
Property-Driven Runtime Resolution
of Feature Interactions

Santhana Gopalan Raghavan1, Kosuke Watanabe2, Eunsuk Kang3(B),
Chung-Wei Lin4, Zhihao Jiang5, and Shinichi Shiraishi2

1 University of Southern California, Los Angeles, USA
santhanr@usc.edu

2 Toyota InfoTechnology Center, Mountain View, USA
{kwatanabe,sshiraishi}@us.toyota-itc.com
3 Carnegie Mellon University, Pittsburgh, USA

eskang@cmu.edu
4 National Taiwan University, Taipei, Taiwan

cwlin@csie.ntu.edu.tw
5 ShanghaiTech University, Shanghai, China

jiangzhh@shanghaitech.edu.cn

Abstract. The feature interaction problem occurs when two or more
features interact and possibly conflict with each other in unexpected
ways, resulting in undesirable system behaviors. Common approaches to
resolving feature interactions are based on priorities, which are ineffective
in scenarios where the set of features may evolve past the design phase,
and where desirability of features may change dynamically depending on
the state of the environment. This paper introduces a property-driven
approach to feature-interaction resolution, where a desired system prop-
erty is leveraged to determine which feature action should be enabled at
a given context. Compared to existing approaches, our approach is capa-
ble of (1) providing resolutions even if the system evolves with new or
modified features, and (2) handling complex resolution scenarios where
the preference of one feature over the others may change dynamically.
We demonstrate the effectiveness of our approach through a case study
involving resolution of safety-critical features in an intelligent vehicle.

1 Introduction

The feature interaction problem occurs when two or more features interact and
possibly conflict with each other in unexpected ways, resulting in undesirable
system behaviors [3]. Feature interactions are becoming an important issue in
emerging domains such as the Internet of Things and intelligent automotive
systems, where the outcome of an unexpected interaction may pose significant
safety or security risks [8,16,26]. For instance, a pair of independent safety fea-
tures in a vehicle may attempt to send conflicting acceleration commands to the
engine controller, possibly violating a safety requirement that would have been
satisfied if each feature had existed in isolation.
c© Springer Nature Switzerland AG 2018
C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 316–333, 2018.
https://doi.org/10.1007/978-3-030-03769-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03769-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-03769-7_18

Property-Driven Runtime Resolution of Feature Interactions 317

Fig. 1. Overview of the proposed resolution framework.

Most common approaches to resolving conflicts between features leverage
some notion of priorities [4,5,13,24,28]. Typically, a total or partially-ordered
ranking of features is determined at design time, and an arbitration procedure
is applied at runtime to enable the actions of the highest ranking feature when
a conflict occurs. However, a priority-based resolution strategy suffers from two
major shortcomings. First, in certain domains, it may be difficult or impossible
to predict the set of potential features that may be integrated into a system.
Many modern vehicles, for example, are designed with a capability to download
new applications or modify existing ones through over-the-air (OTA) updates,
and the architecture of an in-vehicle software system is likely to evolve well
beyond its deployment into the market.

Second, certain types of resolution decisions are context-dependent, in that
the most desirable feature may depend on the state of the surrounding environ-
ment at a particular time. For instance, to reduce the risk of collision, a feature
that results in increased acceleration may sometimes be preferable to one that
attempts to reduce speed (e.g., in scenarios where a vehicle is being tailgated by
another speeding vehicle within an unsafe distance). A static resolution strategy
that always favors certain features over the others is insufficient to support this
type of dynamic resolution, where contextual information plays a crucial role.

This paper introduces a novel property-driven approach to feature-interaction
resolution that is designed to address these two shortcomings. The high-level
overview of the proposed approach is shown in Fig. 1. Along with a set of feature
actions, our resolver takes three different types of inputs: (1) a desired prop-
erty to be fulfilled (e.g., “The distance to the preceding vehicle must be at least
some minimum value”), (2) a predictive model that describes how the system
and its environment evolve given a particular action (e.g., a model of changes
in velocity over time given an acceleration), and (3) a set of observations that
represent the current context, i.e., the state of the environment (e.g., velocities of
the surrounding vehicles). The resolver then uses the model to evaluate poten-
tial consequences of each action and determine which of the conflicting features
should be enabled to satisfy the property in the current context.

Instead of relying on a pre-determined priority list, our approach decouples
resolution decisions from the presence of particular features and thus, is capable
of providing resolutions even if the system evolves with new or modified features.
In addition, since our approach does not rely on fixed resolution strategies, it
is capable of handling complex resolution scenarios where the preference of one

318 S. G. Raghavan et al.

feature over the others may change dynamically depending on their satisfactions
of the property in a given context.

In particular, we are interested in investigating the problem of feature inter-
action in cyber-physical systems (CPS), where the behavior of the system and
the environment can be represented as an evolution of continuous variables (e.g.,
velocity or distance) over time. To express properties about these types of sys-
tems, we adopt Signal Temporal Logic (STL) as the underlying property specifi-
cation language [15]. Sometimes, multiple actions may satisfy the desired prop-
erty in a given context and thus, cannot be distinguished from each other. To
resolve this issue, we leverage the notion of robustness of satisfaction [11] as
a quantitative metric to measure how well the property is satisfied by a given
action and distinguish competing features that both (dis-)satisfy the property.

We have built a prototype implementation of the proposed resolution frame-
work as a part of an in-house simulation environment for designing and testing
vehicle systems. To demonstrate the effectiveness of our approach, we applied
this framework to a case study involving a set of safety features from the automo-
tive domain. The outcome of this study shows that our approach can effectively
resolve conflicts among features and ensure that the system performs the actions
that are most satisfactory with respect to a given safety property.

This paper makes the following contributions:

– A novel, property-driven approach to feature-interaction resolution, which
applies the notion of the robustness of property satisfaction to resolve conflicts
among competing features (Sect. 4),

– A prototype implementation of the proposed approach (Sect. 5.1), and
– A case study demonstrating the effectiveness of the approach on a set of

automotive safety features (Sect. 5.2).

The paper concludes with a discussion of the related work (Sect. 6), current
limitations with the proposed framework and potential directions for further
extending the property-driven approach (Sect. 7).

2 Motivating Example

Modern vehicles are equipped with a set of safety features called advanced driver-
assistance systems (ADAS). One common ADAS feature is called cruise control
(CC), which is intended to automatically maintain the speed of the ego vehicle
(i.e., the vehicle being controlled) to the driver-set speed. To achieve its objec-
tive, CC sends an acceleration request to the engine controller, which, in turn,
generates a corresponding actuator command to increase the engine torque until
the vehicle reaches the desired acceleration.

Another ADAS feature, called speed limit control (SLC), is designed to auto-
matically reduce the speed of the vehicle to a legal limit that is obtained from
the surrounding environment (e.g., by detecting a speed limit sign or a GPS loca-
tion). SLC operates by sending a sequence of requests to the brake controller
until the vehicle reaches the desired speed limit.

One desirable safety property of the ego vehicle can be stated as:

Property-Driven Runtime Resolution of Feature Interactions 319

P1: The time to collision (TTC) between this vehicle and a nearby vehicle
must always be above TTCmin.

where TTCmin is some constant threshold determined by automotive engineers
(enough time for a driver to react; e.g., 5 s). The actual time-to-collision at a
given moment depends on the acceleration, velocity, and distance between a pair
of vehicles, and computed using information from on-board sensors.

Conflict Scenario. Consider a scenario with three vehicles sharing a single
lane, as shown in Fig. 2. For the purpose of this example, vehicle B is designated
to be the system that we wish to control, and the leading and following vehicles
(A and C) are considered to be part of the environment. Initially, vehicle A is
moving at a constant speed of 60 km per hour (km/h), and B decides to catch
up to A from its initial speed of 40 km/h by enabling CC.

Fig. 2. Sample driving scenario.

Suppose that vehicle B approaches an area
with a speed limit of 40 km/h, and the SLC
feature begins sending brake requests in order
to limit the vehicle acceleration. This results
in one type of feature conflict : Two indepen-
dent features (i.e., CC and SLC), each trying
to achieve its own goal, attempt to manipulate the same system variable (i.e.,
acceleration) in an inconsistent manner.

Existing Methods. One way to resolve this conflict is to assign to each feature
a priority rank that indicates the level of criticality, and have the feature with
the highest priority (e.g., SLC) be selected over those with lower ranks when
a conflict arises (e.g., CC). An alternative approach is to design and assign a
specific resolution strategy to each system variable that may be manipulated
by multiple features. For instance, one possible strategy, given multiple features
that attempt to manipulate the acceleration, may select the one that results
in the lowest acceleration (e.g., SLC)—the reasoning being that the slower the
vehicle speed is, the safer it is likely to be.

While the latter approach has the advantage that it is feature-agnostic, it may
still lead to unsafe outcomes in scenarios that the specific resolution strategy is
not designed to handle. For instance, suppose that the following vehicle C begins
to rapidly accelerate and exceed the speed of vehicle B. As vehicle C approaches
B within an unsafe distance (thus, reducing the TTC between the two vehicles),
the safer action to take in this scenarios is arguably to increase, not decrease,
the acceleration of vehicle B to avoid a possible collision.

Proposed Method. Our approach to resolution, in comparison, evaluates the
feature actions with respect to the property and selects the one that is most
likely to satisfy it. For instance, as vehicle C speeds towards B from the rear
and the TTC approaches the safe threshold (TTCmin), our resolver determines
that accelerating the vehicle is more likely to satisfy the above property (P1)
and selects CC over SLC.

Suppose, however, that as vehicle B speeds up towards 60 km/h, the leading
vehicle A begins to slow down, and the TTC between A and B begins approach-

320 S. G. Raghavan et al.

ing the safety threshold (thus increasing the chance of collision ahead). Under
this circumstance, the resolver determines that the safer action (as determined
by property P1) is to decelerate vehicle B, and chooses SLC over CC.

Challenges. Note that the desirability of a feature may change depending on
the context; i.e., a feature action may satisfy a desired property in one scenario
while failing to satisfy it in a different scenario. To make this type of context-
dependent decision, the system must explicitly take into account the information
about the current and future states of the environment. Furthermore, if none of
the competing features satisfies the property (or if all of them do), the system
must still be able to make a meaningful choice between them. In the following
sections of the paper, we introduce how our resolution framework leverages (1) a
model of the environment to evaluate the desirability of a feature within a given
context, and (2) the notion of robustness of satisfaction to select the action that
is most satisfactory with respect to the given property.

3 Background

We are interested in designing a resolution framework to ensure the safety of
CPSs, which share two common characteristics: (1) timing is often an important
part of system requirements (e.g., “the vehicle must come to a full stop within
the next 3 s”), and (2) certain aspects of system states are best captured using
continuous domains (e.g., velocity). To express properties about such a system,
we adopt a formal specification logic called signal temporal logic (STL) [15].

Behavior as Signals. In this approach, the state of a system and its evolution
over time is captured using the notion of a signal. A signal over domain D is
a function s : T → D, where time domain T is a finite or infinite set of real
numbers that represent a particular point in time (T ⊆ R≥0). A typical system
consists of multiple state variables, and so the value of a signal is represented as
a tuple of k real numbers (D ⊆ R

k); i.e., s(t) = (v1, . . . , vk). For convenience,
we use the subscript notation si(t) to denote the i-th component of the signal
at time t (for 1 ≤ i ≤ k).

Example. Suppose that the state of a vehicle at time t is modeled as tuple
s(t) = (v, a), where v and a correspond to the velocity and acceleration
of the vehicle, respectively. The signal s = {(t0, (30.0, 2.5)), (t1, (32.5, 2.5)),
(t2, (35.0, 2.5))} depicts a behavior of the vehicle as it speeds up from 30 to
35 km/h at a constant acceleration over a finite time sequence〈t0, t1, t2〉.

Signal Temporal Logic (STL). STL is a logic designed for specifying and
reasoning about the continuous behavior of a system over time [15]. STL is an
extension of linear temporal logic (LTL) [20] with an ability to specify properties
over real values and real time. An STL formula takes the following form:

ϕ := u | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2

Property-Driven Runtime Resolution of Feature Interactions 321

where a < b for a, b ∈ Q≥0, and u is a predicate of the form fu(s1(t), . . . , sk(t)) >
0 for a k-tuple signal s = (s1, . . . , sk) at time t. Informally, the meaning of
the until operator at time t is that ϕ1 must hold until ϕ2 becomes true some-
time within the interval [t + a, t + b]. The until operator U alone is sufficient
to express two other types of temporal operators that are often useful in sys-
tem specification—eventually (F) and always (G): F[a,b]ϕ = TrueU[a,b]ϕ and
G[a,b]ϕ = ¬F[a,b]¬ϕ.

Robustness of Satisfaction. In a system whose behavior is captured using
continuous variables, it is often useful to be able to talk about how close the
system is from (dis-)satisfying a property. For instance, if a property says “the
distance between the ego and preceding vehicles must be at least 3.0 m”, it may
be useful to know not only whether the vehicles satisfy this property, but also
how far above 3 m they are apart (e.g., 3.1 m vs 5 m).

In prior works, STL has been extended to define this notion of closeness as
the robustness of satisfaction [10,11]. Formally, the robustness of s with respect
to STL formula ϕ at time t, denoted ρ(ϕ, s, t), is defined as follows:

ρ(u, s, t) = fu(s1(t), . . . , sk(t))
ρ(¬ϕ, s, t) = −ρ(ϕ, s, t)

ρ(ϕ1 ∧ ϕ2, s, t) = min(ρ(ϕ1, s, t), ρ(ϕ2, s, t))
ρ(ϕ1U[a,b]ϕ2, s, t) = supt′∈[t+a,t+b] min(ρ(ϕ2, s, t′), inf t′′∈[t,t′] ρ(ϕ1, s, t′′))

where infx∈Xf(x) returns the greatest lower bound of some function f over
domain X (and similarly for sup, the least upper bound). Given that each pred-
icate in STL is of the form u ≡ fu(s1(t), . . . , sk(t)) > 0, robustness intuitively
captures how far the signal deviates above (or below) 0.

Robustness for G and F properties can also be defined as:

ρ(G[a,b]ϕ, s, t) = inf t′∈[t+a,t+b] ρ(ϕ, s, t′)
ρ(F[a,b]ϕ, s, t) = supt′∈[t+a,t+b] ρ(ϕ, s, t′)

Informally, how well s satisfies Gϕ is defined to be the point at which the system
is the furthest from satisfying ϕ (similarly, for Fϕ, the point at which ϕ is
satisfied “most well” by the system).

Example. Consider the property P1 from Sect. 2, which says that the TTC
between the ego vehicle and a nearby vehicle must always be above some pre-
defined threshold (TTCmin). This property can be formulated as the following
STL formula: G[0,3](ttc − TTCmin > 0) (for simplicity, let us assume that s is
a single-tuple signal that only keeps track of TTCs over time; i.e., ttc = s1(t)).
Suppose that we are given the following pair of signals, representing two
different behaviors of the system:

sX = {(0, (4.0)), (1, (3.5)), (2, (4.0)), (3, (4.5))}
sY = {(0, (4.0)), (1, (3.5)), (2, (3.0)), (3, (2.5))}

322 S. G. Raghavan et al.

Suppose TTCmin = 4.0 s. Then, ρ(P1, sX , 0) = −0.5 and ρ(P1, sY , 0) = −1.5.
Intuitively, under the scenario depicted by sY , the ego vehicle comes closer
to colliding with the neighboring vehicle than it does under sX . Thus, while
the property is violated in both scenarios, sX is arguably the more desirable
outcome of the system.

4 Property-Driven Resolution

Given a set of conflicting feature actions, the goal of our resolution method is to
determine which action is most satisfactory with respect to a desired property
and allow that action to take place over the other competing actions. At high-
level, for each action, our resolver generates a predictive signal that estimates
how the system is likely to evolve over time given that particular action, and
then computes its robustness with respect to the property. The resolver then
selects the action with the highest robustness.

Scope. We are specifically interested in studying continuously running systems
that must always stay within a safe state. Our goal is to ensure that interactions
between features do not lead to a violation of safety invariants; i.e., properties
that must be maintained by the system throughout its execution. Thus, our
resolver takes an input property of form G[0,∞]ϕ, where ϕ is any bounded STL
formula. This restriction on the boundedness of ϕ is to ensure that prediction
terminates after a finite number of steps; i.e., when the resolver performs pre-
diction at each execution step, it only needs to look ahead a finite number of
times in order to fully evaluate the robustness of the conflicting actions.

4.1 Prediction

Predictive Model. For each competing action, the resolver generates a signal
that predicts how the system evolves given this action, and then evaluates this
signal for robustness. Let V be the set of variables that hold different kinds of
system quantities (e.g., speed, distance). In our approach, the model used for
prediction is encoded as a transition system M = (Q,A, δ, qo), where:

– Q ⊆ R
k is the set of states, represented as the configurations of a k-tuple

signal (i.e., q = (v1, . . . , vk)). In particular, the state consists of n controlled
variables (vi for 1 ≤ i ≤ n ≤ k); the remaining are called monitored variables
(i.e., V = Vcontrolled ∪ Vmonitored).

– A is the set of actions on controlled variables.
– δ : Q×A → Q is the transition function that takes the system from one state

to another on an action.
– q0 ∈ Q is the initial state of the system.

The notion of controlled and monitored variables is based on the four variable
model by Parnas et al. [18]. A controlled variable represents the part of the
environment that the system can manipulate (e.g., acceleration). A monitored

Property-Driven Runtime Resolution of Feature Interactions 323

variable, on the other hand, represents an observation about the environment
that cannot be directly manipulated but may depend on one or more controlled
variables (e.g., velocity of a vehicle, which depends on its acceleration).

Each action in A involves the assignment of a new value to a controlled
variable. In every transition, the system performs one of the available actions
to modify a particular controlled variable (for example, increasing the acceler-
ation); the change to the controlled variable, in turn, determines the values of
the monitor variables in the new state. We assume that a special action called
nop ∈ A is defined for all controlled variables to represent the absence of change.

Intuitively, M is a machine that can be used to generate different signals
of the system (each corresponding to one possible execution), depending on the
choice of the action at every transition step: Given a particular sequence of states
q0, q1, . . . , qi−1, s(t) = qt for 0 ≤ t ≤ i − 1.

Example. Let us show how system dynamics (δ) can be specified using a set
of actions and relationships among variables at consecutive time steps, t and
t′. Consider a simplified version of the example from Sect. 2, with two vehicles,
A and B (with B being the ego vehicle that we wish to control). The state of a
predictive model for this system can be defined as (aB , vB , dAB), where aB is
the sole controlled variable representing the acceleration of B, and the rest are
monitored variables for the velocity of B and its distance to A, respectively.

The type of action for setting the acceleration of B is defined as follows:

setAccel(acc) ≡ aB(t′) := acc

where input parameter acc represents the new acceleration of the vehicle, and
:= denotes the assignment of a value to a controlled variable.

The dynamics of monitored variables are defined in terms of controlled
variables (for simplicity, we assume that vehicle A maintains a constant speed):

vB(t′) = vB(t) + aB(t′) ∗ Tstep

dAB(t′) = dAB(t) + vA ∗ Tstep − (vB(t) ∗ Tstep + 0.5 ∗ aB(t′) ∗ (T 2
step))

where t and t′ are used to index into the value of a variable in the current and
next state, respectively; Tstep is a constant that represents the time elapsed
between each system transition (e.g., 0.1 s). The concept of TTC, which appears
in property P1, can be derived in terms of vB and dAB , and needs not be defined
as its own monitored variable: ttc(t′) = dAB(t′)/(vB(t′) − vA)

Assumption. We assume that the model of the system used for prediction
is deterministic; i.e., executing the model from a particular state with a given
action and some number of steps always returns a unique signal. This simplifi-
cation results in a desirable property that feature conflicts can be resolved in a
deterministic manner.

324 S. G. Raghavan et al.

1 fun resolveAll(ϕ, M, s)
2 resolved := {}
3 for v ∈ Vcontrolled do
4 Ac := detectConflicts(v, M)
5 resolved[v] := resolve(Ac, ϕ, M, s)

6 end
7 return resolved

8 end
9 fun resolve(Ac, ϕ, M, s)

10 rob := {}, amax := none
11 for a ∈ Ac do
12 sa := execute(M, a, s(t), window(ϕ))
13 rob[a] := ρ(ϕ, sa, t + 1)
14 if amax = none ∨ rob[a] > rob[amax] then
15 amax := a
16 end

17 end
18 return amax

19 end
Algorithm 1. Resolution Algorithm.

4.2 Resolution Algorithm

As shown earlier in Fig. 1, our resolver is placed between the set of available
features and actuators that act on the system environment as requested by the
feature actions. During each system execution cycle, the resolver performs the
algorithm in Algorithm 1 to resolve potential conflicts and select system actions
that are most likely to maintain a given invariant ϕ.

The resolver attempts to resolve conflicts associated with each controlled
variable one-by-one (lines 3–6). For each of the conflicting actions a ∈ Ac, the
resolver predicts the effect of action a by executing the system model M for a
time period that is sufficiently lengthy for evaluating how well a satisfies ϕ (lines
12–13). After all conflicting actions have been evaluated, the resolver selects the
one with the highest robustness value to be performed by the system (line 18).

Conflict Detection. The first task in resolution is to determine the conflict
set (Ac, line 4)—the set of feature actions that may be in a potential conflict
with each other. Since the focus of this work is on resolution, not detection, we
omit the details of this step. At high-level, we adopt a variable-specific approach
proposed by [27], where two features that attempt to modify the same controlled
variable are deemed to be in a possible conflict. For instance, CC attempts to
speed the vehicle up by increasing its acceleration while SLC attempts to do the
opposite, and so the actions from these features are placed in the conflict set. In
addition, based on the system dynamics (M.δ), controlled variables that affect
a common monitored variable are considered to be coupled ; any pair of actions
that modify two coupled controlled variables are also included in the conflict set.

Property-Driven Runtime Resolution of Feature Interactions 325

Prediction Window. The resolver must simulate the effect of actions long
enough to determine their robustness with respect to the given property. This
duration depends on the structure and length of intervals in the property itself.
For instance, consider the following formula:

ϕrecover ≡ (ttc ≤ TTCmin ⇒ F[0,3](ttc > TTCmin))

which says that if TTC falls below TTCmin, it must be brought back above this
safe minimum threshold within the next 3 time steps1. In order to determine the
robustness of an action with respect to this property, the resolver must generate
a predictive signal of at least length 4 by executing M . More generally, the
prediction window for a bounded STL formula, ϕ, is defined as follows:

ω(u) = 1 ω(¬ϕ) = ω(ϕ)
ω(ϕ1 ∧ ϕ2) = max(ω(ϕ1), ω(ϕ2))

ω(ϕ1U[a,b]ϕ2) = max(ω(ϕ1) + b − 1, ω(ϕ2) + b)

The intuition behind the prediction window for the until operator is as follows:
Since ϕ2 must become true in at most b future steps, and ϕ1 needs to hold only
until ϕ2 turns true, the prediction task needs to estimate future states for only
b − 1 steps (plus the number of steps needed to predict ϕ1 itself) to determine
the robustness of an action for ϕ1 part of the U formula.

Model Execution. The execution function (line 12) simulates M to generate a
sequence of future states by iteratively applying its transition function δ to the
current state and action a. We assume that throughout the prediction window,
the applied action remains fixed as a. An alternative approach would involve
using models of the features to predict their future actions. Although this could
result in more accurate predictions, it would also introduce an additional require-
ment that every feature comes with its own predictive model—which, based on
our interactions with automotive engineers, is rather unrealistic (particularly
since many features are developed and updated by third-party suppliers beyond
the control of a car manufacturer). Thus, we believe that our design decision is
crucial for making the proposed resolution method applicable in practice.

In our experience, we found that our approach is still effective at predict-
ing the system evolution. Most automotive features perform actions that change
the system state in a gradual manner (e.g., slowly adjust the acceleration); we
observed that such actions do not deviate significantly during the prediction
windows that we experimented with. In addition, the accumulative effect of inac-
curacies is mitigated by repeatedly performing resolution with updated feature
actions at each iteration. The frequency of resolution is a parameter that can be
adjusted in our framework (further discussed in Sect. 5.3. Performance).

Example. Consider actions, a1 = setAccel(0.1 m/s2) and a2= setAccel(−0.45
m/s2), generated by CC and SLC, respectively. Since both manipulate
the acceleration of vehicle B, they are considered to be in conflict (i.e.,
1 To match the syntax of STL, the inequalities can be rewritten to the form f(s(t)) > 0.

326 S. G. Raghavan et al.

Ac={a1, a2}). The current system state is given as (aB(t), vB(t), dAB(t)) =
(1.0 m/s2, 60 km/h, 12 m), with vA = 50 km/h and TTCmin = 5s. Thus, ttc
= 12/((60 − 50) ∗ 0.2778) ≈ 4.32 ≤ TTCmin, meaning vehicle B faces the risk
of an impending collision with A. Recall the STL formula ϕrecover introduced
earlier:

ϕrecover ≡ (ttc ≤ TTCmin ⇒ F[0,3](ttc > TTCmin))

To evaluate the robustness of the two actions against this formula, the resolver
generates the following predictive signals (for simplicity, we show ttc as the sole
component of the signal instead of aB , vB, dAB):

sa1 = {(t0, (3.19)), (t1, (2.10)), (t2, (1.05)), (t3, (0.028))}
sa2 = {(t0, (4.06)), (t1, (3.91)), (t2, (3.99)), (t3, (4.59))}

where t0 is the first step in the future (t0 = t+1, t1 = t0+1. . .). According to the
robustness semantics of STL, ρ(ϕ, sa1 , t0) = 3.19 − 5 = −1.81 and ρ(ϕ, sa2 , t0)
= 4.59 − 5 = −0.41. Even though both actions do not satisfy the invariant, a2

is arguably a safer choice, since it pulls the vehicle closer back to the TTCmin

threshold. Thus, the resolver selects a2 as the next action to be performed.

5 Case Study

We present a case study applying our resolution method to a set of conflicting
safety features in an automotive system. In particular, our goal was to demon-
strate that given a set of conflicting feature actions, our method is effective in
selecting the action that is most satisfactory with respect to a desired property.

5.1 Implementation

We built a prototype implementation of the feature resolution framework as a
part of an in-house simulation environment that we had been developing for
vehicle design and testing. The environment consists of two main parts: (1) The
driving simulator, built on top of the Unity engine, and (2) the vehicle control
system, built as a suite of models in Simulink/MATLAB, each describing the
behavior of a controller (e.g., brake controller) or an ADAS feature (e.g., SLC).

The simulator is responsible for animating a model of the traffic environ-
ment, while the control system describes the internal behavior of a vehicle. Each
simulation run takes place on a traffic map (e.g., a highway road) with a set
of vehicles configured with an initial location (2D coordinates), orientation, and
velocity. At each simulation step, the simulator sends a message to the control
system with the information about the current state of the environment (i.e.,
surrounding vehicle locations and speeds). Given this information, the control
system determines the next control action to perform (e.g., reduce acceleration)
and relays this decision back to the simulator, which then accordingly updates

Property-Driven Runtime Resolution of Feature Interactions 327

the state of the environment by using a built-in physics engine. For our study,
we implemented the following features as Simulink models:

– Cruise control (CC): Gradually increases and maintains the vehicle speed to
a set value by generating a sequence of acceleration requests.

– Speed limit control (SLC): Gradually reduces the vehicle speed to a context-
dependent threshold by sending a sequence of partial braking requests and
decreasing its acceleration.

– Automatic emergency braking (AEB): Brings the vehicle to a stop by sending
a sequence of full braking requests, drastically reducing its acceleration.

– Partial braking assistance (PB): Gradually slows down the vehicle to maintain
a minimum distance to the leading vehicle by generating a sequence of partial
braking requests.

5.2 Experimental Setup

We tested our resolution framework on a number of scenarios involving three
vehicles (A, B, C) traveling on a single lane, as shown in Fig. 2.

Predictive Model. The model used in our simulation is more complex than
the one introduced throughout Sect. 4. The state of the system is represented as
the following tuple: (aB , vB , dAB , dBC , aA, vA, aC , vC). In addition to observing
the distance between vehicles A and B, we also keep track of information about
vehicle C (which trails B). Furthermore, we assume that the speeds of both A
and C may also change over time, and this information is made available to B
via vehicle-to-vehicle communication.

Properties. We tested our resolution approach on the following two properties:

P1 ≡ G[0,∞](ttc > TTCmin)
P2 ≡ G[0,∞](ttc ≤ TTCmin ⇒ F[0,3](ttc > TTCmin))

Conceptually, P2 can be considered a weaker form of P1 that the system
attempts to satisfy if P1 is violated: When the TTC falls below a minimum
threshold, the vehicle must recover back to a safer state within the next three
seconds.

The definition of TTC is also more complex than the one introduced in
Sect. 4, as we now take into account the distances between B and C as well as
A and B. In particular, ttc between A, B, C is now defined to be the minimum
of the TTCs between pairs of vehicles:

ttc = min(ttcAB , ttcBC) ttcAB = dAB/(vB − vA) ttcBC = dBC/(vC − vB)

Intuitively, ttc represents the time to the first potential collision. Thus, by max-
imizing the TTC, our resolver can be regarded as attempting to delay the first
impending collision as much as possible (giving the driver more time to react).

Simulation Scenarios. For each pairwise feature combination (e.g., CC vs
SLC), we simulated the four distinct scenarios and observed the changes in vehi-
cle speeds as well as the robustness of the features. Each scenario was executed

328 S. G. Raghavan et al.

twice, with and without our property-driven resolver activated. In the run with-
out the resolver, the action that would result in a lower acceleration was selected
over the other conflicting action—the rationale being that the slower the vehicle
speed, the safer it is likely to be (the resolution strategy used by [27]).

5.3 Simulation Results

Figure 3 shows the results from two scenarios involving the following feature
combinations: SLC vs CC and PB vs CC, with P1 as the property. In addition
to the plotted scenarios, we tested every other pairwise combinations of features;
due to limited space, we discuss only these two in detail.

SLC vs CC. Figure 3(a) and (b) shows the speed changes in the vehicles when
SLC and CC are enabled, without and with the resolver active, respectively. In

Fig. 3. Simulation results. The x-axis in every plot represents simulation time elapsed
(seconds). In plots (a), (b), (d), (e), the unit of the y-axis is in km/h; in (c) and (f),
the y-axis represents the robustness value (which is, in general, unitless). In both (c)
and (f), CC is enabled from the initial state, while the other feature does not become
activated until certain environmental conditions are met (e.g., vehicle exceeds a SLC
limit)—at which its robustness value (in blue) begins to register. (Color figure online)

Property-Driven Runtime Resolution of Feature Interactions 329

Fig. 3(a), without our resolver, the system always selects the feature that results
in a lower acceleration (SLC). When the trailing vehicle C (in red) speeds up,
the ego vehicle B (blue) is unable to maintain ttcBC above the safe threshold and
eventually ends up in a collision, around 45 s. Note that when a pair of vehicles
collide, their velocities simultaneously become equal (as shown by the sudden
drop and increase in the plot).

In Fig. 3(b), when the resolver is active, it selects the feature that is likely to
result in a higher TTC. As vehicle C approaches B from behind, ttcBC begins to
decrease, and the resolver selects CC to allow B to speed away from C to a state
with a higher TTC. Subsequently, as vehicle B accelerates towards the leading
vehicle A (in green), ttcAB begins to approach the threshold, and the resolver
selects SLC as the more desirable action. The resolver keeps alternating between
the two features in order to maintain both ttcAB and ttcBC above the threshold
until all three vehicles stabilize to a similar speed.

The robustness values for the two features are shown in Fig. 3(c). It starts
out as CC being the only enabled feature until vehicle B reaches a certain SLC-
specific speed limit, at which the SLC feature is enabled (and its robustness,
in blue, begins to appear on the plot). The oscillation between the robustness
of SLC and CC shows the resolver attempting to maximize ttc by alternating
between the two features, until a stable speed is established by the vehicles.

PB vs CC. Figure 3(d) and (e) shows the speed changes in the vehicles when
PB and CC are enabled, without and with the resolver active, respectively. In
Fig. 3(d), as vehicle B catches up to vehicle A within a set distance, PB is
activated and begins generating requests for decelerating vehicle B, introducing
a conflict with CC. Given the two competing features, the system without our
resolver selects the one that would result in a lower acceleration—in this case,
PB. Around 17.5 s, the trailing vehicle C approaches and ends up colliding with
B. As the leading vehicle A is traveling at a sufficiently low speed, all of the
vehicles eventually end up in a three-way collision.

In Fig. 3(e), as vehicle C approaches B, the resolver continuously alternates
between CC and PB in order to maximize the current ttc. However, as vehicle A
is traveling at a significantly lower speed than C is, the resolver is still unable to
keep the minimum TTC between the vehicles. Subsequently, vehicle B collides
with C (shortly after 20 s) and eventually with vehicle A (around 21 s).

This scenario shows an example where none of the actions is sufficient to pre-
vent the system from violating the property. In Fig. 3(f), the robustness values
for both PBS and CC drop below zero and continue to fall, despite the resolver’s
attempt to maximize TTC, eventually resulting in a three-way collision. How-
ever, the behavior resulting from our resolver (Fig. 3(e)) is still arguably more
desirable than the outcome without the resolver (3(d)). In always selecting the
action that maximizes TTC, the resolver effectively delays the time of the first
collision as much as possible (17.5 s vs 21 s), giving the driver more time to react.

Effect on Properties. When we initially designed our experiments, we
expected to see different simulation outcomes depending on the input prop-
erty (P1 vs P2). Surprisingly, however, we found that the results for both

330 S. G. Raghavan et al.

sets of simulation runs were very similar, regardless of the enabled features.
Note that for the invariant in P1, the robustness of an action is defined as
ρ(ttc > TTCmin, s, t) = ttc(t) − TTCmin. Now, consider the robustness for the
invariant in P2:

ρ(ttc ≤ TTCmin ⇒ F[0,3](ttc > TTCmin), s, t)
= ρ(ttc > TTCmin ∨ F[0,3](ttc > TTCmin), s, t)
= max(ρ(ttc > TTCmin, s, t), ρ(F[0,3](ttc > TTCmin), s, t))
= max(ρ(ttc > TTCmin, s, t), supt′∈[t,t+3]ρ(ttc > TTCmin, s, t′))

= max(ttc(t) − TTCmin, supt′∈[t,t+3](ttc(t
′) − TTCmin))

In other words, for P2, the resolver selects the action that tries to maximize
TTC as much as possible during the period of the prediction window. Due to the
robustness semantics, the resolver attempts to preemptively prevent TTC from
falling below TTCmin, effectively establishing the same overall system behavior
as it does under P1 as the property. In comparison, under the conventional
Boolean semantics of satisfaction, the resolver would treat competing actions
equally until TTC falls below TTCmin. In effect, the robustness semantics of
STL enables a more robust resolution of conflicts.

Performance. To assess the overhead incurred by resolution, we computed the
ratio of the average simulation time with the resolver over that without the
resolver. The overhead depends on the frequency of resolution, the number of
features being evaluated, and the input property (which affects the prediction
window). We selected the frequency of resolution to be 0.1 s, based on our esti-
mates of how frequently messages are generated by typical electronic control
units (ECUs). On average, with all of the four features enabled, the overhead
was around 15.1% for P1 and 17.8% for P2. The additional overhead from P2
was due to the latter property having a larger prediction window, as expected.

It is difficult to accurately estimate how well our proposed resolver would
perform in an actual vehicle. For our simulations, we are executing models of
the features, controllers, and the environment in Simulink, which does not reflect
realistic operating conditions. In a typical vehicle, these models would be realized
as low-level embedded code running on ECUs or a dedicated hardware device
(e.g., FPGA). In addition, in safety-critical systems like vehicles, lookup tables [1,
23,29] are widely used to pre-compute and reuse the results of time-consuming
operations (e.g., simulation of physics dynamics), which could be used to reduce
the overhead introduced by the prediction step.

6 Related Work

Our work is most closely related to the variable-specific resolution approach
introduced in [2,27], which associates each system variable (e.g., speed) with a
specific strategy for resolving conflicts between multiple actions (e.g., select the
action that results in the smallest acceleration). Like ours, their approach decou-
ples resolution decisions from the presence of particular features and is capable

Property-Driven Runtime Resolution of Feature Interactions 331

of handling feature addition or modification without having to modify the res-
olution strategies. However, since their approach still relies on fixed strategies,
it may fail to produce a desirable outcome when the system runs into scenarios
that are unanticipated by those strategies (as discussed in Sect. 2).

Griffeth and Velthuijsen proposed a runtime resolution method based on the
notion of negotiation, where a central mediator is used to resolve conflicting
actions among system agents [12]. Rather than attempting to satisfy a global
system property, the goal of their resolution is different from ours, in that it
attempts to come up with actions that all agents consider to be acceptable. Other
resolution methods [4,5,13,17,24,28] rely on a priority or precedence ordering,
and may not be suitable for systems where the set of features evolve over time.

STL has been leveraged for online monitoring of system properties [6,7,9].
The key difference is that monitoring attempts to detect a violation of a property
after it has already occurred, whereas our resolution attempts to select an action
that is least likely to lead to a violation before it occurs.

Runtime techniques for enforcing a desirable property by observing and
possibly modifying system actions have been studied [19,25]. However, these
approaches typically evaluate a single trace for property satisfaction, and do not
involve a comparison of conflicting actions for their satisfaction or robustness.

Our approach of using a predictive model to dynamically determine the safest
of the conflicting actions is similar to online planning [21,22], which tackles
the problem of periodically computing a desirable policy (i.e. which actions the
system should take at a given state) during the execution.

7 Conclusions and Future Directions

This paper proposes an approach that leverages a desired property of the sys-
tem to resolve conflicts between competing features at runtime. Based on our
experience using this framework in-house, we believe that the property-oriented
method is a promising approach, especially in emerging domains such as con-
nected vehicles where the set of installed features may change frequently.

As discussed in Sect. 4.1, our predictive model assumes that the environment
evolves in a deterministic manner given a system action. Probabilistic models
(e.g., Markov decision processes) may be more suitable for accurately captur-
ing the behavior of environmental agents (e.g., how other vehicles adjust their
speeds). To this end, we plan to extend our resolution framework by adopting
a stochastic notion of STL satisfaction [14]. We are also exploring the possibil-
ity of incorporating enforcement techniques into our framework to synthesize a
new action to maintain a safety invariant if none of the given feature actions is
satisfactory.

332 S. G. Raghavan et al.

References

1. Arechiga, N., Dathathri, S., Vernekar, S., Kathare, N., Gao, S., Shiraishi, S.: Osiris:
a tool for abstraction and verification of control software with lookup tables. In:
Proceedings of the 1st International Workshop on Safe Control of Connected and
Autonomous Vehicles, SCAV@CPSWeek 2017, Pittsburgh, PA, USA, 21 April
2017, pp. 11–18 (2017)

2. Bocovich, C., Atlee, J.M.: Variable-specific resolutions for feature interactions. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), Hong Kong, China, 16–22 November 2014, pp.
553–563 (2014)

3. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature interaction: a
critical review and considered forecast. Comput. Netw. 41(1), 115–141 (2003)

4. Chavan, A., Yang, L., Ramachandran, K., Leung, W.H.: Resolving feature interac-
tion with precedence lists in the feature language extensions. In: Feature Inter-
actions in Software and Communication Systems IX, International Conference
on Feature Interactions in Software and Communication Systems, ICFI 2007,
Grenoble, France, 3–5 September 2007, pp. 114–128 (2007)

5. Chen, Y., Lafortune, S., Lin, F.: Resolving feature interactions using modular
supervisory control with priorities. In: Feature Interactions in Telecommunications
Networks IV, Montréal, Canada, 17–19 June 1997, pp. 108–122 (1997)

6. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30
(2017)

7. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

8. Dominguez, A.L.J., Day, N.A., Joyce, J.J.: Modelling feature interactions in the
automotive domain. In: International Workshop on Modeling in Software Engi-
neering (MiSE), pp. 45–50 (2008)

9. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

11. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS,
vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/
11940197 12

12. Griffeth, N.D., Velthuijsen, H.: The negotiating agents approach to runtime feature
interaction resolution. In: Feature Interactions in Telecommunications Systems,
Amsterdam, The Netherlands, 8–10 May 1994, pp. 217–235 (1994)

13. Hay, J.D., Atlee, J.M.: Composing features and resolving interactions. In: ACM
SIGSOFT Symposium on Foundations of Software Engineering, Proceedings,
San Diego, California, USA, 6–10 November 2000, pp. 110–119 (2000)

https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/11940197_12

Property-Driven Runtime Resolution of Feature Interactions 333

14. Li, J., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.: Stochastic contracts
for cyber-physical system design under probabilistic requirements. In: Proceedings
of the 15th ACM-IEEE International Conference on Formal Methods and Models
for System Design, MEMOCODE 2017, Vienna, Austria, 29 September–02 October
2017, pp. 5–14 (2017)

15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. For-
mal Techniques. Modelling and Analysis of Timed and Fault-Tolerant Systems, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

16. Metzger, A.: Feature interactions in embedded control systems. Comput. Netw.
45(5), 625–644 (2004)

17. Nakamura, M., Igaki, H., Yoshimura, Y., Ikegami, K.: Considering online feature
interaction detection and resolution for integrated services in home network system.
In: ICFI, pp. 191–206. IOS Press (2009)

18. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25(1), 41–61 (1995)

19. Pinisetty, S., Roop, P.S., Smyth, S., Tripakis, S., von Hanxleden, R.: Runtime
enforcement of reactive systems using synchronous enforcers. In: Proceedings of
the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of
Software, Santa Barbara, CA, USA, 10–14 July 2017, pp. 80–89 (2017)

20. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science, SFCS 1977, pp. 46–57 (1977)

21. Ross, S., Pineau, J., Paquet, S., Chaib-draa, B.: Online planning algorithms for
POMDPs. J. Artif. Intell. Res. 32, 663–704 (2008)

22. Seuken, S., Zilberstein, S.: Formal models and algorithms for decentralized decision
making under uncertainty. Auton. Agent. Multi-Agent Syst. 17(2), 190–250 (2008)

23. Sundström, C., Frisk, E., Nielsen, L.: Diagnostic method combining the lookup
tables and fault models applied on a hybrid electric vehicle. IEEE Trans. Control
Syst. Technol. 24(3), 1109–1117 (2016)

24. Tsang, S., Magill, E.H.: The network operator’s perspective: detecting and resolv-
ing feature interaction problems. Comput. Netw. 30(15), 1421–1441 (1998)

25. Wu, M., Zeng, H., Wang, C., Yu, H.: Safety guard: runtime enforcement for safety-
critical cyber-physical systems: invited. In: Proceedings of the 54th Annual Design
Automation Conference, DAC 2017, Austin, TX, USA, June 18–22 2017, pp. 84:1–
84:6 (2017)

26. Yarosh, L., Zave, P.: Locked or not?: Mental models of IoT feature interaction. In:
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
Denver, CO, USA, 06–11 May 2017, pp. 2993–2997 (2017)

27. Zibaeenejad, M.H., Zhang, C., Atlee, J.M.: Continuous variable-specific resolu-
tions of feature interactions. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, 4–8
September 2017, pp. 408–418 (2017)

28. Zimmer, P.A., Atlee, J.M.: Ordering features by category. J. Syst. Softw. 85(8),
1782–1800 (2012). https://doi.org/10.1016/j.jss.2012.03.025

29. Zurbriggen, F., Ott, T., Onder, C.H.: Fast and robust adaptation of lookup tables in
internal combustion engines: feedback and feedforward controllers designed inde-
pendently. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 230(6), 723–735
(2016)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1016/j.jss.2012.03.025

	Property-Driven Runtime Resolution of Feature Interactions
	1 Introduction
	2 Motivating Example
	3 Background
	4 Property-Driven Resolution
	4.1 Prediction
	4.2 Resolution Algorithm

	5 Case Study
	5.1 Implementation
	5.2 Experimental Setup
	5.3 Simulation Results

	6 Related Work
	7 Conclusions and Future Directions
	References

