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Abstract. For safe and reliable operation, modern cyber-physical sys-
tems (CPS) rely on various assumptions about the environment, such as
the reliability of the underlying communication network and the behav-
ior of other, uncontrollable agents. In practice, however, the environment
may deviate over time, possibly violating one or more of these assump-
tions. Ideally, in these scenarios, it would be desirable for the system to
provide some level of guarantee about its critical requirements. In this
paper, we propose a contract-based approach to dynamically adapting
the behavior of a system component in response to an environmental
assumption violation. In particular, we extend the well-known notion of
assume-guarantee contracts with an additional concept called the weak-
ening operator, which describes how the component temporarily weakens
its original guarantee to compensate for a violated assumption. Building
on this type of contract, which we call an adaptive contract, we pro-
pose a runtime system for automatically detecting assumption violations
and adapting the component behavior. We present a prototype imple-
mentation of our adaptation framework on the CARLA simulator and
demonstrate its feasibility on an automotive case study.

1 Introduction

To ensure critical requirements, systems rely on various assumptions about
their deployment environment. For instance, a driving-assistance system in an
autonomous vehicle leverages information about its surroundings (e.g., the dis-
tance to and the velocity of the leading vehicle) to maintain a safe distance and
minimize the risk of collision. Timely and accurate access to this information,
in turn, depends on the performance of the underlying communication network
and the reliability of the in-vehicle sensors.

In practice, modern cyber-physical systems (CPS) are deployed in a highly
dynamic, uncertain environment where one or more of these assumptions may
occasionally fail to hold. An inclement weather, for example, may prevent a
sensor from delivering accurate information about the surroundings; a congestion
in a traffic area may increase the latency of the network and cause a delay
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in message delivery. Ideally, a robust system would recognize a violation of an
assumption and respond appropriately by triggering a fail-safe or fail-operational
mechanism (e.g., slow down the vehicle or switch to a manual driver control mode
in case of a critical sensor failure).

Contract-based design [1] is a systematic, rigorous methodology for the devel-
opment of CPS. In this approach, a component is assigned a contract that
describes its properties or behaviors that are expected by other components
(e.g., the client of a service). In this paper, we investigate a type of contract
called assume-guarantee (AG) contract, where a component is assigned (1) an
assumption, A, that it makes about its environment (e.g., expected condition
over its inputs) and (2) a guarantee, G, that it promises to the environment.
The concept of AG contracts have been leveraged for a number of different use
cases, including verification [23], synthesis [9,13], testing [3], and runtime mon-
itoring [24]. Informally, a well-accepted interpretation of an AG contract [1] is
that the component promises to provide the specified guarantee if the assump-
tion holds (i.e., A ⇒ G). One limitation of this interpretation is that an AG
contract does not say anything about how the component behaves in case of
the assumption violation: Under the standard logical interpretation, ¬A implies
anything, meaning that the component may choose to behave in an arbitrary
manner and still fulfill its assigned contract.

In this paper, we propose the concept of adaptive contracts, which can be
used to specify how a component responds to abnormal conditions or changes
in the environment, in addition to specifying the expected guarantee under the
normative environment. Our intuition is that even if the assumption is violated,
the component may still be able to provide some level of guarantee, depending
on the degree of the violation. To capture this, our approach extends a standard
AG contract with an additional element called the weakening operator, which
describes the level of weakened guarantee that the component promises in case
of an assumption violation. Given a component with a contract C = (A,G),
suppose that the environment fails to satisfy the original assumption A but sat-
isfies a weaker assumption A′ (e.g., the latency of the vehicular communication
network increases from 50 to 100 ms). Then, the weakening operator ω maps A′

to a corresponding weakened guarantee G′ that specifies the level of guarantee
that the component promises to satisfy under A′ (e.g., the vehicle maintains
a safe distance at a decreased average velocity, thus temporarily sacrificing its
performance in response to the increased network latency).

Building on this notion of an adaptive contract, we propose a runtime mecha-
nism for detecting assumption violations and automatically adapting the behav-
ior of a component in response. In particular, given contract C = (A,G), where
A and G are expressed using Signal Temporal Logic (STL) [17], we demonstrate
how the weakening operator can be specified declaratively as a constraint over
the robustness of satisfaction [7] of the assumption and guarantee. Furthermore,
we show how the task of finding G′ for given A′ can be formulated as a mixed-
integer linear programming (MILP) problem.

To demonstrate the feasibility of the proposed approach, we have developed
a prototype of the contract-based runtime adaptation mechanism on top of the
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CARLA simulator [8]. In particular, we show how our approach can be used to
specify a contract for an adaptive cruise control (ACC) feature (which relies on
assumptions about the reliability of the vehicular network) and enable the com-
ponent to adjust its guarantee dynamically when these assumptions are violated.
Our preliminary experiments show that our adaptation method can be used to
achieve an acceptable level of safety during assumption violations.

The paper makes the following contributions:

– The concept of an adaptive contract, which extends assume-guarantee con-
tracts with the notion of a weakening operator that describes how the com-
ponent should adjust its guarantee in response to an assumption violation
(Sect. 4),

– A runtime adaptation mechanism that leverages MILP to automatically
adjust component guarantees (Sect. 5), and

– A prototype implementation of the proposed adaptation mechanism on top of
the CARLA simulator and its demonstration on a case study involving ACC
(Sect. 6).

2 Motivating Example

As a running example, consider an ACC feature inside a vehicle. When activated,
this feature is designed to perform two tasks: (1) continually adjust the acceler-
ation of the ego vehicle to maintain a steady gap distance to the leading vehicle
and (2) reduce the chance of collision by ensuring that the time-to-collision
(TTC) is always above some safe threshold (e.g., 3 s). Task (2) is fulfilling a
safety requirement, while task (1) is intended to achieve an optimal traffic flow.
ACC relies on an internal communication network to receive information about
the status of the leading vehicle, such as its relative acceleration, relative velocity,
and the relative distance ahead with respect to the ego vehicle.

The system designer assigns an AG contract C = (A,G) to describe the
specification of the ACC feature, where A states that the network ensures timely
delivery of the information about the leading vehicle (with an upper bound on the
message delivery time) and G says that ACC will perform the above two tasks,
as long as the assumption A holds. Formally, the contract can also be specified
by using a specification language such as STL [17]; e.g., C = (ϕA, ϕG), where
ϕA ≡ �(delay ≤ 100ms) and ϕG ≡ �(♦(gapDist ≤ 20m))∧�(ttc ≥ 3s). This
contract specification could then be used as part of a runtime monitor to ensure
that the environment satisfies its assumption, or that the ACC component fulfills
its guarantee as expected.

One limitation of an AG contract, however, is that it does not say anything
about what the component should do when its assumption is violated; this is
left up to the designer to decide, by devising additional mechanisms to handle
those situations. Our approach addresses this by augmenting the AG contract
with an additional concept, called the weakening operator, that describes how
the component should adapt its behavior in response to an assumption violation.
For the ACC feature, this operator specifies how the system should adjust its
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guarantee on the TTC and optimal gap distance when the network experiences
a delay. In particular, one possible adaptation strategy is to temporarily increase
the gap distance to compensate for the network delay, thus weakening part of its
original guarantee (i.e., �(♦(gapDist ≤ 20m + k)) for some non-negative value
k) but still ensuring safety (�(ttc ≥ 3s)).

There are important benefits to including this adaptive behavior as part of a
component specification. First, this information can be used as part of a runtime
adaptive framework that monitors for assumption violation and systematically
adjusts the behavior of the component in response. Second, other components
in the system may rely on the guarantee provided by C; when its assumption
is violated, it may be useful for C to provide some partial guarantee to those
components (instead of completely discarding G). Lastly, an adaptive contract
encourages the designer to explicitly consider situations in which assumptions
are violated and how to respond to them, which may help improve the overall
resiliency of the system.

3 Preliminaries

Contract-based Design. Contract-based design is a promising methodology for
developing CPS [1] by enabling a compositional, “divide and conquer” paradigm
where a system is designed as a hierarchy of components, and verification is done
on individual components before being composed to provide end-to-end system
guarantees.

In the contract framework [1], a component M is a basic unit of a system,
characterized by a set of variables V and a set of behaviors (denoted beh(M))
expressed over V . Variables are further classified into input and output variables:
Output variables represent those that the component can directly control (e.g.,
the acceleration of a vehicle), while input variables are observed from the envi-
ronment but not directly controllable (e.g., the speed of a surrounding vehicle
observed through a sensor). Components can be connected to each other through
one or more variables and form a larger, composite system.

An assume-guarantee contract C is given by pair (A,G), where A and G are
sets of behaviors for the assumption and guarantee, respectively. Assumptions
and guarantees can be expressed in different formalisms, such as temporal logics
(e.g., LTL [20], STL [17]) or state machines. Component M implements contract
C (denoted M |= C) if M satisfies its guarantee whenever the assumption holds,
i.e., A∩beh(M) ⊆ G. Contract C is compatible if there exists a valid environment
for M , i.e., if and only if A 	= ∅, where ∅ is the empty set. In addition, C is said
to be consistent if there exists a feasible implementation M for it.

Signal Temporal Logic (STL). In CPS, the behavior of a component can
be captured by real-valued signals. Formally, a signal s is a function s : T → D
defined over a finite or infinite set of time, T ⊆ R≥0, to a tuple of k real numbers,
D ⊆ R

k. Intuitively, the value of signal s(t) = (v1, . . . , vk) represents the state
variables of the system at time t, e.g, v1 might represent the time-to-collision
(TTC) between the ego vehicle and its leading vehicle. For convenience, si(t)
denotes the i-th component of the signal at time t (for 1 ≤ i ≤ k).
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STL [17] is an extension of linear-temporal logic (LTL) [20] that can be used
to specify time-varying requirements of a system over real-valued signals. The
atomic expression in STL is called a signal predicate. A signal predicate μ is
a formula of form fμ(s(t)) ≥ 0, where fμ is a function from D to R, i.e., the
predicate μ is true if and only if fμ(s(t)) is at least zero. The overall syntax of
an STL formula ϕ is defined as:

ϕ := μ | ¬ϕ | ϕ ∧ ϕ | ϕ U[a,b]ϕ

where a, b ∈ R, a < b, and ¬, ∧, and U are the negation, conjunction, and until
operators, respectively. Informally, ϕ1U[a,b]ϕ2 states that ϕ1 must hold until ϕ2

becomes true within time interval [a, b]. The operator U[a,b] can be used to define
other temporal operators: ♦[a,b]ϕ := True U[a,b]ϕ and �[a,b]ϕ := ¬♦[a,b]¬ϕ.

Robustness. Typically, the semantics of temporal logic such as LTL are defined
over a binary notion of formula satisfaction. STL also supports a quantitative
notion of satisfaction called robustness, which indicates how “close” the system
is from satisfying or violating a property. Formally, the robustness of signal s
with respect to formula ϕ at time t, denoted ρ(ϕ, s, t), is defined as:

ρ(μ, s, t) ≡ fμ(s(t)) ρ(¬ϕ, s, t) ≡ −ρ(ϕ, s, t)
ρ(ϕ1 ∧ ϕ2, s, t) ≡ min{ρ(ϕ1, s, t), ρ(ϕ2, s, t)}

ρ(ϕ1U[a,b]ϕ2, s, t) ≡ sup
t′∈[t+a,t+b]

min{ρ(ϕ2, s, t′), inf
t′′∈[t,t′]

ρ(ϕ1, s, t′′)}

ρ(♦[a,b]ϕ, s, t) ≡ sup
t1∈[t+a,t+b]

ρ(ϕ, s, t1)

ρ(�[a,b]ϕ, s, t) ≡ inf
t1∈[t+a,t+b]

ρ(ϕ, s, t1)

where infx∈X f(x) is the greatest lower bound of function f : X → R (and sup
the least upper bound). The robustness of predicate μ captures the amount by
which signal s at time t is above or below the value of fμ(s(t)). For example,
consider predicate μ ≡ ttc(t) − 3 ≥ 0, which captures the property that “the
TTC between the ego and leading vehicles is at least 3.0 s.” If, at time t, the
TTC signal is ttc(t) = 1 s, then robustness value ρ(μ, a, t) = −2 indicates that
the system is 2.0 s below the desired safe threshold. In the case of robustness of
�[a,b](ttc(t) − 3 ≥ 0), it represents the value within interval [a, b] at which the
TTC is furthest away from 3.0 s.

4 Adaptive Contracts

While AG contracts are a powerful design and analysis tool, once the component
design and corresponding contracts are set, they are sensitive to un-modeled or
non-provisioned changes. In particular, an AG contract does not say anything
about how the component will behave when perturbations in the environment
lead to a violation of the original assumption. These perturbations can be the
result of diverse events: hardware failures, frayed wires, unexpected network
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congestion, or malicious attacks. In isolation, this can have catastrophic impacts
depending on the nature of the component, and in a hierarchical structure, the
effects may cascade or propagate to other components and the system as a whole.

An adaptive contract extends an assume-guarantee with an additional con-
cept called the weakening operator (denoted ω), which describes how the com-
ponent (implementing the contract) responds to a violation of the assumption
by the environment. Formally:

Definition 1 (Adaptive Contract). An adaptive contract C is tuple
(A,G, ω), where A and G are sets of behaviors representing its assumption and
guarantee, respectively; ω is a function of type MA → MG, where MA and MG

are distance metrics for assumptions and guarantees, respectively.

For a given assumption, A, and the actual behavior manifested by the environ-
ment, A′ (where A′ is weaker than A), let dA ∈ MA be the distance between
A′ and A, representing the degree by which the environment violates A. Then,
w(dA) = dG ∈ MG represents the maximum degree of weakening in its guaran-
tee; i.e., the degree by which the original guarantee G may be compromised to
a weaker guarantee, G′.

Intuitively, C = (A,G, ω) is a contract stipulating that any component M
implementing C must be designed with a mechanism for providing some level of
guarantee even when its assumption is violated. In particular, when A is violated
by degree dA, component M should continue to provide a level of guarantee G’
that is no weaker than G by degree ω(dA) = dG.

We note a couple of special cases. For some dA ∈ MG where dA 	= 0, if
ω(dA) = 0 (i.e., no weakening of the guarantee is allowed), any component M
implementing C must achieve the original guarantee G even under the assump-
tion violation. If w(dA) = ∞ for some dA (i.e., the guarantee can be weakened
by any arbitrary amount), it means that M needs not provide any guarantee
at all when the environment deviates from its assumed behavior by degree dA.
This latter case represents the semantics of a standard AG contract, which leaves
unspecified the behavior of the component under an assumption violation.

Realization in STL. The concept of weakening operator ω is general and can
be realized through different representations of distance metrics MA and MG.
Given our choice of STL as the formalism for specifying A and G, we define ω as
a function of type R → R, whose domain and range correspond to the robustness
of the satisfaction of the assumption and guarantee, respectively. We define the
meaning of the weakening operator for STL-based adaptive contracts as follows:

Definition 2 (Robustness-based Weakening Operator). Given adaptive
contract C = (ϕA, ϕG, ω) for STL formulas ϕA and ϕG, and weakening operator
ω : R → R, ω(dA) = dG for dA, dG ∈ R if and only if the following holds:

For every signal s and time t, if ρ(ϕA, s, t) ≤ 0 and −ρ(ϕA, s, t) ≤ dA,
then −ρ(ϕG, s, t) ≤ dG.
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In other words, as long as the environment violates its assumption (ϕA) no more
than by dA, any component implementing C must ensure that its guarantee (ϕG)
is violated by no more than dG.

For example, consider contract C = (ϕA, ϕG, ω) for the ACC component,
where ϕA ≡ �(delay ≤ 100ms) and ϕG ≡ �(ttc ≥ 3s) ∧ �(♦(gapDist ≤
20m)). Suppose that the condition of the network deteriorates and the assump-
tion about the maximum message delay no longer holds; in particular, let us
assume that the new observed delay is (100 + x)ms for some x > 0. Thus,
for signal s that represents the observed system execution and current time t,
ρ(ϕA, s, t) = −x.

To ensure safety (i.e., ttc ≥ 3s) despite the fact that its information about
the leading vehicle may be outdated (by x ms), the ego vehicle must behave
more conservatively. To do so, the ACC feature compromises the other part of
its guarantee, by maintaining a larger gap distance of (20 + y) meters (for some
y > 0). With this new behavior, ACC is violating its original guarantee by y;
i.e., ρ(ϕG, s, t) = −y.

Then, this adaptive behavior of ACC can be represented by ω(x) = y, which
informally says that “if the network delay is increased by no more than x ms,
then the ACC component will ensure safety with an increase in the gap distance
that is no greater than y m”.

Specifying the Weakening Operator. As mentioned earlier, the weakening
operator ω is a function that maps the degree of an assumption violation (dA)
to the maximum allowed degree of relaxation in the guarantee (dG). In our
approach, ω is specified symbolically as a logical constraint Rω that describes
the relationship between variables dA, dG ∈ R where w(dA) = dG. Formally:

For every dA, dG ∈ R, w(dA) = dG if and only if Rω(dG, dA) holds true.

Our approach does not prescribe a particular language or type of constraint for
specifying Rω; this will depend on the capability of the underlying reasoning
engine to be used as part of the runtime adaptation mechanism. For the partic-
ular mechanism that we propose in Sect. 5, we assume that the expressions in
Rω can be encoded as MILP constraints.

Back to our running ACC example, recall that the two parameter values, x
and y, correspond to the degrees by which the original assumption and guarantee
associated with the contract are violated, respectively. One way to define the
relationship between x and y is as follows:

Rω(x, y) ⇐⇒ R1(x, y) ∧ R2(x, y) (1)
R1(x, y) ⇐⇒ timeToCollision(x) ≥ 3 (2)
R2(x, y) ⇐⇒ 20 + y ≤ estLeadingDist(x) (3)

Here, on line (2), timeToCollision(x) is an auxiliary function that estimates
the time-to-collision between the leading and ego vehicles, taking into account
the additional network delay of x ms. On (3), estLeadingDist(x) is a func-
tion that computes a conservative estimate of the distance between the lead-
ing and ego vehicle, assuming that the leading vehicle continually decelerates
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Fig. 1. Conceptual overview of the runtime adaptation framework.

for the time duration x. Due to limited space, we provide the definition of
estLeadingDist(x) only:

estLeadingDist(x)

= (leading vehicle displacement) − (ego vehicle displacement)

= (distl + vl ∗ x + 0.5 ∗ ACCdec ∗ x2) − (ve ∗ x + 0.5 ∗ ae ∗ x2)

where distl is the current distance to the leading vehicle, vl and ve are the veloc-
ities of the leading and ego vehicles, respectively, ae is the current acceleration of
the ego vehicle, and ACCdec is a constant that represents the lowest acceleration
value for the leading vehicle. In addition, distl, vl, ve are designated as input
variables (i.e., observed from the environment) while ae is an output variable
(i.e., directly controllable by the ACC component). Given that the ego vehicle
has possibly outdated information about the acceleration of the leading vehicle
(due to the network delay), the gap distance is estimated by assuming the most
conservative value for it (i.e., full deceleration, ACCdec).

Constraint Rω captures how the ACC component weakens its guarantee on
the gap distance to compensate for the increased network delay (x) by adjusting
the acceleration of the ego vehicle. In particular, larger the delay x is, lower
the acceleration ae will be, to keep the time-to-collision above 3 s. This, in turn,
results in the vehicle keeping a larger gap distance—thus, a larger value for y.

5 Runtime Adaptation Framework

In this section, we describe an approach for using adaptive contracts as part of
a runtime system that detects a violation of an environmental assumption and
automatically adjust the behavior of the component in response.

Runtime Architecture. Figure 1 shows the architecture of our proposed run-
time adaptation system, consisting of two major parts: (1) a monitor and (2) an
optimizer. Attached to component M with contract C = (ϕA, ϕG, ω), the moni-
tor continuously observes the inputs into M and attempts to detect a violation
of the assumption by the environment. In particular, the monitor evaluates the
robustness of the satisfaction of ϕA over some sequence of input observations sin;
if the violation has occurred, it also extracts the robustness value as the degree
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of assumption violation, dA. The optimizer has the knowledge of the weakening
operator ω and uses it to compute dG = ω(dG); we describe in the following
section how this task is solved using MILP.

Our runtime adaptation method assumes that the behavior of component
M can be modified at runtime to dynamically adjust the guarantee that it pro-
vides. One way to achieve this is by designing M to expose parameters that can
be reconfigured to modify its behavior. For example, an ACC controller may
be configured with parameters that represent the expected performance of the
vehicle, such as the cruise speed and gap distance [14]; the degree of weakening
produced by the optimizer, dG, could be used to determine the new parameter
values. Another way to support dynamic behavior modification is to temporarily
override M ’s behavior with a new sequence of actions to fulfill G′; in the fol-
lowing section, we show how these alternative actions can be synthesized (along
with dG) using MILP.

Finally, when the monitor detects that the environment has resumed satisfy-
ing its assumption, the optimizer instructs the component to revert its behavior
back to the original one to satisfy G.

MILP-based Adaptation. As stated earlier, when the monitor detects that
the environment has violated its assumption by degree dA, the next step in
the adaptation process is to determine how the component should adjust its
guarantee; i.e., determine dG = ω(dA). There are different methods to achieving
this task, depending on the representation of the operator ω. In this paper, given
ω(dA, dG) that is expressed as a symbolic constraint Rω(dA, dG), we propose a
method that formulates this task as a MILP problem.

Our adaptation process produces two outputs: (1) dG and (2) a sequence
of control actions u1, ..., uH ∈ U that the component should execute in order
to provide the weakened guarantee. For example, in the ACC example, these
actions would correspond to a sequence of acceleration commands that ACC
should generate in order to maintain a new gap distance. To produce these
outputs, the optimizer carries out a task that is similar to model predictive control
(MPC) [5], exploring possible sequences of actions over given prediction horizon
H and evaluating them with respect to the desired property ϕG′ . In particular,
we adapt the STL-based MPC approach developed by Raman et al. [21], where
they also use MILP to generate a sequence of control actions; for details on how
to encode STL expressions as MILP, we refer the reader to [21].

Given current system state s0, prediction horizon H ∈ Z, predictive model
M, and the degree of assumption violation, dA, the adaptation task is formulated
as the following MILP problem:

Find u1, ..., uH ∈ U, dG ∈ R (4)
that minimizes dG (5)
subject to R(dA, dG) ∧ (6)

s′ = predict(M, s0, [u1, ..., uH ]) ∧ (7)
− ρ(ϕG, s′, 0) ≤ dG (8)
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Expressions on (6)–(8) are constraints that must be satisfied by the solution
to the variables u1, ..., uH and dG. On (6), R(dA, dG) is the constraint that
relates the degree of assumption violation with that of guarantee weakening
(as described in Sect. 4). Function predict on (7) takes model M and produces a
predictive signal, s′, that describes how the system might evolve over the horizon
H given a possible sequence of actions u1, ..., uH . Then, the constraint on (8)
states that over this predicted execution, the system must provide a level of
guarantee that is no weaker than by dG.

A predictive model (M) takes the current state of the system s0 and control
action u ∈ U , and produces the next state. Inside predict, this model is executed
repeatedly over u1, ..., uH to produce the predictive signal s′. This model can be
specified as a transition system, a dynamical model, or a lookup table [25] that
maps each (state, action) pair to the corresponding next state.

Finally, (5) stipulates that the degree of weakening dG should be minimized.
This optimization objective is to ensure that the original guarantee is weakened
no more than needed to satisfy the constraints; minimizing this is desirable since
in general, weaker guarantees mean a lower or degraded level of functionality.

Example. Recall contract C = (ϕA, ϕG, ω) for the ACC component, where
ϕA ≡ �(delay ≤ 100ms) and ϕG ≡ �(ttc ≥ 3s) ∧ �(♦(gapDist ≤ 20m)).
The predictive model M is specified as a dynamical model that describes how
the velocity of the ego vehicle and the distance to the leading vehicle evolve based
on a given command for setting the ego acceleration (i.e., the control action u).
When the monitor detects that the network delay exceeds the original thresh-
old (e.g., 500 ms), it computes the degree of violation dA as (500–100) = 400
ms. The optimizer then takes this value and generates the corresponding MILP
problem for computing dG, where R(dA, dG) encodes the constraints (1)–(3) from
Sect. 4. Finally, the underlying MILP solver computes dG = 2, suggesting that
the behavior of the ACC component should be adjusted to maintain a larger gap
of 22 m instead of the original 20 m to achieve the safe TTC threshold of 3 s.

6 Case Study

We have developed a prototype implementation of the proposed runtime adap-
tation framework and applied it to a case study involving a realistic imple-
mentation of ACC. We take the component Macc to be the composition of (1)
the ACC functions estLeadingDist, timeToCollision and (2) a proportional-
integral-derivative (PID) controller to track the safe relative distance set-point
gapDistdes. The component takes input signals from a ranging sensor (e.g.,
RADAR), which provides the current relative distance and velocity, and pro-
duces an acceleration command generated by the PID controller.

The design goal for Macc is to fulfill the safety and performance requirements,
similar to those described in Sect. 2. In particular, the adaptive contract assigned
to Macc is as follows: C = (ϕA, ϕG, ω), where ϕA ≡ �(delay ≤ T ) and ϕG ≡
�(gapDist ≥ 5m) ∧ �(♦(gapDist ≤ 20m)). Note that for simplicity, instead of
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Fig. 2. Test scenario for evaluation of the ACC case study

ttc from the running example, we use gapDist to specify the safety requirement.
We assume that the PID controller has been tuned to enforce these requirements
based on expected ranges of delay. In our experiments, we allow this network
latency to vary outside the design-stage ranges, resulting in a violation of ϕA

and motivating the need for contract adaptation.
Recall that the contract guarantee G can be broken into two parts: ϕG ≡

ϕGsafety
∧ ϕGperf

. Hence, weakening either one of the two requirements would
amount to weakening the overall component guarantee. As satisfying the safety
requirement are paramount to automotive engineers, we weaken ϕGperf

in
favor of ϕGsafety

by allowing the ACC component to temporarily increase its
tracking distance in response to an increased network delay: gapDistdes ←
gapDistdes + dG; that is, the runtime adaptation for the ACC component is
realized by adjusting the setpoint of the PID controller.

Implementation in CARLA. The component Macc is implemented as a
node in ROS2 [16] and deployed in CARLA [8], a high-fidelity simulator for
autonomous vehicles, which serves as the environment for Macc. The component
obtains information about the vehicle and environment through simulated sen-
sors and generates throttle commands. The parameters (e.g., gapDist) for the
ACC component are configurable during runtime. The sensor network delay is
implemented by buffering messages before they are delivered to Macc.

In accordance with Fig. 1, the Monitor is realized as a ROS2 node wrapping
the Runtime Assurance Monitoring Tool (RTAMT) [19], a software library for
automatic generation and deployment of monitors for STL specifications. In
addition, the Optimizer is implemented as a ROS2 node wrapping MiniZinc,
an open-source constrained optimization toolchain that provides a high-level
modeling language for encoding and solving MILP constraints [18].

Experiments. We developed a car following scenario in CARLA as the test
environment for our experiments. In this scenario, the leading vehicle starts from
rest and tracks a predefined path of length 244 m with a constant speed set-point
of 35 m/s. This is enforced by the default PID controllers provided by CARLA
for both the lateral and longitudinal dynamics. The ego vehicle starts from rest
at a fixed distance behind the leading vehicle, as can be seen in Fig. 2. The lateral
control is managed by the default PID controller while the longitudinal control
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Fig. 3. Relative distance between two vehicles. The controller with and without con-
tract adaptation is shown in red and blue, respectively; the black plot represents the
baseline controller behavior without time delay (i.e., adaptation is never triggered).
From top left, in a clockwise fashion, the delay samples are 3, 7, 10 and 12. (Color
figure online)

is provided by Macc component, which is activated at the start of the scenario.
The scenario terminates when the leading vehicle reaches a preset destination
at the end of the path.

Experiments were performed by simulating the above scenario under vary-
ing amounts of network delay in the range sensor samples; for each delay, the
scenario was simulated twice, with and without the adaptation enabled (i.e.,
without the adaption, the ACC component would try to maintain its original
set-point, ignoring the delay). Delay was added to the range sensor by buffering
the signal by 3, 7, 10 and 12 samples, respectively, for each experiment.

Results. Figure 3 shows the performance of the proposed approach, where the
relative distance between the leading and ego vehicles is plotted for the different
scenarios. The system performance without contract adaptation is shown in red
lines in the plots whereas the performance of the contract adaptation framework
is shown in blue. As a reference, the baseline relative distance is shown in black,
for where there is no network delay and no contract adaptation (baseline ACC).
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As the delay in the range sensor is increased, the relative distance between
the two vehicles grows significantly when there is no contract adaptation. We
believe that this occurs because the delay in the range sensor effectively delays
the response at which the controller generates control signals, reducing its per-
formance compared to the baseline component. On the other hand, the con-
tract adaptation strategy mitigates the delay by increasing the relative tracking
distance, which correspondingly increases the gap distance and provides the
adapted component with a larger response time margin. As the network delay is
increased, this trend continues, resulting in the un-adapted system experiencing
a collision and near-collision for delay values 7 and 10, respectively. Though the
performance of the system with contract adaptation also degraded with increas-
ing network delay, it was able to avoid such critical failures. In summary, these
results show that the contract-based adaptation approach is viable and has a
potential to improve the system resiliency against environmental deviations.

We also measured the runtime overhead of the adaptation process, in terms
of the amount of time it took for the solver to generate the weakening parameter
dG. In general, we found that the overhead was acceptable (around 80 ms on
average) and did not interfere with the system operation, although it is possible
that for a more complex application, the overhead could be larger.

Despite this potential benefit from contract adaptation, we also note that as
the ranging sensor latency delay increased, the number of failed Optimizer calls
(e.g. no feasible solution to problem (4)–(8)) also increased. In these situations,
the implementation Macc used the baseline gapDist, to default to the behavior
of the system without adaptation. In addition, there was significant variance
in the solver computation time when such a solution existed. As part of future
work, we plan to further investigate this phenomenon, including the impact of
different solvers, solver configurations, and alternative MILP formulations.

7 Related Work

The problem of responding to faulty or unexpected environmental behaviors is
not new. One closely related concept is that of graceful degradation [10], which
refers to mechanisms for maintaining system functionality at a reduced level in
presence of an unexpected component or environmental failure. Although this is
a well-studied topic, there is relatively little prior work on formal specification of
graceful degradation (with the work by Merlihy and Wing [12] being a notable
exception but for distributed systems). An adaptive contract can be regarded as
a component specification that explicitly indicates the level of degraded function-
ality that the component can provide under abnormal environmental conditions.

The concept of the weakening operator was in part inspired by the concept of
stability in control theory [15], which stipulates that bounded disturbances in a
system input should result in bounded disturbances in the output. Within formal
methods, researchers have proposed definitions of robustness (not to be confused
with the robustness of satisfaction in STL) that capture a similar concept [2,11,
26]. For example, Bloem et al. propose a notion of robustness that relates the
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number of incorrect environment inputs and system outputs [2]; Tabuada et al.
propose a different notion of robustness that assigns costs to certain inputs and
outputs (e.g., a high cost may be assigned to an input that deviates significantly
from the expected behavior) and states that an input with a small cost should
only result in an output with a proportionally small cost [26]. As far as we know,
these works mainly focus on design-stage verification or synthesis rather than
leveraging these notions of robustness for monitoring and behavior adaptation.

Self-adaptive systems refer to systems that are capable of dynamically adjust-
ing their behaviors in response to changes in the environment [27]. Among the
prior works in this area, closest to our work are those that leverage tempo-
ral logics to specify the system requirements to be achieved during adapta-
tion [4,6,22,28]. Requirement relaxation (or weakening) has also been investi-
gated in the context of self-adaptation; most notably, RELAX [28] is a framework
based on fuzzy logic that supports specifications of requirements that explicitly
capture uncertainty about possible system behavior. RELAX can be used to
support self-adaptation mechanisms where the system dynamically adjusts its
behavior to accommodate for uncertainty or changes in the environment. One
interesting future direction that we plan to explore is to leverage RELAX as
another type of requirements specification language (instead of STL) to support
contract-based adaptation. The work by Chu et al. [6] proposes a method for
weakening component guarantees that is also based on STL, although their goal
is to dynamically resolve feature interactions (i.e., unexpected conflicts among
components), rather than weakening a guarantee in response to an environmen-
tal deviation.

8 Limitations and Future Work

We have proposed the notion of an adaptive contract, which explicitly captures
how a component behaves in response to the violation of an assumption by
the environment. In addition, we have presented an approach for dynamically
adapting the behavior of the component by leveraging an adaptive contract
specified in STL and an encoding of the adaptation task in MILP, demonstrating
its feasibility through a car-following case study in the automotive domain.

Although these results show a promise, further research is needed to over-
come a number of challenges to make this type of adaptation approach effective
under realistic settings. First, the process of solving MILP problems can be com-
putationally expensive and introduce a variable amount of runtime overhead. We
plan to explore alternative methods that leverage domain-specific heuristics or
offline learning to enable more efficient adaptation. Second, our approach cur-
rently assumes that the system is able to satisfy the weakened (as well as the
original) guarantees. In practice, however, it is possible for these guarantees to be
violated due to a fault within the system; thus, augmenting the type of runtime
architecture that we have presented with monitoring of guarantees (in addition
to assumptions) is an interesting extension that would provide an additional
layer of assurance.
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Furthermore, we have only studied the application of an adaptive contract
to a single component (e.g., ACC); an interesting follow-up work could inves-
tigate how the composition of multiple adaptive contracts can enable reason-
ing about the end-to-end robustness of a system against environmental distur-
bances. Finally, under certain “good” environmental conditions (e.g., higher than
expected network performance), it may be possible to apply a similar type of
adaptation to strengthen the guarantee (instead of weakening it), to provide an
optimal level of system functionality by enabling dynamically flexible compo-
nent specifications. We plan to investigate a hybrid adaptation framework that
is capable of both weakening and strengthening component guarantees.
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