
Efficient System Verification
with Multiple Weakly-Hard

Constraints for Runtime Monitoring

Shih-Lun Wu1, Ching-Yuan Bai1, Kai-Chieh Chang1, Yi-Ting Hsieh1,
Chao Huang2 , Chung-Wei Lin1(B) , Eunsuk Kang3, and Qi Zhu2

1 National Taiwan University, Taipei, Taiwan
{b06902080,b05502055,r08922054,b05902031}@ntu.edu.tw,

cwlin@csie.ntu.edu.tw
2 Northwestern University, Evanston, USA

{chao.huang,qzhu}@northwestern.edu
3 Carnegie Mellon University, Pittsburgh, USA

eunsukk@andrew.cmu.edu

Abstract. A weakly-hard fault model can be captured by an (m, k)
constraint, where 0 ≤ m ≤ k, meaning that there are at most m bad
events (faults) among any k consecutive events. In this paper, we use a
weakly-hard fault model to constrain the occurrences of faults in system
inputs. We develop approaches to verify properties for all possible values
of (m, k), where k is smaller than or equal to a given K, in an exact
and efficient manner. By verifying all possible values of (m, k), we define
weakly-hard requirements for the system environment and design a run-
time monitor based on counting the number of faults in system inputs.
If the system environment satisfies the weakly-hard requirements, the
satisfaction of desired properties is guaranteed; otherwise, the runtime
monitor can notify the system to switch to a safe mode. Experimental
results with a discrete second-order controller demonstrate the efficiency
of the proposed approaches.

Keywords: Formal verification · Weakly-hard models

1 Introduction

Weakly-hard models have been studied in a number of works for real-
time systems [1–3,5,9,10,12,18,24], mostly from the perspective of scheduling

This work is supported by the Asian Office of Aerospace Research and Development
(AOARD), jointly with the Office of Naval Research Global (ONRG), award FA2386-
19-1-4037, the Taiwan Ministry of Education (MOE) grants NTU-108V0901 and NTU-
107V0901, the Taiwan Ministry of Science and Technology (MOST) grants MOST-109-
2636-E-002-022 and MOST-108-2636-E-002-011. It is also supported by the National
Science Foundation (NSF) awards CCF-1918140, CNS-1834701, CNS-1801546, and the
Office of Naval Research (ONR) grant N00014-19-1-2496.
Shih-Lun Wu and Ching-Yuan Bai contributed equally.

c© Springer Nature Switzerland AG 2020
J. Deshmukh and D. Ničković (Eds.): RV 2020, LNCS 12399, pp. 497–516, 2020.
https://doi.org/10.1007/978-3-030-60508-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60508-7_28&domain=pdf
http://orcid.org/0000-0002-9300-1787
http://orcid.org/0000-0001-8309-7028
http://orcid.org/0000-0002-7700-4099
https://doi.org/10.1007/978-3-030-60508-7_28

498 S.-L. Wu et al.

constraints. In this paper, we use a weakly-hard model to constrain the occur-
rences of faults, and verify properties of discrete systems under such weakly-hard
fault model. In particular, we leverage the (m, k) constraint for fault modeling
(0 ≤ m ≤ k), which specifies that there are at most m bad events (faults) among
any k consecutive events. Verifying system properties under this fault model has
various applications, such as the ones below:

– In a real-time system, a deadline miss can be considered as a bad event
(fault). Our approach can help find the maximum number of deadline misses
allowed for ensuring system properties, which can then be used to reduce
computation/communication load and maximize resource saving (e.g., CPU
or network resource) with a less critical mode of the system.

– In a networked system, a message without authentication can be modeled
as a bad event (fault), and again, our approach can be applied to maximize
resource saving (e.g., reduce the computation and transmission of message
authentication codes) by allowing messages without authentication, while still
ensuring system properties. Note that a system that only authenticates partial
messages has also been proposed [16].

– In the systems above, a deadline miss (e.g., due to a denial-of-service attack)
or a compromised message can be caused by a malicious attacker. From the
perspective of the attackers, our approach can be applied to minimize attack-
ing cost while still causing the system to reach a state violating properties.

More generally speaking, our verification approach under the (m, k) weakly-
hard fault model provides two important properties for system engineering:

– If the environment and system design (e.g., via scheduling) ensures that the
fault occurrences satisfy the (m, k) constraint, the system properties are sat-
isfied.

– If the environment and system design cannot ensure that the fault occurrences
always satisfy the (m, k) constraint, a runtime monitor should be developed
to monitor the occurrences of faults and adapt the system to a safe (more
conservative) mode when the (m, k) constraint is violated.

For example, applications of connected vehicles, such as intersection man-
agement and cooperative adaptive cruise control, rely on periodic messages from
other vehicles or roadside units. However, a message may be missing due to net-
work faults or even malicious attacks. With the verification results, a connected
vehicle can monitor the number of missing messages during runtime. If the cor-
responding (m, k) constraint is violated, the connected vehicle should switch to
a safe mode (e.g., slowing down or stopping immediately). It should be empha-
sized that, in practice, the cost of a network without missing messages is too
high, or even it may not be possible to predict how the environment behaves,
so the satisfaction of the (m, k) constraint cannot be guaranteed. Therefore, a
runtime monitor for the (m, k) constraint is really desired.

In this paper, given a labelled transition system S, a property P , and a
positive integer K, we aim to develop a runtime monitor to verify whether the

Weakly-Hard Verification for Runtime Monitoring 499

environment satisfies a subset of the (m, k) constraints, where 1 ≤ m ≤ k ≤
K and the subset is sufficient to enforce P , i.e., if the environment satisfies
the subset of the (m, k) constraints, it implies that S guarantees to satisfy P ;
otherwise, S cannot guarantee to satisfy P , which should lead S to switch to
a safe mode. Different from some existing runtime-monitoring approaches that
do not have the model of S, in this paper the model of S is given, but the
satisfaction of an (m, k) constraint can only be verified during runtime.

The runtime monitor relies on a safety table which stores the satisfaction
condition of the property under each (m, k) constraint. As there are K(K+1)

2
constraints in the safety table, a straightforward approach evaluating each (m, k)
constraint one by one needs to verify the property K(K+1)

2 times, where each
individual verification may be expensive to carry out. To remedy this problem,
we propose approaches to compute the safety table in a more efficient way. The
main contributions include:

– We derive theorems of logical relationships between weakly-hard constraints.
Based on the logical relationships, we reduce a safety table to its satisfaction
boundary and propose approaches which only need to verify the property at
most 2K times to compute the satisfaction boundary.

– Based on the computed satisfaction boundary, we define weakly-hard require-
ments for the system environment and design a lightweight runtime monitor
monitoring the satisfaction of the weakly-hard requirements.

– We consider a special case of reachability of finite-state machines. We propose
a mask-compressing approach which can be plugged into (called by) the pro-
posed approaches above. We further propose a layered Breadth-First Search
(BFS) approach which computes the satisfaction boundary for all (m, k) con-
straints (1 ≤ m ≤ k ≤ K) with the same computational complexity as
evaluating a single (m,K) constraint.

– Experiment results with a discrete second-order controller demonstrate the
efficiency of the proposed approaches.

The paper is organized as follows. Section 2 provides the problem formula-
tion, and Sect. 3 overviews the proposed approaches. Section 4 describes how we
solve the problem for general properties and systems and design a runtime mon-
itor. Section 5 considers the special case of reachability for finite-state machines.
Section 6 presents the experimental results. Section 7 reviews the related work,
and Sect. 8 concludes the paper.

2 Problem Formulation

In this paper, we consider a labelled transition system S = 〈Q,Σ,R,Q0〉 where
Q is the set of states, Σ is the set of alphabet, R ⊆ Q × Σ × Q is the transition
relation, and Q0 ∈ Q is the set of initial states. Without loss of generality, a
subset of alphabet represents input events {0, 1} ⊆ Σ, where 0 and 1 represent
a normal and faulty environmental event, respectively. We use σ ∈ Σ = {0, 1}∗

to represent an input trace. We are interested in evaluating whether a property
P is satisfied with inputs under the constraints of weakly-hard fault models.

500 S.-L. Wu et al.

Fig. 1. (a) An example safety table and (b) its satisfaction boundary.

Definition 1. Weakly-Hard Fault Model. A weakly-hard fault model is
defined by (m, k), meaning that there are at most m faulty events (denoted as 1’s)
among any k consecutive events in the input trace. The corresponding constraint
is denoted as W (m, k).

Based on the definition, an input trace σ |= W (m, k) if and only if σ has at
most m 1’s in any size-k window of σ.

Definition 2. Weakly-Hard Constraint Set. Given K ∈ Z
+, the weakly-

hard constraint set is defined as C(K): = {W (m, k) | 1 ≤ m ≤ k ≤ K}.
Given a system S, a property P , and a positive integer K, the goal in this

paper is to develop a runtime monitor to verify whether the environment sat-
isfies a subset of C(K), where the subset is sufficient to enforce P , i.e., if the
environment satisfies the subset of C(K), it implies that S guarantees to satisfy
P ; otherwise, S cannot guarantee to satisfy P , which should lead S to switch to
a safe mode. We do not consider the case of m = 0 as, if there is no faulty event,
S should be designed to satisfy P , which should be regarded as a design-time
problem (although our approach can also fit it).

The runtime monitor relies on a safety table, which stores the satisfaction
condition of P under each W (m, k) in C(K). A safety table is defined as follows.

Weakly-Hard Verification for Runtime Monitoring 501

Table 1. The proposed approaches, where the monotonic approach (Algorithm 1),
the monotonic approach with dynamic upper bound of satisfaction boundary (Algo-
rithm 2), and the lowest-cast-first heuristic (Algorithm 3) decide the order of evaluating
the weakly-hard constraints and need to call a verification approach (not covered for
general properties and general systems in this paper) for a single (m, k) constraint to
complete the verification for multiple (m, k) constraints.

Property & System Single (m, k) Constraint Multiple (m, k) Constraints

Reachability &
Finite-State Machine

Mask-Compressing
(Sect. 5.2)

Layered BFS (Sect. 5.3)

General Property &
General System

Not Covered Algorithms 1, 2, and 3
(Sects. 4.3, 4.5, and 4.6)

Definition 3. Safety Table. Given K ∈ Z
+, a safety table T ∈ {True,False,

N/A}K×K is defined as

T [m, k] =

⎧
⎪⎨

⎪⎩

True if m ≤ k and ∀σ |= W (m, k), S |= P ;
False if m ≤ k and ∃σ |= W (m, k), S 	|= P ;
N/A if m > k.

(1)

For m > k, T [m, k] is not applicable as the corresponding weakly-hard fault
model is undefined. Note the a safety table is computed off-line in design phase,
and the satisfaction of P under each W (m, k) in C(K) needs to be stored and
accessed during runtime. An example safety table is shown in Fig. 1(a).

3 Overview of Proposed Approaches

We list the proposed approaches in this paper in Table 1. There will be five
approaches: the monotonic approach (Algorithm 1) in Sects. 4.3, the monotonic
approach with dynamic upper bound of satisfaction boundary (Algorithm2) in
Sects. 4.5, the lowest-cast-first heuristic (Algorithm 3) in Sects. 4.6, the mask-
compressing approach in Sects. 5.2, and the layered BFS approach in Sects. 5.3.

The first three approaches are for general properties, general systems, and
multiple weakly-hard constraints. They decide the order of evaluating the
weakly-hard constraints and need to call a verification approach for a single
weakly-hard constraint. Note that the first three approaches assume that one
can verify a property P under a single weakly-hard constraint—this paper does
not cover how to achieve that, except in the special case of reachability for
finite-state machines. The last two approaches are exactly for the special case of
reachability for finite-state machines. The mask-compressing approach is for a
single weakly-hard constraint, and thus it can be plugged into (called by) the first
three approaches, while the layered BFS approach is for multiple weakly-hard
constraints.

502 S.-L. Wu et al.

4 General Approaches and Runtime Monitor Design

In this section, we first define the strength of weakly-hard constraints (Sect. 4.1).
We then derive the fundamental theorems of logical relationships between
weakly-hard constraints (Sect. 4.2) and propose an algorithm to compute the
safety table and its corresponding satisfaction boundary based on these theo-
rems (Sect. 4.3). We further derive advanced theorems of logical relationships
between weakly-hard constraints (Sect. 4.4) and propose an improved algorithm
(Sect. 4.5) and a lowest-cost-first heuristic (Sect. 4.6) taking all properties into
account. Based on the computed safety table and the satisfaction boundary, we
can design a runtime monitor (Sect. 4.7).

4.1 Strength of Weakly-Hard Constraint

Definition 4. Strength of Weakly-Hard Constraint. Given two two wea-
kly-hard constraints W (m, k) and W (m′, k′), we define that W (m, k) is stronger
than W (m′, k′), denoted as W (m, k)
 W (m′, k′), if and only if any input trace
that satisfies W (m, k) also satisfies W (m′, k′).

Understanding the logical relationships between constraints allows us to
determine the satisfaction of properties under some W (m, k) constraints directly
from the known verification results of other W (m′, k′) constraints. From an algo-
rithm design perspective, exploiting these relationships by evaluating the con-
straints in a proper order leads to a significant improvement in efficiency.

4.2 Fundamental Theorems

Theorem 1. For any m,m′, k ∈ Z
+,m < m′ ≤ k, W (m, k)
 W (m′, k).

Proof. By definition, for any input trace σ |= W (m, k), it has at most m 1’s in
any size-k window of σ. Since m < m′, it follows that σ |= W (m′, k).

Corollary 1. For any m,m′, k ∈ Z
+,m < m′ ≤ k, if a property P is not

satisfied under W (m, k), then P is not satisfied under W (m′, k); if a property P
is satisfied under W (m′, k), then P is satisfied under W (m, k).

Theorem 2. For any m, k, k′ ∈ Z
+,m ≤ k′ < k, W (m, k)
 W (m, k′).

Proof. By definition, for any input trace σ |= W (m, k), it has at most m 1’s
in any size-k window of σ. If we reduce the window size to k′, the maximum
number of 1’s in the window only remains the same or decreases, so it follows
that σ |= W (m, k′).

Corollary 2. For any m, k, k′ ∈ Z
+,m ≤ k′ < k, if a property P is not satis-

fied under W (m, k), then P is not satisfied under W (m, k′); if a property P is
satisfied under W (m, k′), then P is satisfied under W (m, k).

Weakly-Hard Verification for Runtime Monitoring 503

Algorithm 1. Monotonic Approach
1: procedure Get satisfaction boundary(S, P, K)
2: B ← []
3: m ← 0
4: for k ← 1 to K do � Get satisfaction boundary for each k
5: while m < k do
6: if S �|= P under W (m + 1, k) then
7: break
8: end if
9: m ← m + 1

10: end while
11: B[k] ← m
12: end for
13: return B
14: end procedure

By Corollary 1, the problem of computing a safety table can be reduced to
the problem of computing the satisfaction boundary of the safety table. The
satisfaction boundary is defined as follows.

Definition 5. Satisfaction Boundary. For each k, the satisfaction boundary
B(k) is the maximum m such that T [m, k] (in the safety table) is True.

The satisfaction boundary of the safety table in Fig. 1(a) is shown in Fig. 1(b).
The reduction is crucial because we only need to store the satisfaction boundary
rather than the whole safety table for the runtime monitor.

4.3 Monotonic Approach

Corollaries 1 and 2 imply that evaluating constraints in a monotonic manner
(i.e., increasing m and increasing k until a given K) can compute the satisfaction
boundary without evaluating all constraints in C(K). We assume that we can
verify a property P under a single W (m, k)—an example of verifying reachability
under a single W (m, k) is described in Sect. 5.

We propose Algorithm 1 to compute the satisfaction boundary B(k) for each
k ≤ K. For each k ≤ K, the algorithm increases m until P is not satisfied
and obtains B(k) (Lines 5–11). By Corollary 1, since P is not satisfied under
W (B(k)+1, k), P is not satisfied under W (m, k) where m > B(k)+1, and thus
there is no need to verify P under W (m, k) where m > B(k) + 1. For example,
as shown in Fig. 2(a), if P is not satisfied under W (3, 4), then P is not satisfied
under W (4, 4), which does not need to be evaluated. Then, k is increased by 1
(Line 4), and the same procedure repeats and starts with m = B(k − 1) + 1
(not m = 1). By Corollary 2, since P is satisfied under W (B(k − 1), k − 1), P
is satisfied under W (B(k − 1), k), and thus there is no need to verify P under
W (B(k−1), k). For example, as shown in Fig. 2(b), if P is satisfied under W (3, 4),
then P is satisfied under W (3, 5) (and W (3, k) where k ≥ 5), which does not

504 S.-L. Wu et al.

Fig. 2. An illustration of Algorithms 1 (which applies Corollaries 1 and 2 only) and 2
(which applies Corollaries 1, 2, 3, and 4). To have a clear comparison, we focus on
the implications of W (3, 4) only. (a) If P is not satisfied under W (3, 4), then P is
not satisfied under W (4, 4). Algorithm 2 further implies that P is not satisfied under
W (6, 8) and W (m, k) where k ≥ 5 and m ≥ k − 1. (b) If P is satisfied under W (3, 4),
then P is satisfied under W (3, k) where k ≥ 5.

need to be evaluated. The algorithm terminates when B(k) is computed for each
k ≤ K, and the satisfaction boundary is returned (Line 13).

Assuming the complexity of verifying P under a single weakly-hard constraint
is O(X), the complexity of Algorithm 1 is O(2K ·X) = O(K ·X), since both m, k
are non-decreasing in the algorithm and bounded above by K. It is a significant
improvement over brute-forcing each W (m, k) in C(K), which has the complexity
O(K2 · X).

4.4 Advanced Theorems

Theorem 3. For any m, k, x ∈ Z
+,m < k, x ≥ 2, W (m, k)
 W (xm, xk).

Proof. For any input trace σ |= W (m, k) and size-(xk) window of σ, the window
can be constructed by x size-k windows, and each of which has at most m 1’s.
Thus, there are at most xm 1’s in the size-(xk) window, and it follows that
σ |= W (xm, xk).

Corollary 3. For any m, k, x ∈ Z
+,m < k, x ≥ 2, if a property P is not

satisfied under W (m, k), then P is not satisfied under W (xm, xk); if a property
P is satisfied under W (xm, xk), then P is satisfied under W (m, k).

Weakly-Hard Verification for Runtime Monitoring 505

Algorithm 2. Monotonic Approach with Dynamic Upper Bound of Satisfaction
Boundary
1: procedure Get satisfaction boundary(S, P, K)
2: B ← []
3: m ← 0
4: for k ← 1 to K do � Initialize satisfaction boundary
5: B[k] = k
6: end for
7: for k ← 1 to K do � Get satisfaction boundary for each k
8: while m < B[k] do
9: if S �|= P under W (m + 1, k) then

10: x ← 2
11: while x · k ≤ K do � Corollary 3
12: B[xk] ← min(B[xk], x · (m + 1) − 1)
13: x ← x + 1
14: end while
15: x ← 1
16: while k + x ≤ K do � Corollary 4
17: B[k + x] ← min(B[k + x], (m + 1) + x − 1)
18: x ← x + 1
19: end while
20: break
21: end if
22: m ← m + 1
23: end while
24: B[k] ← min(B[k], m)
25: end for
26: return B
27: end procedure

Theorem 4. For any m, k, x ∈ Z
+,m < k, W (m, k)
 W (m + x, k + x).

Proof. For any input trace σ |= W (m, k) and size-(k + x) window of σ, the win-
dow can be constructed by combining two windows of sizes k and x, respectively.
Since σ |= W (m, k), there are at most m 1’s in the size-k window. On the other
hand, there are at most x 1’s in the size-x window. Thus, there are at most
(m+x) 1’s in the size-(k +x) window, and it follows that σ |= W (m+x, k +x).

Corollary 4. For any m, k, x ∈ Z
+,m < k, if a property P is not satisfied

under W (m, k), then P is not satisfied under W (m + x, k + x); if a property P
is satisfied under W (m + x, k + x), then P is satisfied under W (m, k).

4.5 Monotonic Approach with Dynamic Upper Bound
of Satisfaction Boundary

Corollaries 3 and 4 imply the satisfaction of a property P beyond the same
m or k. Integrating with the previously proposed monotonic approach which

506 S.-L. Wu et al.

Algorithm 3. Lowest-Cost-First Heuristic
1: procedure Get safety table(S, P, K)
2: T ← {undefined} � Initialize as undefined for the safety table
3: while T has undefined element do
4: Select the lowest-cost undefined W (m, k)
5: if S |= P under W (m, k) then
6: T [m, k] ← True
7: else
8: T [m, k] ← False
9: end if

10: Recursively update T by Corollaries 1, 2, 3, and 4
11: end while
12: return T
13: end procedure

increases m and k, we exploit the corollaries and propose Algorithm2 to compute
the satisfaction boundary B(k) for each k ≤ K. The main difference between
Algorithm 1 and Algorithm 2 is that the former one considers the search range
for the satisfaction boundary from an m to k, while the latter one dynamically
reduces the search range whenever P is not satisfied under a constraint.

Specifically, suppose the algorithm is in the process of computing B(k), and
P is not satisfied under W (m + 1, k) (Line 9). By Corollary 3, P is not satisfied
for each W (x · (m + 1), xk), x ≥ 2, and thus x · (m + 1) − 1 is an upper bound
of B(xk) (Lines 10–14). Similarly, by Corollary 4, P is not satisfied for each
W ((m + 1) + x, k + x), x ∈ Z

+, and thus (m + 1) + x − 1 is an upper bound of
B(k + x) (Lines 15–19). An example is shown in Fig. 2(a), if P is not satisfied
under W (3, 4), then P is not satisfied under W (4, 4), W (6, 8), and W (m, k)
where k ≥ 5 and m ≥ k − 1, which do not need to be evaluated. If P is satisfied
under W (3, 4), then the implication is the same as Algorithm 1, as shown in
Fig. 2(b).

4.6 Lowest-Cost-First Heuristic

Since the implications of the theorems do not necessarily restrict the order of
evaluating each W (m, k) in C(K), the efficiency can be further improved by a
good evaluation order. We suppose that we can estimate the verification (time)
cost for each W (m, k) in C(K), e.g., based on the complexity as a function
of m and k. Intuitively, evaluating lower-cost constraints which implies more
constraints or higher-cost constraints is preferred. We propose Algorithm3 which
iteratively selects a not-yet-evaluated constraint in C(K) by the estimated cost
(Line 4), evaluates it (Lines 5–9), and processes all implied constraints after each
evaluation (Line 10). The lowest-cost-first heuristic, though not optimal, provides
the flexibility of evaluating constraints in C(K) by different orders. The lowest-
cost-first heuristic, though not optimal, provides the flexibility of evaluating
constraints in orders different from the previous monotonic approaches. System
designers can decide the order according to the system features.

Weakly-Hard Verification for Runtime Monitoring 507

Algorithm 4. Runtime Monitoring
1: procedure Runtime Monitoring(K, B[])
2: for k ← 1 to K do
3: I[k] ← 0 � Store the last k-th input
4: N1[k] ← 0 � Store the number of 1’s among the last k inputs
5: end for
6: i ← 0
7: while 1 do � During runtime
8: x = Get Input()
9: for k ← 1 to K do

10: N1[k] ← N1[k] + x − I[(i − k)%K]
11: if N1[k] > B[k] then � Exceed the satisfaction boundary
12: Switch to a safe mode
13: end if
14: end for
15: I[i] ← x
16: i ← (i + 1)%K
17: end while
18: end procedure

4.7 Runtime Monitor Design

Based on the satisfaction boundary computed above, we design a runtime moni-
tor to verify whether the environment satisfies each W (m, k) in C(K). Depending
on the satisfaction boundary, we can then determine whether a property P can
be guaranteed. If P cannot be guaranteed, we can switch the system to a safe
mode. As shown in Algorithm 4, the runtime monitor only needs to store the
satisfaction boundary B[], instead of the safety table, in advance, reducing the
space complexity from O(K2) to O(K).

Besides the satisfaction boundary, the runtime monitor only needs two addi-
tional arrays, I[k] for the last k-th inputs and N1[k] for the number of 1’s among
the last k inputs, where 1 ≤ k ≤ K. During runtime (Lines 7–17), the runtime
monitor reads an input (Line 8) and, for each k (Line 9), it updates the num-
ber of 1’s among the last k inputs, N1[k] (Line 10), and check if it exceeds the
satisfaction boundary B[k] (Line 11). If yes, it means that P is not guaranteed
to be satisfied, and the system switches to a safe mode (Line 12). The runtime
monitor then stores the input (Line 15) and continues monitoring.

5 Reachability Analysis for Finite-State Machines

In this section, we consider a special case of system verification with weakly-hard
constraints—reachability analysis for finite-state machines. We first propose a
mask-compression approach to verify reachability under a single weakly-hard
constraint. The mask-compression approach serves as the example of verifying a
property P (reachability) under a single constraint in C(K), and thus it can be
plugged into (called by) the approaches in Sect. 4. Then, we propose a layered

508 S.-L. Wu et al.

BFS approach which computes the safety table in a more efficient way—the
layered BFS approach computes the safety table with the same computational
complexity as evaluating a single (m,K) constraint.

5.1 Problem Definition

A non-deterministic finite-state machine model S is defined as 〈Q,Σ, δ, Pr, q0, F 〉
where Q is the finite set of states, Σ = {0, 1} is the set of input symbols,
δ ⊆ Q×Σ ×Q is the transition table, Pr : δ → (0, 1] is the transition probability
satisfying

∀(q, x) ∈ Q × Σ,
∑

q∈Q,(q,x,q)∈δ

Pr(q, x, q) = 1, (2)

where q0 is the initial state, and F ⊆ Q is the finite set of unsafe states. Given a
finite-state machine S and a positive integer K, the goal is to determine whether
the property P of “never reaching an unsafe state” is satisfied with all possible
traces under each W (m, k) in C(K).

5.2 Mask-Compressing Approach

We develop the masking-compressing approach to verify the reachability prop-
erty P under a single weakly-hard constraint W (m, k). Again, it should be
emphasized that the mask-compression approach serves as the example of veri-
fying a property P (reachability) under a single constraint in C(K), and thus it
can be plugged into (called by) the approaches in Sect. 4. The mask-compressing
approach traverses a finite-state machine with all possible traces that satisfy
the weakly-hard constraint. It records the previous k − 1 inputs and considers
the possibility of the next input. Since there are at most m 1’s among any k
consecutive inputs, if there have been m 1’s among previous k − 1 inputs, then
the next input must be 0.

Given the previous k−1 inputs, we encode them by compressing them into a
(k − 1)-bit mask. Formally, given a finite state machine S = 〈Q,Σ, δ, Pr, q0, F 〉,
we define a graph to perform verification for a single weakly-hard constraint
W (m, k) as follows:

– The vertex set is the set product of the states of S and the (k − 1)-bit mask.
– There is a directed edge from vq,mask to vq,mask if and only if

(q, mask % 2, q) ∈ δ, (3)

(mask · 2) % 2k−1 + mask % 2 = mask, (4)

Count1(mask) + mask % 2 ≤ m, (5)

where Count1() counts the number of 1’s in a mask.

Weakly-Hard Verification for Runtime Monitoring 509

Note that Eq. (3) is for the transition in S, Eq. (4) is for the 1-bit “shift” of the
mask, and Eq. (5) is for the number of 1’s bounded by the weakly-hard fault
model. After constructing the graph, we can apply the depth-first search from
vq0,0, and P is not satisfied if and only if we can reach a vertex vq,mask where
q ∈ F .

The graph has at most |Q| · 2k vertices and |δ| · 2k edges, and thus the
complexity is O(N ·2k), where N = |Q|+ |δ|, for the mask-compressing approach
verifying the reachability property P under a single W (m, k). When plugging the
masking-compressing approach into the approaches in Sect. 4, the complexities
are as follows:

– Algorithm 1: O
(∑K

k=1

∑k
m=1 N · 2k

)
.

– Algorithm 2: O
(∑K

k=1

∑B(k)
m=1 N · 2k

)
.

– Algorithm 3: it depends on the cost estimation and constraint implication.

All of them are bounded by

O

(
K∑

k=1

k · N · 2k

)

= O
(
(K − 1) · N · 2K+1 + N

)
= O

(
K · N · 2K

)
. (6)

5.3 Layered BFS Approach

The key insight of the layered BFS approach is that multiple weakly-hard con-
straints W (m, k) with the same k can be verified together within a BFS.

Theorem 5. For W (m, k),W (m + 1, k) ∈ C(K), the graph for W (m, k) con-
structed by the mask-compressing approach is a subgraph of the graph for
W (m + 1, k).

Proof. It is straightforward by Eq. (5).

Theorem 5 implies that evaluating W (m, k) leads to the results for all W (m′, k),
where 0 ≤ m′ ≤ m. Thus, only the graph for W (k, k) needs to be traversed. The
problem boils down to finding the correct order to perform graph traversal such
that all verification results can be collected. Formally, we let Em and Vm denote
the set of edges and vertices of the graph for W (m, k). At the m-th iteration
(as a layer), we perform a BFS on the graph Gm = (Vm, Em). We exploit the
previous result of the BFS on Gm−1 = (Vm−1, Em−1) and thus avoid redundancy
as Gm−1 ⊆ Gm.

Since we aim to expand the smallest graph for W (1, k) incrementally up to
W (k, k) in a bottom-up manner, we iteratively allow parts of the graph for
W (k, k) to be “visitable” and perform a BFS on visitable vertices. Initially,
E0 = ∅ and V0 = {vq0,0k}. At the beginning of the m-th iteration, the layered
BFS approach marks each vertex vq,mask, where mask satisfies W (m, k), to be
visitable. Then, in the same iteration, the layered BFS approach performs a BFS
on visitable vertices to find reachable vertices and mark them to be “reachable”.

510 S.-L. Wu et al.

If an unsafe state is reached at the m-th iteration, P is only guaranteed to be
satisfied under W (m′, k), where m′ < m.

Since each vertex in the graph for W (k, k) only needs to be traversed once, the
complexity for a given k is O(N · 2k), where N = |Q|+ |δ|. The total complexity
for all k is

O

(
K∑

k=1

N · 2k

)

= O
(
N · 2K+1 − N · 2

)
= O(N · 2K). (7)

This shows that the layered BFS approach computes the satisfaction boundary
with the same complexity as verifying a single (m,K). Compared with Algo-
rithms 1, 2, and 3 with the complexity O(K ·N · 2K) in Eq. (6), the layered BFS
approach is asymptotically K times faster, demonstrating that white or grey box
system models allow more efficient verification.

6 Experiment Results

6.1 Setting

The case study is a discrete second-order controller under perturbation attacks.
We denote the control value, its first-order derivative, and its second-order
derivative at time t as x(t), ẋ(t), and ẍ(t), respectively. The objective of the
controller is to maintain x at a fixed value (0 in our case), and the attacker
attempts to shift x away from the fixed value. The controller is formally defined
as 〈xmin, xmax, ẋmin, ẋmax, ẍC , Satk〉, where

– [xmin, xmax] is the safe range. If x exceeds the range, the safety property is
violated.

– [ẋmin, ẋmax] is the physical constraint for the first order derivative of x. If the
controller attempts to set ẋ to a value larger (smaller) than ẋmax (ẋmin), ẋ is
set to the corresponding limit.

– ẍC is the constant magnitude for the second order derivative of x, i.e., ẍ(t) ∈
{−ẍC , 0, ẍC}.

– Satk is the set of possible attack values on x.

Suppose the control value x deviates away from 0, the policy of the controller
is to accelerate until ẋ reaches the limit (ẋmin, ẋmax) and decelerate when the
control value x is approaching 0. The timing to start the deceleration is deter-
mined such that ẋ = 0 when x = 0, and we denote the value of x at which the
deceleration starts as xdec, which is

xdec(t) = ẋ(t) · tdec(t) − 1
2

· sign(ẋ(t)) · ẍC · tdec(t)2, (8)

where tdec(t) = |ẋ(t)|
ẍC

is the time required to decelerate ẋ(t) to 0. The transition
functions of the controller can be expressed as

x(t + 1) ← x(t) + ẋ(t) + patk(t), (9)

Weakly-Hard Verification for Runtime Monitoring 511

ẋ(t + 1) ← max
(

min
(

ẋ(t) + ẍ(t), ẋmax

)

, ẋmin

)

, (10)

ẍ(t + 1) ← −sign
(

x(t) + patk(t)
)

· sign
(

|x(t) + patk(t)| − |xdec(t)|
)

· ẍC , (11)

where patk denotes the perturbation attack. Equation (9) is for the transition of
x, where the control value is affected by both the first-order derivative and the
perturbation attack. Equation (10) is for the transition of ẋ, with the updated
value clipped to [ẋmin, ẋmax] to satisfy the physical constrain. Equation (11) is
for the transition of ẍ, where the sign of ẍ is determined by the relative position
of x with respect to 0 and whether the system is decelerating as x approaches 0.

For any controller configuration 〈xmin, xmax, ẋmin, ẋmax, ẍC , Satk〉 we can
define a finite state machine 〈Q,Σ, δ, Pr, q0, F 〉, where

– Q = {(x, ẋ, ẍ)|x, ẋ ∈ Z, x ∈ [xmin, xmax], ẋ ∈ [ẋmin, ẋmax], ẍ ∈ {−ẍC , 0, ẍC}}∪
{qunsafe}.

– Σ = Satk ∪ {0}.
– δ is defined exactly from the transition functions above.
– Pr((x, ẋ, ẍ), patk, (x′, ẋ′, ẍ′)) = 1

|Satk| .
– q0 = (0, 0, 0).
– F = {qunsafe}.

qunsafe represents the state where the control value x is out of the range
[xmin, xmax]. Verifying whether the control value is in the safe range under per-
turbation attacks is reduced to solving for the reachability of qunsafe for the
finite-state machine.

We implemented a brute-force approach which evaluates all constraints in
C(K) one by one, the monotonic approach (Algorithm1), the monotonic app-
roach with dynamic upper bound of satisfaction boundary (Algorithm2), the
lowest-cost-first heuristic (Algorithm 3) which defines the estimated cost for eval-
uating W (m, k) as

∑m
i=0

(
k−1

i

)
, and the layered BFS approach. Except the lay-

ered BFS approach, the other four approaches call the mask-compressing app-
roach when they need to evaluate a single constraint in C(K). The approaches
were implemented in C++ and run in the environment with 2.4GHz Quad-Core
Intel Core i5 CPU and 16GB LPDDR3 RAM. Any reported runtime is the aver-
age of 5 runs.

6.2 Results

Experiment on |Q|. We experimented on how each approach scales with respect
to the number of states in the finite-state machine, |Q|. To create different num-
bers of states, we fixed ẋmin = −4, ẋmax = 4, ẍC = 2, and Satk = {5} and
experimented with (xmin, xmax) = {±30,±40,±50,±60,±70,±80,±90,±100},
resulting |Q| from 931 to 3,031. A larger safe range [xmin, xmax] of the control
value x allows the controller to have a larger margin to recover from attacks. K
is set to 20.

512 S.-L. Wu et al.

Fig. 3. The runtime over the number of states, |Q| (the out-of-range runtimes of
the brute-force approach are 26.972, 29.578, 31.760, 33.975, and 36.047 seconds in
an increasing-|Q| order).

Fig. 4. The computed satisfaction boundaries.

The results are shown in Fig. 3, and the corresponding satisfaction bound-
aries are illustrated in Fig. 4, where all approaches generate the same satisfaction
boundaries. The monotonic approach runs significantly faster than the brute-
force approach because the verification results under many weakly-hard con-
straints are implied by Corollaries 1 and 2. For larger number of states, the run-
time differences are even larger, and only the monotonic approach can complete
the system verification within reasonable time. We then compare the monotonic
approach, the monotonic approach with dynamic upper bound of satisfaction
boundary (monotonic-dynamic), and the lowest-cost-first heuristic. The results
are aligned with the theoretical expectations. The monotonic-dynamic approach
runs strictly faster than the monotonic approach for every setting with the addi-
tion implications by Corollaries 3 and 4, and the lowest-cost-first heuristic per-
forms faster than the monotonic-dynamic approach when the number of states
is larger. The layered BFS approach runs faster than the monotonic approach,

Weakly-Hard Verification for Runtime Monitoring 513

Fig. 5. The runtime over K (the out-of-range runtimes of the brute-force approach are
6.924 and 28.704 seconds in an increasing-K order).

and it has comparable runtime as the monotonic-dynamic approach and the
lowest-cost-first heuristic.

Experiment on K. We experimented on how each approach scales with respect
to K. We fixed xmin = −50, xmax = 50, ẋmin = −4, ẋmax = 4, ẍconst = 2,
and Satk = {5}. The results are shown in Fig. 5, where we report the results
with K = 14, 16, 18, 20, 22. Similar to the previous experiment, the proposed
approaches outperform the brute-force approach significantly. This is aligned
with the theoretical complexity analysis that the brute-force approach needs
to evaluate O(K2) weakly-hard constraints, and the other approaches need to
evaluate O(K) weakly-hard constraints only. It should be emphasized that the
verification of a property under a single weakly-hard constraint W (m, k) usually
needs to store the last k inputs, and thus the complexity is at least O(2k). If the
property is more complicated (e.g., in Linear Temporal Logic), the complexity
can be even higher. Therefore, reducing the number of evaluations of weakly-
hard constraints is really advantageous to the efficiency of computing the safety
table or the satisfaction boundary. It should also be mentioned that the layered
BFS approach is especially for the reachability of finite-state machines, and the
other proposed approaches are general and compatible with other verification
approaches for a single weakly-hard constraint.

7 Related Work

Starting from [10], which is the first work that introduced the notion of (m, k)
constraint, weakly-hard systems have been studied from various perspectives
in the last two decades. Research interests range from real-time systems [2] to
network systems [15]. Most of the works focus on the schedulability analysis
for periodic tasks under various assumptions such as bi-modal execution and
non-preemptiveness [3,5,17,23], or the temporal behavior analysis of overloaded
systems [1,9,11,21,24].

Stable controller synthesis is another important topic in the context of
weakly-hard constraints. Based on the extensive studies on the stability under
probabilistic deadline misses [20,22], authors in [4] propose a switched controller

514 S.-L. Wu et al.

to stabilize a weakly-hard system with linear dynamic, while a non-switched
controller is discussed in [19].

The most related work is the safety verification for weakly-hard systems,
where however, only a few prior works have been devoted to this topic. [7] was
the first work that attempts to provide a formal analysis for linear dynamical
systems with weakly-hard constraints. In this paper, a weakly-hard system with
linear dynamic is modeled as a hybrid automaton and then the reachability of the
generated hybrid automaton is verified by the tool SpaceEx [8]. [6] transforms
the behavior of a linear weakly-hard system into a program, and then uses pro-
gram verification techniques, such as abstract interpretation and SMT solvers
to analyze the safety. In contrast, the infinite-time safety problem of general
nonlinear weakly-hard systems is considered in [14]. By modeling a weakly-hard
system as a hybrid automaton, which is similar as that in [8], authors in [14]
convert the infinite-time safety problem into a finite one and then apply linear
programming to obtain a sufficient condition of the initial state to ensure the
safety, which is further improved in [13].

The fundamental difference between the above works, and this paper, is that
we focus on discrete systems rather than continuous systems. Since a variety of
systems are discrete in practice, we believe the study on specific discrete systems
is necessary. Benefiting from this, our technique is able to generate sound and
complete verification result with respect to the weakly-hard constraints for large
scale problems.

8 Conclusion

In this paper, we used a weakly-hard fault model to constrain the occurrences of
faults in system inputs. We developed approaches to verify properties for multiple
weakly-hard constraints in an exact and efficient manner. By verifying multiple
weakly-hard constraints and storing the verification results as a safety table or
the corresponding satisfaction boundary, we defined weakly-hard requirements
for the system environment and designed a runtime monitor that guarantees
desired properties or notifies the system to switch to a safe mode. Experiments
with a discrete second-order controller demonstrated the efficiency of the pro-
posed approaches. Future directions include properties in Linear Temporal Logic
under weakly-hard constraints, other models of computation under weakly-hard
constraints, and system-specific cost estimation for the lowest-cost-first heuristic.

References

1. Ahrendts, L., Quinton, S., Boroske, T., Ernst, R.: Verifying weakly-hard real-time
properties of traffic streams in switched networks. In: Euromicro Conference on
Real-Time Systems, vol. 106, pp. 15:1–15:22 (2018)

2. Bernat, G., Burns, A., Liamosi, A.: Weakly hard real-time systems. IEEE Trans.
Comput. 50(4), 308–321 (2001)

3. Bernat, G., Cayssials, R.: Guaranteed on-line weakly-hard real-time systems. In:
IEEE Real-Time Systems Symposium, pp. 22–35 (2001)

Weakly-Hard Verification for Runtime Monitoring 515

4. Blind, R., Allgöwer, F.: Towards networked control systems with guaranteed sta-
bility: using weakly hard real-time constraints to model the loss process. In: IEEE
Conference on Decision and Control, pp. 7510–7515. IEEE (2015)

5. Choi, H., Kim, H., Zhu, Q.: Job-class-level fixed priority scheduling of weakly-hard
real-time systems. In: IEEE Real-Time Technology and Applications Symposium,
pp. 241–253 (2019)

6. Duggirala, P.S., Viswanathan, M.: Analyzing real time linear control systems using
software verification. In: IEEE Real-Time Systems Symposium, pp. 216–226. IEEE
(2015)

7. Frehse, G., Hamann, A., Quinton, S., Woehrle, M.: Formal analysis of timing effects
on closed-loop properties of control software. In: IEEE Real-Time Systems Sym-
posium, pp. 53–62 (2014)

8. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

9. Gujarati, A., Nasri, M., Majumdar, R., Brandenburg, B.B.: From iteration to sys-
tem failure: characterizing the fitness of periodic weakly-hard systems. In: Euromi-
cro Conference on Real-Time Systems, pp. 9:1–9:23 (2019)

10. Hamdaoui, M., Ramanathan, P.: A dynamic priority assignment technique for
streams with (m, k)-firm deadlines. IEEE Trans. Comput. 44(12), 1443–1451
(1995)

11. Hammadeh, Z.A.H., Ernst, R., Quinton, S., Henia, R., Rioux, L.: Bounding dead-
line misses in weakly-hard real-time systems with task dependencies. In: Design,
Automation and Test in Europe Conference, pp. 584–589 (2017)

12. Hammadeh, Z.A.H., Quinton, S., Panunzio, M., Henia, R., Rioux, L., Ernst, R.:
Budgeting under-specified tasks for weakly-hard real-time systems. In: Euromicro
Conference on Real-Time Systems, vol. 76, pp. 17:1–17:22 (2017)

13. Huang, C., Chang, K.-C., Lin, C.-W., Zhu, Q.: SAW: a tool for safety analysis
of weakly-hard systems. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 543–555. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53288-8 26

14. Huang, C., Li, W., Zhu, Q.: Formal verification of weakly-hard systems. In: ACM
International Conference on Hybrid Systems: Computation and Control, pp. 197–
207 (2019)

15. Huang, C., Wardega, K., Li, W., Zhu, Q.: Exploring weakly-hard paradigm for
networked systems. In: Workshop on Design Automation for CPS and IoT, pp.
51–59 (2019)

16. Lesi, V., Jovanov, I., Pajic, M.: Network scheduling for secure cyber-physical sys-
tems. In: IEEE Real-Time Systems Symposium, pp. 45–55 (2017)

17. Li, J., Song, Y., Simonot-Lion, F.: Providing real-time applications with grace-
ful degradation of QoS and fault tolerance according to (m, k)-firm model. IEEE
Trans. Ind. Inf. 2(2), 112–119 (2006)

18. Liang, H., Wang, Z., Roy, D., Dey, S., Chakraborty, S., Zhu, Q.: Security-driven
codesign with weakly-hard constraints for real-time embedded systems. In: 2019
IEEE 37th International Conference on Computer Design (ICCD), pp. 217–226
(2019)

19. Linsenmayer, S., Allgower, F.: Stabilization of networked control systems with
weakly hard real-time dropout description. In: IEEE Conference on Decision and
Control, pp. 4765–4770 (2017)

20. Pazzaglia, P., Mandrioli, C., Maggio, M., Cervin, A.: DMAC: deadline-miss-aware
control. In: Euromicro Conference on Real-Time Systems, pp. 1:1–1:24 (2019)

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-030-53288-8_26
https://doi.org/10.1007/978-3-030-53288-8_26

516 S.-L. Wu et al.

21. Quinton, S., Ernst, R.: Generalized weakly-hard constraints. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610, pp. 96–110. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34032-1 13

22. Schenato, L.: To zero or to hold control inputs with lossy links? IEEE Trans.
Autom. Control 54(5), 1093–1099 (2009)

23. Sun, Y., Natale, M.D.: Weakly hard schedulability analysis for fixed priority
scheduling of periodic real-time tasks. ACM Trans. Embed. Comput. Syst. 16(5s),
171:1–171:19 (2017)

24. Xu, W., Hammadeh, Z.A.H., Kröller, A., Ernst, R., Quinton, S.: Improved deadline
miss models for real-time systems using typical worst-case analysis. In: Euromicro
Conference on Real-Time Systems, pp. 247–256 (2015)

https://doi.org/10.1007/978-3-642-34032-1_13

	Efficient System Verification with Multiple Weakly-Hard Constraints for Runtime Monitoring
	1 Introduction
	2 Problem Formulation
	3 Overview of Proposed Approaches
	4 General Approaches and Runtime Monitor Design
	4.1 Strength of Weakly-Hard Constraint
	4.2 Fundamental Theorems
	4.3 Monotonic Approach
	4.4 Advanced Theorems
	4.5 Monotonic Approach with Dynamic Upper Bound of Satisfaction Boundary
	4.6 Lowest-Cost-First Heuristic
	4.7 Runtime Monitor Design

	5 Reachability Analysis for Finite-State Machines
	5.1 Problem Definition
	5.2 Mask-Compressing Approach
	5.3 Layered BFS Approach

	6 Experiment Results
	6.1 Setting
	6.2 Results

	7 Related Work
	8 Conclusion
	References

