts: a set of linear terms (each term being a
product of an integer variable by a coefficient; e.g., cixi for some
variable xi) whose sum is to be maximized, and a set of linear
constraints over those variables. In our formulation, variables are
Boolean values indicating whether an entity is connected to an
Auth (thus, there are in total E ×A number of variables, where E
and A are the total numbers of entities and Auths in the network,
respectively).

Due to limited space, we omit a detailed formalization of the
ILP problem, and instead briefly describe the set of constraints that
must be satisfied by a solution:
• Each entity can have security requirements that must be pro-
vided by an Auth. These requirements include hardware support
(e.g., TPM/SGX), restricted physical location, cryptography spec-
ification (e.g., ephemeral keying for perfect forward secrecy).

• Each Auth has a threshold for authorization tasks in terms of
upper bounds for authorization requests per minute or upper
bounds for session keys cached in Auth. In other words, there
is a threshold of registered entities for each Auth. When there
are more registered entities than this threshold the Auth will
experience degradation in authorization.

• Entity-to-entity communication requirements. Some entities
need to be authorized to communicate with certain entities even
after migration. This requires trust relationship between Auths
with which those entities are registered.

• There exist multiple criticality levels for the communication
requirements among entities, yielding a mixed-criticality sys-
tem [4]. This means we should prioritize communication re-
quirements of high-criticality entities.

Another aspect of policy construction is that of optimization; that
is, generating a migration policy that results in a network with a
minimal amount of overall communication costs betweenAuths and
things. For instance, communication costs between a pair of nodes
may depend on a number of factors, such as the physical distance
between them and the energy required to perform cryptographic
operations. Our formulation of policy construction as an ILP is
intended to enable optimization of migration policies as well. This
task, however, requires a detailed modeling of communication and
energy costs, which is beyond the scope of this paper.

For our current implementation of SST, we use Gurobi [7] as the
underlying ILP solver.

3.3 Secure Migration Procedure
In SST, each entity is authorized by Auth by receiving a session key,
which is a temporary symmetric cryptographic key for accessing a
certain service or communicating with another entity (or entities).
Session keys need to be confidential; they must be only known to
the entities participating in a certain access activity. Thus, these
session keys must always be encrypted with another symmetric
key called a distribution key shared between Auth and each entity.A
distribution key can be updated using public-key cryptography. For
this, Auth and the registered entity should have already exchanged
public keys during the registration (initialization) process of SST.
For secure migration, Auth must prepare the migration before it

SafeThings’17, November 5, 2017, Delft, The Netherlands H. Kim et al.

!" !#
Repeated	failure

MIGRATION_REQ

MIGRATION_RESP	(rejected)

MIGRATION_REQ

MIGRATION_RESP	(accepted)

!#!$

(b)	Migration	operation	(after	failure)

(a)	Backup	operation	(before	failure)

%$

(1)	&'’s	name	and	other	information,	&'’s	 public	key
(2)	()’s	public	 key	signed	by	('’s	private	key	(migration	cert)

&1

!"Trusted	Auth list

Migration	token	for	&'Construct	
migration	
policies

!$ %$

Figure 4: Secure migration procedure (a) Backup operation:
A1 updates its Thing with a trusted Auth list and sends a
migration token after migration policy construction (b) Mi-
gration operation: A1 fails and its entity t1 tries to migrate
to A2 or A3.

fails. When a failure occurs, Auth’s registered entities should detect
the failure and migrate to trusted Auths. The approach described
here is implemented as part of SST and available in SST’s open-
source repository (https://github.com/iotauth).

3.3.1 Preparing Migration. Before a failure occurs, Auth should
provide both its registered entities and the trusted Auths with
information for migration.We call this operation a backup operation,
described in Figure 4 (a). For its registered entity t1, Auth A1 gives
out a list of its trusted Auths (A2 and A3) and their host names (IP
addresses) and port numbers. This is first given during the entity
registration and then updated when the information changes. Then,
A1 constructs the migration policies for its registered entities, either
by itself or by receiving migration policies from other trusted Auths,
using the method shown in Section 3.2.

With the constructedmigration policies,A1 prepares information
and credentials, migration token for each of its registered entities.
A migration token must be able to establish the trust relationship
between entities and the new Auth, A3, to which t1 will migrate
in case of A1’s failure. A1 includes the name (a unique identifier
in string) and the public key of t1 so that A3 can trust t1 when
it migrates to A3, as shown in Figure 4 (a)-(1). Auth also issues a
migration certificate (cert) shown in Figure 4 (a)-(2) for A3. This
includes A3’s public key signed by A1’s private key and this will be
verified by t1 which already has A1’s public key.

3.3.2 Detection and Migration. When Auth A1 fails, its regis-
tered entity t1 will detect that A1 is not reachable due to a failure
or an attack and will try to migrate to A1’s trusted Auths. When
A1 does not respond for more than a threshold times, t1 starts a
migration operation shown in Figure 4 (b). Since A1 had provided
t1 with a list of A1’s trusted Auths which were A2 and A3, t1 tries
these Auths in the order specified in the list. Thus, t1 sends MIGRA-
TION_REQ to A2, an Auth trusted by A1, but not the one that t1 is
supposed to migrate to. SinceA2 does not have the required creden-
tials for t1,A2 sends a response, MIGRATION_RESP indicating that
the request is rejected and t1 should try another trusted Auth in its
list. After receiving MIGRATION_RESP (rejected) from A2, t1 tries
the next Auth in its list, A3. When A3 receives MIGRATION_REQ

EECS CORY HALL FIFTH FLOOR

500501

502

574

503

505

507

506

508

520

573

558C

558B

561

558A

522A

511

509

510

525

512

513

523B

515

516

517 519518

572 571 570 569 568 567 566 565 564 563 550B 550C

550E

550A

558
558D

557

514

545
 S545

 T

545
 R

545Q

545P545N

545M545K

545
 X

545L

545

545F
545D 545E

545G
545
B 545

 C

545A

529

521A

540AA

538
537

179.4035

526

178.0611

524

523

522

132.5232

540A

540B

528

536

533
534

535

521
B

532

521

531A

504

531

531B

545H 545J

545W

DN

CAPPN

CAPMG

CAPMC

CAPQT

CAPDH

CAPTG

CAPGC

CAPPN

CAPMG

CAPMC

CAPQT

CAPDH

CAPTG

CAPGC

CA
PP

N
CA

PM
G

CA
PM

C
CA

PQ
T

CA
PD

H

C
A

P
TG

CA
PG

C

CAPPN
CAPMG
CAPMC
CAPQT
CAPDH

C
A

P
TG

CAPGC

CA
PP

N
CA

PM
G

CA
PM

C
CA

PQ
T

CA
PD

H

C
A

P
TG

CA
PG

C

CAPPN
CAPMG
CAPMC
CAPQT
CAPDH

C
A

P
TG

CAPGC

CA
PP

N
CA

PM
G

CA
PM

C
CA

PQ
T

CA
PD

H

C
A

P
TG

CA
PG

C

CAPPN
CAPMG
CAPMC
CAPQT
CAPDH

C
A

P
TG

CAPGC CAPPN CAPMG CAPMC CAPQT CAPDHCAPTG CAPGC

CAPPNCAPMGCAPMCCAPQTCAPDH
CAPTG

CAPGC

CAPPN CAPMG CAPMC CAPQT CAPDHCAPTG CAPGC

CAPPNCAPMGCAPMCCAPQTCAPDH
CAPTG

CAPGC

CAPPN CAPMG CAPMC CAPQT CAPDHCAPTG CAPGC

CAPPNCAPMGCAPMCCAPQTCAPDH
CAPTG

CAPGC

Card	key	accessed	doors

s19

s18

s03s02
s01

s04

s05

s15

s08

s06
s07

s09

s10

s16

s13 s14

s17

Positions	of	edge	computers	(Auths)

4

3

s12s11

2

Possible	user	positions

c05

c04

15ft.	(≈	4.57m)

c02
c01

c06

c08

c03

c25

c26

c23
c24

c22

c21

c20c19c18

c14

c13

c07

c09

c11

c10

c12

c17

c15 c16

Auth registration	range
Trust	relationships	between	Auths

Prototype	door	controller	
is	deployed	here

1

Figure 5: Experimental virtual environment with Auths,
door controllers, and door opening mobile applications on
the floor map of the 5th floor, Cory Hall at UC Berkeley

from t1, it notices that t1 can migrate to it and responds with a
MIGRATION_RESP message indicating that the request has been
accepted.

A MIGRATION_REQ message includes the entity’s name and a
verification token. This verification token includes a digital signature
of the entity if it uses public-key cryptography for authorization.
The Auth that the entity is supposed to migrate to will be able to
verify the MIGRATION_REQ with the entity’s public key. This is
because the Auth should have been backed up with the entity’s
public key from the Auth that the entity was previously registered
with. The accepted MIGRATION_RESP contains the certificate of
the A3 signed by A1. The whole MIGRATION_RESP should be au-
thenticated by the Auth’s private key, so that the entity can verify
the MIGRATION_RESP message upon receiving it. When the migra-
tion request and response are successful, both the Auth and entity
update the counterpart’s credentials for further authorization.

4 EXPERIMENTS AND RESULTS
In this section, we carry out experiments to demonstrate the ef-
fectiveness of our migration approach for maintaining availability.
As an experimental scenario, we take a door controller and door
opening application in a smart building. This is inspired by a pro-
totype door controller deployed on the 5th floor of Cory Hall at
UC Berkeley. We assume a virtual environment where the door
controllers are deployed on currently card-key accessed doors, door
opening mobile phone apps run on user smart phones, and Auths
are deployed on some of the existing WiFi access points. Figure 5
illustrates this virtual environment. We also assume Auths trust
each other only if their research centers have trust relationships,
and the Things (door controllers and user smart phones) are reg-
istered with Auth as shown in Figure 5. We measure availability

An Architectural Mechanism for Resilient IoT Services SafeThings’17, November 5, 2017, Delft, The Netherlands

Host	OS

LXC
Auth

(Java	program)
Eth0

Wifi
interface

Wired
interface

Linux
Bridge

ns3-node

TAP
Bridge

CSMA
NetDevice

Eth1

Linux
Bridge

LXC

Auth

Eth0 Eth1

A A A

ns-3	Simulator

Simulated	Network	(both	wired	&	wireless	communication)

Wifi
interface

LXC
Thing

(in	Node.js)
Eth0

Linux
Bridge

Linux
Bridge

Auth Containers Thing	Containers

v Containers	use	OS-level	
virtualization	rather	than	
full	virtualization

A

! Thing	(IoT entity)	
running	on	 IoT device	
with	wireless	interface	

Auth running	on	edge	
device	with	both	wired	
and	wireless	interfaces	!! ! !

! !

!

A

Linux
Brdg.

ns3-
node

TAP

CSMA

ns3-
node

TAP

WiFi

ns3-
node

TAP

WiFi

ns3-node

TAP
Bridge

WiFi
NetDevice

Linux
Brdg.

ns3-node

TAP
Bridge

WiFi
NetDevice

LXC

Thing

Eth0

v LXC:	Linux	Container

Figure 6: Experimental setup with the ns-3 simulator net-
work simulator

as the ratio of responses from door controllers (the number of cor-
rect door operation) to the door opening requests for a given time
window. In our experimental scenarios, different numbers of Auths
can be unavailable due to failures or DoS attacks. In addition, we
also compare against scenarios without secure migration and also a
scenario where all Auths are unavailable, which is equivalent to the
case where an authorization entity is deployed on a remote cloud
and the cloud is not reachable.

4.1 Experimental Setup
Figure 6 describes the experimental setup with the ns-3 network
simulator [19]. For realistic experiments, we use the actual im-
plementation of Auth available on the GitHub repository and IoT
entities (door controllers and opening apps) written using SST’s
APIs, secure communication accessors. Each of Auths and IoT entities
runs within an individual Linux Container (LXC) [2] which provides
OS-level virtualization (paravirtualization) with a separate virtual
network space. For simulating the network infrastructure, we use
ns-3. The LXCs’ virtual Ethernet interfaces are connected to the
host OS’s Linux bridges, then to the TAP bridges of ns-3 nodes in
the ns-3 simulator. The other side of ns-3 nodes are either CSMA
or WiFi NetDevice and are connected to the network simulated in
ns-3. LXCs on which Auths are running have both the wired and
WiFi connections and LXCs for IoT entities have WiFi connections.
For connections between Auths’ wired network interfaces, we use
a CSMA channel with data rate 100Mbps. For connections between
the wireless network interfaces of Auths and Things we use an
ad-hoc IEEE 802.11a channel with data rate of 54Mbps. For the
channel signal strength model, we use a Log Distance Propagation
Loss Model in ns-3 to represent the channels between Auths and
things. As a simulation platform, we use Ubuntu Linux 16.04.2 LTS
on Amazon’s AWS EC2 with 4 CPUs, 16GB RAM, and 256GB SSD.

4.2 Simulation Results
We ran simulations with 4 Auths, 19 door controllers, and 26 user
devices for 15 minutes for each experiment in real time, 2.5 min-
utes before Auth failures and 12.5 minutes after failures. Each user
device sends a door opening request to the closest door controller

every minute, simulating the user behaviors. Figure 7 illustrates
the experimental results. We performed experiments with up to
three Auths failing during the experiments. The failure occurs in
order of Auth 1, Auth 3, and Auth 4 where the Auth numbers are
as shown in Figure 5. When all four Auths failed, the availability
became 0% in our experiments as we expected, although we did
not include this in Figure 7. It will be the same when the authoriza-
tion services based on the cloud lose connections with the cloud.
We also compared three different migration policies, (1) without
any secure migration (original SST, denoted as "No Migration"), (2)
with a naïve migration policy where the user devices attempt to
migrate to the nearest available Auth and so on (denoted as "Naïve
Migration"), and (3) with a migration policy constructed using the
proposed approach in Section 3.2 (denoted as "ILP-Based Migration"
in the results).

As shown in Figure 7 (a), when one Auth fails the availability
drops down to 69% without any migration, while the naïve migra-
tion and ILP-based migration policies recover the availability up
to 92% and 100%, respectively. The naïve migration policy could
not recover 100% availability due to the fact that it did not appro-
priately consider communication requirements among IoT entities
together with trust relationships between Auths. In fact, with the
naïve migration policy, some clients ended up migrating to Auths
that do not have trust relationships with the Auths for the servers
with which the clients were supposed to communicate.

In Figure 7 (b), we can see that the availability drops down to
50% without any migration and fluctuates around 58% with the
naïve solution, while the proposed ILP-based solution recovers 81%
of availability. Figure 7 (c) shows decreased availability around 27%
with no or the naïve migration policy and recovered availability of
54% with the proposed technique. The fluctuation with the naïve
migration policy was mainly due to the interference caused by
infeasible migration requests and unbalanced workload among
functioning Auths. The proposed ILP-based solution was not able
to achieve 100% availability because some entities were out of the
signal range of Auths. However, the proposed solution still achieved
significantly higher availability compared to the other two cases.

5 RELATEDWORK
We are aware of only a couple of other approaches that rely on an
edge computing architecture for IoT security. In order to provide
robust authorization of medical IoT devices without dependency
on remote servers, SEA (Secure and Efficient Authentication and
Authorization Architecture) [13] uses distributed smart e-health
gateways as local authorization centers based on DTLS (Datagram
TLS). TACIoT (Trust-aware Access Control for the IoT) [3] employs
an architecture based on entities called IoT bubbles, which act as
local units of authorization for the IoT, similar to Auths. As far
as we know, while these approaches ensure confidentiality and
integrity of communication among IoT devices, they do not provide
resilience against availability attacks.

Beside the twomentioned in the previous paragraph, a number of
other authorization and authentication services for IoT devices have
been proposed [1, 5, 15, 22, 24]. However, all of these approaches
rely on remote, cloud servers to provide the critical security services.
We believe that the local, distributed nature of Auths enables a
more lightweight, flexible defense against availability attacks: Our

SafeThings’17, November 5, 2017, Delft, The Netherlands H. Kim et al.

0
20
40
60
80
100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration
Naïve	Migration
No	Migration

1 Auth	fails
0
20
40
60
80

100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration

Naïve	Migration

No	Migration

2	Auths	fail
0

20
40
60
80
100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration
Naïve	Migration
No	Migration

3	Auths	fail
0

20
40
60
80
100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration
Naïve	Migration
No	Migration

1 Auth	fails
0
20
40
60
80

100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration

Naïve	Migration

No	Migration

2	Auths	fail
0

20
40
60
80
100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration
Naïve	Migration
No	Migration

3	Auths	fail
0

20
40
60
80
100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration
Naïve	Migration
No	Migration

1 Auth	fails
0
20
40
60
80

100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration

Naïve	Migration

No	Migration

2	Auths	fail
0

20
40
60
80
100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration
Naïve	Migration
No	Migration

3	Auths	fail

0
20
40
60
80
100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration
Naïve	Migration
No	Migration

1 Auth	fails
0
20
40
60
80

100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration

Naïve	Migration

No	Migration

2	Auths	fail
0

20
40
60
80
100
120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Av
ai
la
bi
lit
y	(
%
)

Time	Elapse	(min.)

Chart	Title

ILP-Based	Migration
Naïve	Migration
No	Migration

3	Auths	fail
(a) (b) (c)

Figure 7: Availability results with different numbers of failing Auths (a) 1 Auth fails (b) 2 Auths fail (c) 3 Auths fail, for three
different migration policies using SST simulated on the ns-3 simulator and Linux containers

approach allows an Auth to continue providing critical services to
its local network without requiring a connection to the Internet.

There exists a large body of work that address DoS attacks in the
network security literature (a comprehensive survey can be found
in [26]). These works can be categorized as (1) preventing an DoS
attack before it takes place [12, 23, 27], (2) limiting the effect of an
on-going attack by filtering malicious connections [16, 20], or (3)
performing forensics after an attack to identify compromised IoT
devices [17, 18, 25]. As far as we know, none of these approaches
involve providing resilience against a DoS attack through migration
of critical services from an attacked node to another.

6 CONCLUSIONS
Availability of IoT services can be critical for safety. By leverag-
ing emerging network architecture based on edge computing and
SST’s distributed authorization infrastructure, the proposed ap-
proach achieves much higher availability even under failures of
local authorization entities running on edge computers. Our secure
migration approach will be appropriate especially for the Internet
of Things under safety-critical environments including medical
centers, manufacturing systems, and electric power grids, so that
we can maintain as much availability as possible.

Moving forward, we plan to investigate the use of an ILP solver
to construct a migration policy that is not only valid but also optimal
with respect to the overall network costs. We also plan to carry out
larger scale experiments to further evaluate the effectiveness and
limitations of our migration mechanism. In addition, we plan to
develop a mathematical model of an attacker, and explore possible
relationships between the knowledge and capability of the attacker
and the guarantees provided by our mitigation mechanism.

ACKNOWLEDGMENTS
This work was supported by STARnet, a Semiconductor Research
Corporation program, sponsored by MARCO and DARPA. This
work is also financially supported by the Swedish Foundation for
Strategic Research (project FFL15-0032).

REFERENCES
[1] [n. d.]. How the AWS IoT Platform Works - Amazon Web Services. http://aws.

amazon.com/iot-platform/how-it-works/
[2] [n. d.]. Linux Containers - LXC - Introduction. https://linuxcontainers.org/lxc/
[3] Jorge Bernal Bernabe, Jose Luis Hernandez Ramos, and Antonio F. Skarmeta

Gomez. 2016. TACIoT: multidimensional trust-aware access control system for
the Internet of Things. Soft Computing 20, 5 (May 2016), 1763–1779.

[4] Alan Burns and Rob Davis. 2015. Mixed criticality systems: A review. Dept. of
Computer Science, University of York, Tech. Rep, Sixth Edition (Jan. 2015).

[5] Simone Cirani, Marco Picone, Pietro Gonizzi, Luca Veltri, and Gianluigi Ferrari.
2015. IoT-OAS: An OAuth-Based Authorization Service Architecture for Secure
Services in IoT Scenarios. IEEE Sensors Journal 15, 2 (Feb. 2015), 1224–1234.

[6] Pedro Garcia Lopez et al. 2015. Edge-centric Computing: Vision and Challenges.
SIGCOMM Comput. Commun. Rev. 45, 5 (Sept. 2015), 37–42.

[7] Inc. Gurobi Optimization. 2016. Gurobi Optimizer Reference Manual. (2016).
http://www.gurobi.com

[8] Hokeun Kim, Eunsuk Kang, Edward A. Lee, andDavid Broman. 2017. A Toolkit for
Construction of Authorization Service Infrastructure for the Internet of Things.
In The 2nd ACM/IEEE International Conference on Internet-of-Things Design and
Implementation. ACM/IEEE, Pittsburgh, PA, 147–158.

[9] Hokeun Kim and Edward A. Lee. 2017. Authentication and Authorization for the
Internet of Things. IT Professional 19, 5 (September 2017). to appear.

[10] Hokeun Kim, Armin Wasicek, Benjamin Mehne, and Edward A. Lee. 2016. A
Secure Network Architecture for the Internet of Things Based on Local Autho-
rization Entities. In The 4th IEEE International Conference on Future Internet of
Things and Cloud. Vienna, Austria, 114–122.

[11] Tom H. Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi Wei, and Limin Sun.
2015. Fog Computing: Focusing on Mobile Users at the Edge. arXiv:1502.01815
[cs] (Feb. 2015). http://arxiv.org/abs/1502.01815 arXiv: 1502.01815.

[12] Parikshit N. Mahalle, Bayu Anggorojati, Neeli R. Prasad, and Ramjee Prasad. 2013.
Identity Authentication and Capability Based Access Control (IACAC) for the
Internet of Things. J. of Cyber Security and Mobility 1, 4 (2013), 309–348.

[13] Sanaz R. Moosavi et al. 2015. SEA: A Secure and Efficient Authentication and
Authorization Architecture for IoT-Based Healthcare Using Smart Gateways.
Procedia Computer Science 52 (Jan. 2015), 452–459.

[14] Ian Morris. 2017. Google’s Latest Failure Shows How Immature Its Hard-
ware Is. Forbes (Feb. 2017). http://www.forbes.com/sites/ianmorris/2017/02/
24/googles-latest-failure-shows-how-immature-its-hardware-is/

[15] Antonio L. Maia Neto et al. 2016. AoT: Authentication and Access Control for
the Entire IoT Device Life-Cycle. In Proc. of the 14th ACM Conf. on Embedded
Network Sensor Syst. CD-ROM (SenSys ’16). ACM, New York, NY, USA, 1–15.

[16] Luís M. L. Oliveira, Joel J. P. C. Rodrigues, Amaro F. de Sousa, and Jaime Lloret.
2013. Denial of service mitigation approach for IPv6-enabled smart object net-
works. Concurrency & Coput.: Practice & Experience 25, 1 (Jan. 2013), 129–142.

[17] Edewede Oriwoh and Paul Sant. 2013. The Forensics Edge Management System:
A Concept and Design. In IEEE 10th Int. Conf. on Ubiquitous Intelligence and
Comput. and IEEE 10th Int. Conf. on Autonomic and Trusted Comput. 544–550.

[18] Yin M. P. Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto, Takahiro
Kasama, and Christian Rossow. 2016. IoTPOT: A Novel Honeypot for Revealing
Current IoT Threats. J. of Inform. Process. 24, 3 (May 2016), 522–533.

[19] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator.
In Modeling and Tools for Network Simulation, Klaus Wehrle, Mesut GÃĳneÅ§,
and James Gross (Eds.). Springer Berlin Heidelberg, 15–34.

[20] Na Ruan and Yoshiaki Hori. 2012. DoS attack-tolerant TESLA-based broadcast
authentication protocol in Internet of Things. In 2012 International Conference on
Selected Topics in Mobile and Wireless Networking. 60–65.

[21] Weisong Shi and Schahram Dustdar. 2016. The Promise of Edge Computing.
Computer 49, 5 (May 2016), 78–81.

[22] John Soldatos et al. 2015. OpenIoT: Open Source Internet-of-Things in the Cloud.
In Interoperability and Open-Source Solutions for the IoT. Springer, 13–25.

[23] Krushang Sonar and Hardik Upadhyay. 2016. An Approach to Secure Internet
of Things Against DDoS. In Proceedings of International Conference on ICT for
Sustainable Development. Springer, Singapore, 367–376.

[24] Mališa Vučinić, Bernard Tourancheau, Franck Rousseau, Andrzej Duda, Laurent
Damon, and Roberto Guizzetti. 2015. OSCAR: Object security architecture for
the Internet of Things. Ad Hoc Networks 32 (Sept. 2015), 3–16.

[25] Kun Wang, Miao Du, Yanfei Sun, Alexey Vinel, and Yan Zhang. 2016. Attack
Detection and Distributed Forensics in Machine-to-Machine Networks. IEEE
Network 30, 6 (Nov. 2016), 49–55.

[26] Saman Taghavi Zargar, James Joshi, and David Tipper. 2013. A Survey of Defense
Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks.
IEEE Communications Surveys Tutorials 15, 4 (2013), 2046–2069.

[27] Congyingzi Zhang and Robert Green. 2015. Communication Security in Internet
of Thing: Preventive Measure and Avoid DDoS Attack over IoT Network. In
Proceedings of the 18th Symposium on Communications & Networking (CNS ’15).
Society for Computer Simulation International, San Diego, CA, USA, 8–15.

http://aws.amazon.com/iot-platform/how-it-works/
http://aws.amazon.com/iot-platform/how-it-works/
https://linuxcontainers.org/lxc/
http://www.gurobi.com
http://arxiv.org/abs/1502.01815
http://www.forbes.com/sites/ianmorris/2017/02/24/googles-latest-failure-shows-how-immature-its-hardware-is/
http://www.forbes.com/sites/ianmorris/2017/02/24/googles-latest-failure-shows-how-immature-its-hardware-is/

	Abstract
	1 Introduction
	2 Problem and Context
	2.1 Threat Model
	2.2 Proposed Architectural Mechanism

	3 Approach
	3.1 Considerations for Migration Policies
	3.2 Policy Construction
	3.3 Secure Migration Procedure

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Simulation Results

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

