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Abstract. Design space exploration (DSE) refers to the activity of ex-
ploring design alternatives prior to implementation. The power to oper-
ate on the space of potential design candidates renders DSE useful for
many engineering tasks, including rapid prototyping, optimization, and
system integration. The main challenge in DSE arises from the sheer size
of the design space that must be explored. Typically, a large system has
millions, if not billions, of possibilities, and so enumerating every point
in the design space is prohibitive. In this paper, we present a method
for systematically exploring the design space in a cost-effective manner.
The key idea is that many of the design candidates may be considered
equivalent as far as the user is concerned, and so only a small subset
of the space needs to be explored. Our approach takes the user-defined
notion of equivalence, and generates symmetry breaking predicates to en-
sure that the underlying exploration engine does not sample multiple
equivalent design candidates. We describe how the method is integrated
into our DSE framework, FORMULA, which uses an SMT solver to solve
a set of global design constraints and search for valid design instances.

1 Introduction

Design space exploration (DSE) refers to the activity of discovering and evaluat-
ing design alternatives during system development. It has many uses including:

• Rapid prototyping: DSE is used to generate a set of prototypes prior to
implementation. Simulating and profiling of these prototypes can increase
understanding of the impact of design decisions while taking complex system
dynamics into account.

• Optimization: When metrics are available for comparing one design to an-
other, DSE can be used to perform optimization, eliminating inferior designs
and collecting a set of final candidates that are further studied.

• System integration: System integration requires the assembly and config-
uration of multiple components into a working whole. DSE can be used to
find legal assemblies and configurations that satisfy a set of global design
constraints.



DSE must be performed carefully because of the sheer number of design
alternatives to be explored. A large complex system may admit millions, if not
billions of design alternatives; in some cases, the design space may be infinite.
A manual, ad-hoc approach to DSE is tedious, error-prone, and does not scale.
An effective DSE framework must consist of the following ingredients:

• Representation: A suitable representation of the design space is essential.
The representation should be formal, so that it can be subject to automated
analysis and exploration techniques. A complex system may have a large
number of design constraints that must be satisfied by every valid design so-
lution. These constrains may involve arithmetic operations, Booleans expres-
sions, and data type constraints over infinite domains. The representation
should be expressive enough to capture these types of complex constraints.

• Analysis: A DSE framework must be equipped with machine-assisted tech-
niques for discovering potential candidates, and checking them against the
design constraints to ensure that they are actually valid design solutions.
The framework must also be able to tackle the challenge of solving a large
number of complex constraints at reasonable computational costs.

• Exploration method: Even after an optimization procedure rules out all
inferior designs, the user may end up with the task of exploring a large
number of design candidates. Enumerating them one-by-one in an ad-hoc
fashion is not desirable. As far as the user is concerned, some of the solutions
may be considered equivalent, and the user may be interested in examining
only the ones that are distinctive from each other. The framework must
provide a method for navigating to interesting solutions.

In previous papers [15, 16], we proposed our DSE framework, called FOR-
MULA, and discussed its representation of the design space and the underlying
analysis engine, which is based on the Z3 SMT solver [10]. In this paper, we
describe the method in FORMULA for sampling a set of interesting design solu-
tions. We say a solution is interesting if it is considered distinct from any other
solution that has already been explored, under the user-defined notion of equiv-
alence. Formally, two solutions are considered equivalent if their mathematical
representations are isomorphic to each other. We show how we allow the user to
define an equivalence relation that groups all isomorphic solutions into a single
equivalence class. Our approach applies symmetry breaking predicates [8] to en-
sure that FORMULA returns exactly one solution from each equivalence class,
thereby avoiding uninteresting designs from being presented to the user.

This paper is structured in the following way. We will begin by presenting
a motivating example (Section 2). We will present background information on
FORMULA—its representation of the design space and the SMT-based analy-
sis engine for solving design constraints (Section 3). We will outline a method
for exploring the design space in a way that guarantees only distinct design
candidates to be found (Section 4). Then, we will discuss an experiment demon-
strating the effectiveness of our approach (Section 5). Finally, we will conclude
with discussions of related work (Section 6) and future directions (Section 7).



2 Motivating Example

We begin with an example that is simple but challenging for existing DSE meth-
ods. This example is borrowed from platform mapping problems found in auto-
motive embedded systems [19, 26]. Given a set of software tasks and devices, the
goal is to map each task onto a device in such a way that a certain set of design
constraints are satisfied.

We formally describe the problem as follows. Let T be a set of named tasks.
A conflict graph C = (T,EC) is a labeled undirected graph over tasks. An
edge (t1, t2) ∈ EC indicates that tasks t1 and t2 are in conflict and should not be
executed on the same device. Let D be a set of named devices. Then, a distributed
network N = (D,EN , cap) is a triple where (D,EN ) is a labeled directed graph.
For each edge (d1, d2) ∈ EN , there is a directed communication channel from d1

to d2. The notation in(d) indicates the set of incoming communication channels
of device d, and out(d) its outgoing channels. Every channel has a strictly positive
capacity as assigned by the function cap : EN → Z+. Finally, tasks are bound to
devices by the function bind : T → D. The structures C, N , and bind provide a
representation for instances of the design space—i.e. possible configurations of
tasks, devices, and mappings between them.

Every valid design of the system must satisfy the following design constraints:

1. A pair of conflicting tasks cannot be mapped onto the same device: ∀t1, t2 ∈
EC · bind(t1) 6= bind(t2).

2. A single device can provide at maximum two ingoing and/or outgoing chan-
nels: ∀d ∈ D · |in(d)| ≤ 2 ∧ |out(d)| ≤ 2.

3. Each device with both input and output channels must have balanced ca-
pacities:
∀d ∈ D · in(d) 6= ∅ ∧ out(d) 6= ∅ ⇒

∑
i∈in(d) cap(i) =

∑
o∈out(d) cap(o).

Constraint (1) is equivalent to a graph coloring problem, and requires reasoning
about the global topology of the system. Constraint (2) is a forbidden sub-
graph problem. Constraint (3) requires arithmetic reasoning and is guarded by
a Boolean constraint.

Let us assume the engineer has chosen a set of tasks and identified conflicts
appropriately. Then, the possible design alternatives arise from variations in
network topologies, capacities, and task bindings. Figure 1 shows one possible
configuration of the system. Note that this instance satisfies all of the design
constraints. If, for example, the capacity of the channel from device B were to
be altered from 1 to 2, then the modified instance would fail to satisfy constraint
(3), and no longer qualify as a legal design candidate.

From the perspective of the engineer, the “best” design might be one that
utilizes the communication channels most efficiently. However, this utilization
depends on the code executed by the tasks, the scheduling strategy of the un-
derlying operating system, the communication protocols implementing channels,
and a number of other factors. An optimization problem cannot be formulated
easily at this high-level, and so rapid prototyping combined with simulation is
the approach that is often taken to evaluate design alternatives [19].
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Fig. 1. A design instance of the platform mapping problem, representing one possible
configuration of the system. Circles represent tasks, and squares represent devices.
Every edge between a pair of devices is labeled with the channel capacity. This instance
contains ten tasks, with conflicts indicated by gray lines. A dotted line from a task to
a device indicates that the task has been mapped to the device.

The requirement on the DSE engine is to enumerate design alternatives that
satisfy global constraints. However, this example is challenging for several rea-
sons. First, instantiating a single solution requires solving non-trivial constraints,
such as arithmetic and relational constraints. Second, the number of design alter-
natives is, in principle, infinite, because no bounds where placed on the channel
capacities, the number of devices, or the domain of their labellings; certainly, the
entire space cannot be explicitly enumerated. Third, labels on the devices are
also a design parameter, and thus, each solution in the design space will have
a large (possibly infinite) number of counterparts that differ only by labeling of
devices. These countparts may be of no interest to the user, and so the explo-
ration method must be able to eliminate these equivalent solutions. As we shall
show, this last criterion is particularly challenging to achieve.

3 Background on FORMULA

FORMULA is our modeling framework for formally specifying domain-specific
languages [17]. From the DSL perspective, the representation and constraints of
a design space form a domain-specific abstraction; DSLs are ideal for capturing
such abstractions. Additionally, the DSL metaphor allows complex design spaces
to be built from smaller ones using DSL composition operators. In this section we
introduce just enough of FORMULA to encode our motivating example; please
see [16] for a more detailed discussion.



1. domain Functionality
2. {
3. Task ::= (id: Basic).
4. [Closed]
5. Conflict ::= (t1: Task, t2: Task).

6. }
7. model ThreeTasks of Functionality
8. {
9. Task(1)
10. Task(2)
11. Task(3)
12. Conflict(Task(1), Task(2))
13. Conflict(Task(2), Task(3))

14. }

Fig. 2. Examples of a domain and a model specified in FORMULA. The Functionality
domain encodes the abstraction related to tasks and conflicts. The model contains three
tasks with two conflicts among the tasks.

3.1 Representation

A domain block encapsulates the data types and constraints of a DSL, as shown
in Figure 2. A data type is either the name of a sort (a set of constants, e.g.
String), a record constructor, or an arbitrary union of other data types. Line
3 declares a constructor called Task, which takes an id argument of type Basic
(which corresponds to the set of all constants). Line 5 declares a constructor
for denoting conflicts between tasks, which requires two arguments of type Task.
FORMULA data types are algebraic: Two data instances are the same if and only
if they were built from the same sequence of constructors and constants. This
formalism captures inductive data types with type constraints. A model is a set
of record instances built using the constructors of a domain that satisfy domain
constraints (lines 7-14). The declaration model ThreeTasks of Functionality is a
claim that the model satisfies constraints; the claim is verified by FORMULA.

Some domain constraints are quite common; e.g. conflict edges form a relation
over tasks: EC ⊆ T × T . FORMULA provides built-in support for common
constraints via annotations on data type declarations. The [Closed] annotation
applied to the Conflict constructor is an example. Let JCK be the set of all well-
typed records that can be constructed by C. If M is a set of records, then
M(C) = M ∩ JCK is the set of C-records in M . For example M(Task) and
M(Conflict) is the set of all tasks/conflicts respectively. The closed annotation
requires every model M to satisfy {(t1, t2) | Conflict(t1, t2) ∈M(Conflict)} ⊆
M(Task)×M(Task).

In general, a rich constraint language is needed to specify domain constraints.
Many modeling tools use the object constraint language (OCL) for this purpose.
However, the intricacies of OCL complicate automated analysis of arbitrary OCL
constraints [21]. For this reason, we choose constraint logic programming (CLP)



1. domain Distribution
2. {
3. Device ::= (id: Basic).
4. [PartialFunction(src, dst -> cap)]
5. Channel ::= (src: Device, dst: Device, cap: PosInteger).

6.
7. bigFanIn :=d is Device, count(Channel( , d, )) > 2.
8. bigFanOut :=d is Device, count(Channel(d, , )) > 2.
9. clog :=d is Device,
10. sum(Channel( , d, ), 2) != sum(Channel(d, , ), 2).
11. conforms :=!(bigFanIn | bigFanOut | clog).

12. }

Fig. 3. A domain representing the distribution of devices through channels.

for the core constraint language of FORMULA. CLP is well studied, has an
unambiguous execution semantics, and can be converted into first-order logic. In
fact, FORMULA converts all built-in constraint annotations into logic programs.

Figure 3 shows an abstraction for the distributed network of devices through
channels, which requires more complex constraints to specify. A Channel is a
partial function from a pair of Devices to a positive integer. Line 7 defines a query
for checking whether an input model M has a Device with too many incoming
Channels. For each binding of the variable d to a Device, the count operator
counts the number of distinct Channels terminating on d (the underscores are
“don’t care” variables). If there is any binding of d with more than two incoming
Channels, then the Boolean variable bigFanIn evaluates to true. The bigFanOut
query (line 8) performs the same check for outgoing Channels. The clog query
checks if the communication network is unbalanced by summing the capacities
on incoming/outgoing Channels. The second argument of the sum operator is the
zero-indexed field within the record that is summed.

Every FORMULA domain has a query called conforms. By definition, an
input model satisfies domain constraints only if conforms evaluates to true. The
design space associated with a domain is the set of models satisfying its conforms
query. In the example from Figure 2, the conforms query has not been explicitly
defined by the user; in this case, FORMULA will implicitly define the query as
a conjunction of compiler generated constraints (e.g. [Closed]). In Figure 3, the
Distribution domain explicitly requires that none of bigFanIn, bigFanOut, and clog
should evaluate to true. The entire conforms query for Distribution also contains
compiler generated constraints due to the annotation [PartialFunction].

The DSL approach supports modular and compositional specification of ab-
stractions. The Architecture domain (Figure 4) is an extension of the product of
the Functionality and Distribution domains. These composition operations allow
the Architecture domain to use the data structures of Functionality and Distribu-
tion while provably ensuring that all constraints are enforced the same way [16].
Architecture also adds a new data structure Binding and requires that Bindings
must respect task conflicts (lines 18-19). Again, the complete conforms of Archi-



13. domain Architecture extends Functionality, Distribution
14. {
15. [Function]
16. Binding ::= (t: Task, d: Device).

17.
18. conflict :=Binding(t1, d), Binding(t2, d), Conflict(t1, t2).
19. conforms :=!conflict.

20. }

Fig. 4. A domain as a composition of Functionality and Distribution.

tecture contains constraints imported from the other domains. In summary, the
models conforming to Architecture are exactly those legal systems described in
Section 2. The DSL approach allows the user to encode the interesting degrees of
design freedom via formal and composable abstractions. Specifically, FORMULA
utilizes algebraic data types and CLP to accomplish this.

3.2 Solving for Instances

In order to find non-trivial solutions to design spaces, FORMULA specifications
are translated into the SMT solver Z3. Let D.q be a query q defined in domain
D, then the translation procedure must produce a first-order formula ϕ[X] with
the following property: Finite models (sets of records) satisfying D.q are in cor-
respondence with satisfying instances of ϕ[X], where X denotes the vector of
variables appearing in ϕ. A satisfying instance is a mapping of variables to values
{x1 7→ v1, . . . , xn 7→ vn}; a reverse translation converts satisfying instances into
FORMULA models.

SMT solvers represent a significant step in automated theorem proving by
soundly combining decision procedures for different theories while using efficient
SAT-based backtracking techniques to drive the search process. For example,
the clog query (lines 9-10, Figure 3) imparts the following fragment into ϕ:

testDevice(d) ∧ testChannel(in1) ∧ testChannel(in2)∧
selChannel,1(in1) = d ∧ selChannel,1(in2) = d ∧ in1 6= in2∧
x = 2Int(selChannel,2(in1)) + 2Int(selChannel,2(in2)) . . .

(1)

This fragment sums the incoming channel capacities for a device d with two
distinct incoming channels. SAT techniques provide a strategy for satisfying
sub-formulas, and specific decision procedures actually solve the sub-formulas.
In this example, two decision procedures are required: (1) term algebras (TA) for
inductive data types and (2) linear arithmetic for summing channels. The first
line of the formula uses TA to test that the variables d, in1, and in2 have the
appropriate record structure. The second line extracts the second components of
the channels in1 and in2 using TA selectors; the equalities here invoke unification
and the occurs check. The third line extracts the channel capacities, coerces
them to integers using the function 2Int, and calculates their sum via the linear
arithmetic decision procedure.



This example illustrates the power of SMT, but also shows that the transla-
tion process from a high level specification to SMT is non-trivial, since most SMT
solvers support only the existential fragment of first-order logic. In our approach,
universal quantifiers are eliminated by symbolically executing a specification over
a set of symbolic inputs and emitting all interesting branches of the logic pro-
gram as a quantifier free formula. The symbolic execution loop is implemented
outside of the theorem prover, and it takes as input a finite set of records with
variables where constants would otherwise be. For example, symbolic execution
on the following set:

S =


Task(x1), Task(x2), Task(x3),

Device(x4), Device(x5),
Conflict(x6, x7),

Channel(x8, x9, x10),
Binding(x11, x12), Binding(x13, x14), Binding(x15, x16)

 (2)

produces a formula ϕ capturing all the possible ways that zero to three Tasks,
zero to two Devices, etc... can satisfy design constraints. When the DSE proce-
dure does not know cardinality bounds for all record types, then it repeatedly
attempts larger and larger symbolic sets as input to the symbolic execution en-
gine. Even though each symbolic input set has a finite number of records, the
resulting SMT formula may still have an infinite number of solutions, because
variables occurring in ϕ range over infinite domains. We refer to the original
finite set used to produce ϕ via symbolic execution as the generator set of ϕ.

4 Design Space Exploration Method

After symbolic execution, elements of the design space can be enumerated by
repeatedly querying the SMT solver. This procedure is not sufficient for rapidly
exploring diverse solutions, because the solver does not know which solutions
are considered similar. Also, solving strategies are optimized to find any next
solution, and not necessarily solutions that are highly distinct. In this section,
we describe a technique for grouping related solutions based on isomorphisms
over algebraic data types.

4.1 Projection-Based Equivalence Partitioning

Let Σ be the set of constants that might appear in the field of some record. Let
C be the set of all constructors of a domain D. A term homomorphism φ is a
function over constants lifted onto records. If c(r1, . . . , rn) is a record built by
applying constructor c to records r1, . . . , rn, then φ(c(r1, . . . , rn)) returns a new
record that is equal to c(φ(r1), . . . , φ(rn)). Term homomorphisms preserve the
structure of records, but change the constants appearing in their fields. If M is
a model (i.e. a set of records), then φ(M) is a model formed by applying φ to
each record in M . Homomorphisms induce a preorder on models: M ′ � M if



∃φ · φ(M) = M ′. Two models M,M ′ are isomorphic if M ′ � M and M � M ′;
this can be written as M ∼M ′.

Isomorphic models are equivalent up to relabeling of the constant values ap-
pearing in their records. Our approach groups all isomorphic solutions into a
single equivalence class, and finds only one representative per equivalence class.
We take this one step further, allowing isomorphisms to be considered on some
subsets of data types, thereby further decreasing the number of distinct equiva-
lence classes. We call Π ⊆ C a projection on the records of domain D. If M is a
model, then Π(M) discards records not in Π:

Π(M) = {r | r = c(r1, . . . , rn) ∧ r ∈M ∧ c ∈ Π} (3)

Given a projection Π, then M ′ �Π M if ∃φ · φ(Π(M)) = Π(M ′). Again, two
models are in the same equivalence class if and only if M �Π M ′ and M ′ �Π M .

FORMULA provides the user with an interface for specifying a projection.
Returning to the motivating example, suppose the user wants to see only those
solutions with distinct channel topologies. In the case, the user may specify
Π = {Channel}, and every solution returned by FORMULA will have a distinct
communication topology.

This approach must be integrated with the solver, so it knows to return non-
isomorphic solutions. Communicating isomorphism-based equivalence classes to
solvers can be accomplished using symmetry breaking predicates [8].

4.2 Exploration Algorithms

Encoding equivalence classes into the SMT solver using symmetry breaking pred-
icates can ensure that every new solution is non-isomorphic to previous ones.
However, this alone does not diversify the exploration throughout the design
space; in other words, FORMULA may consecutively return non-isomorphic
but structurally similar solutions within a small portion of the space. Ideally,
we want the solver to “jump around” various parts of the design space, sam-
pling a wide variety of non-isomorphic solutions. In this section, we describe an
algorithm that explores the design space for a particular generator set G, and
show how we employ randomization to incrementally construct a diverse set of
non-isomorphic solutions.

Na̋ıve Exploration Algorithm We begin by describing a simple candidate
algorithm Explore (Figure 5) to build intuition. The algorithm accepts as inputs
the generator set G, the formula ϕ generated from G, which encodes the design
constraints, and a user-specified projection Π. The algorithm randomly samples
an equivalences class in the design space, and then checks if that equivalence
class contains a model satisfying ϕ. A sample s is a symbolic set of records
under the projection Π. For example, given the generator set from Equation 2
in Section 3.2, and Π = {Binding}, one possible sample is:

{Binding(x1, x2), Binding(x3, x2), Binding(x4, x5)}. (4)



Explore(G, ϕ, Π)

1: solutions := {}
2: sampled := {}
3: while True do
4: s := SampleClass(G,Π)
5: for all p in sampled do
6: if TestIsomorphism(s, p) then
7: goto Line 3
8: end if
9: end for

10: sampled := sampled ∪ {s}
11: soln := FindModel(s ∧ distinct(s) ∧ ϕ)
12: if soln 6= NULL then
13: solutions := solutions ∪ {soln}
14: end if
15: if CheckExhaustive(sampled) then
16: return solutions
17: end if
18: end while

Fig. 5. Na̋ıve exploration algorithm.

Note that the first two Binding terms contain the same variable for the second
argument to the constructor (x2). This sample represents the set of all design
instances in which two of the tasks are mapped to the same device. Figure 6
provides a graphical illustration of the sample.

The basic algorithm consists of a single while loop. In each iteration, an
equivalence class s in the design space is sampled based on the projection (line
4), and is discarded if it is isomorphic to any of the samples that Explore has
visited (lines 5-9). This check avoids isomorphic solutions from being collected.

If the sample passes this check, then the SMT solver attempts to construct
a solution to the new sample that satisfies all of the design constraints (line 11).
In this procedure, all the variables appearing in the sample are constrained to be
distinct (distinct(s)), ensuring that the solver does not return a homomorphic
image of s. If the solver succeeds in finding a satisfying instance, it stores the
instance into the set solutions. If not, it goes back to the beginning of the loop
and attempts another sample.

The exploration loop terminates when Explore has visited all equivalence
classes in the design space (line 15)3. The termination condition is based on a
property of the random sampling procedure (SampleClass): The probability that
all classes are visited can be made arbitrarily close to 1 with a finite number of
iterations.

How well does this algorithm work? Our goal is to collect a set of non-
isomorphic solutions at a reasonable amount of computational cost. For this

3 The exhaustive list of equivalence classes can be computed using a variant of Polya’s
enumeration theorem [28].
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Fig. 6. A graphical representation of a sample for the platform mapping problem.
Circles present tasks, and boxes represent devices. This particular sample represents
the equivalence class of design solutions where two of the tasks are mapped to the same
device.

purpose, we define the cost as the number of times that the algorithm invokes
the SMT solver. Then, the success rate of the algorithm is the ratio of the
number of non-isomorphic solutions to the number of calls to the SMT solver.
A solving run that fails to find a satisfying instance is wasteful. But whether or
not the SMT solver succeeds depends on the equivalence class that is picked by
the sampling procedure. If the design space is loosely constrained, and a large
number of equivalence classes contain models that satisfy constraints, then this
simple algorithm should perform well. However, this assumption is often not
true; the design space may be highly constrained, and random sampling may
frequently pick samples that do not contain a satisfying instance. In practice,
the algorithm performs poorly for a complex system that contains a large number
of design constraints. This leads to a need for an algorithm that is able to avoid
those parts of the design space that contain only invalid design instances.

Improved Algorithm In Figure 7, we present an alternative algorithm Ex-
ploreII, which avoids the observed problem with the na̋ıve algorithm. Two key
ideas distinguish the new algorithm. First, we allow the solver to check a possibly
exponential number of equivalence classes per invocation. This is accomplished
by removing distinctness constraints on variables in a random sample; the solver
is now free to equate variables in the sample when searching for a satisfying in-
stance. Secondly, ExploreII incrementally learns the regions of the design space
that contain only invalid designs and then avoids examining these designs.

The outline of the new algorithm is as follows. It keeps track of two sets
of samples, valid and blocked, whose purposes will be explained in the follow-
ing paragraphs. Like the previous algorithm, ExploreII consists of a single while
loop, which begins by sampling a symbolic set s in the design space (line 5). How-
ever, unlike the previous algorithm, the variables in this sample are no longer
constrained to be distinct; some of them may be equated if the solver decides to
assign the same constant to them. As a result of the relaxation, s is no longer



ExploreII(G, ϕ, Π)

1: solutions := {}
2: valid := {}
3: blocked := {}
4: while True do
5: s := SampleClass(G,Π)
6: for all p in blocked do
7: if TestHomomorphism(p, s) then
8: goto Line 4
9: end if

10: end for
11: C := {}
12: for all q in valid do
13: C := C ∪ ComputeHomorphism(s, q)
14: end for
15: soln := FindModel(s ∧ ¬C ∧ ϕ)
16: if soln 6= NULL then
17: valid := valid ∪ {Simplify(s, soln)}
18: solutions := solutions ∪ {soln}
19: else
20: if CheckMostGeneral(s) then
21: return solutions
22: end if
23: blocked := blocked ∪ {s}
24: end if
25: end while

Fig. 7. Improved exploration algorithm

constrained to represent a single equivalence class, but can also represent homo-
morphic images of s spanning many equivalence classes. Consider Figure 8. The
sample on the left hand side represents the equivalence class of design instances
where two of the three tasks are mapped to the same device. By equating x1 and
x3, we obtain a homomorphic image of the original sample; this image represents
the equivalence class where each instance maps each task to exactly one device.

If a sample does not contain any instance that satisfies the given design con-
straints, then every homomorphic image of the sample will also be unsatisfiable.
Thus, a new sample that is a homomorphic image of any element in blocked is
deemed invalid or redundant, and immediately discarded to save the solver from
doing wasteful work (lines 6-10).

Since a sample may admit solutions in multiple equivalence classes, ExploreII
must prevent the solver from returning a solution that it has already found.
The procedure ComputeHomomorphism(s, q) computes a homomorphism (if it
exists) from s to q in the form of (dis)equalities over the variables in s and q. At
the end of the loop on lines 12-14, C contains the set of all homomorphisms from
s to the elements in valid. The negation of the disjunction of the constraints in
C (represented by ¬C), prevents the solver from equating variables in s in a way
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Fig. 8. Equality between x1 and x3 maps the sample on the left to its homomorphic
image on the right. The resulting sample represents the set of instances in which each
of the two tasks is mapped to exactly one device.

that would map s into one of the equivalence classes in valid. In other words,
¬C is the symmetry breaking predicate that guarantees that the solver does not
search the part of the design space that it has already visited. If a solution exists,
Simplify(s, soln) derives a set of equalities between variables in s from soln, and
uses them to reduce s into a canonical representation of the equivalence class
that contains soln (line 17).

When no solution exists, ExploreII attempts to learn the characteristics of
the failed sample. The unsatisfiability of s ∧ ¬C implies that any homomorphic
images of s besides those in C cannot satisfy the design constraints. Hence,
ExploreII can safely reject any subsequent sample that is a homomorphic image
of s, because every such image will either be unsatisfiable, or isomorphic to
an element in valid. This knowledge can cause an exponentially large region of
the design space to be avoided, but still allows random sampling over the good
regions of the space.

The termination condition of ExploreII follows readily from the incremental
aspect of the learning approach. We consider a sample to be most general when
it is equal to the generating set G. The most general sample can be homomor-
phically mapped into any of the equivalence classes in the design space. If this
sample becomes unsatisfiable, then this implies no more solutions are left to be
discovered in the design space. Hence, the algorithm can be terminated when
the most general sample is added to the blocked list (lines 20-21).

Since each sample represents a larger number of equivalence classes than it
did in the na̋ıive algorithm, the solver has more opportunities to find a satis-
fying design instance. Combined with the learning of failed samples, ExploreII
attempts to overcome the difficulty of finding a satisfying instance in a highly
constrained design space.



5 Evaluation

5.1 Experimental Setup

In this section, we evaluate the ability of the two algorithms to rapidly return
solutions that are spread across the design space. We do not focus on the runtime
performance of the SMT solver, since this has been well-studied [10]. In order
to visualize the entire design space, we use a small generator set to produce a
particular ϕ. In addition, the channel capacities have been moved outside of the
Channel constructor in order to further reduce the number of equivalence classes.
Let us assume that the generator set has the following set of distinct terms:

|Task| = 3 |Device| = 3 |Conflict| = 1
|Channel| = 2 |Binding| = 3 (5)

The projection used is Π = {Binding, Channel}, and thus there are a total of
10 variables (one variable per each constructor argument in each distinct term)
that determine membership in a particular equivalence class. The theoretical
maximum number of equivalence classes is the number of partitions of ten vari-
ables, i.e. 115,975. However, due to symmetries in the sets of records, the actual
number of equivalence classes for this example is 11,233.

We ran the two exploration algorithms, Explore and ExploreII, and observed
the outcome of each invocation to the SMT solver. For every experimental run,
we bounded the maximum number of the invocations to 100. Figure 9 shows plots
for the experimental runs. Each one of the six plots is a graphical representation
of the design space. Parts that are colored in red represent portions of the design
space that were explored by FORMULA but did not admit a satisfying instance;
ones in green are samples from which the solver was able to find a satisfying
instance. The plots (a)–(c) represent the design space for the platform mapping
example from Section 2. The plots (d)–(f) represent a relaxed design space where
a number of design constraints from the platform mapping problem have been
removed ; since this design space is less constrained, these plots exhibit a larger
number of green samples than the plots (a)–(c). The plots (a) and (d) show
results after the na̋ıve algorithm was run.

The plots (b), (c), (e), and (f) were produced with the improved algorithm,
but with a varying amount of randomness in the sampling procedure. When
ExploreII is performed without randomization in sampling, the task of searching
the design space for a solution is handed off entirely to the SMT solver. As a
result, in each invocation, the solver is guaranteed to return a solution, if any
exists. On the other hand, with randomization, there is a probability that the
picked sample emits no solutions at all. Therefore, in some invocations, the solver
may fail to return a solution. This is a trade-off for achieving diversity in the
exploration; randomization may lead to unsuccesful invocations of the solver,
but can help avoid clustering of the solutions that tends to appear when no
randomization is used. We describe this trade-off in more detail in Section 5.3.

Let us first introduce background notations that are necessary to explain
these plots. Let [M ] = {M ′|M ∼ M ′} be the equivalence class represented



by model M , and let Λ = {[M1], [M2], . . . , [Mn]} be the set of all equivalence
classes, where the ith class is represented by Mi. Then equivalence classes are
partially ordered according to [M1] ≤ [M2] ⇔ M1 �Π M2 (i.e. every member
of the smaller equivalence class, [M1], is a homomorphic image of some member
of the larger class, [M2]). We plot the design space by dividing it into regions
R1, . . . , Rn such that: (1) For every [M ] ∈ Ri and [M ′] ∈ Rj it holds that
[M ] � [M ′] and [M ′] � [M ], for i 6= j. (2) Within a region Ri, there exists a
greatest equivalence class [M ]>: ∀[M ′] ∈ Ri, [M ′] ≤ [M ]>. These regions occur
naturally due to models with zero occurrences of some record types, and can be
identified uniquely by their greatest class. In our experiment the regions are:

R0 = ∅,
R1 = {Channel(x1, x2), Channel(x3, x4)},

R3 = {Binding(y1, y2), Binding(y3, y4), Binding(y5, y6)},
R4 = R1 ∪R3

(6)

These regions are labeled in the figures using the short hand ∅, {f0}, {f1}, and
{f0, f1}. The numbers at the top of each plot give the number of equivalence
classes within regions.

Every equivalence class within a region is assigned a cell at some position
along the y-axis. This position respects the ≤ order on equivalence classes. Since
the number of classes per region grows rapidly, we shrink the cell size and split the
y-axis into a number of columns per region. This setup means the plots exhibit
two important properties: (1) The number and internal complexity of record
instances increases from left to right and bottom to top. (2) Record instances
that are homomorphically similar are physically nearby, except when a column
is broken and wrapped into the next column.

5.2 Randomization

Our exploration algorithm should behave well over various types of design spaces,
and there are two important factors to take into account. First, under ideal
circumstances, equivalence classes should be sampled uniformly across the design
space. Second, sampling must be able to adapt to design spaces that are highly
constrained and therefore, contain only a few valid solutions. These goals may
be contradictory, in which case a reasonable balanced should be achievable.

The first goal is costly to achieve because it requires a canonical represen-
tation for all non-isomorphic homomorphic images of the symbolic set used to
generate ϕ. This representation cannot be explicitly constructed, as it grows too
quickly in size. Instead, an effective random sampling procedure must generate
equivalence classes cheaply, but without introducing too much bias in the sam-
pling process. Though the full statistical analysis of this problem is outside the
scope of the paper, we describe the intuition behind our solution.

Given a set of variables X, it is easy to generate a random partition of the
variables. The structure of the partitions of X closely follows the integer parti-
tions of |X|. An integer partition of n is a collection of integers that sum to n.
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Generating the integer partitions of |X| in lexicographic order is also straightfor-
ward. Each integer partition serves as a template for building a random partition
of X. For example, if there are three variables X = {x, y, z}, then the partition
[2, 1] means pick two distinct variables to equate, and then pick one variable
(which is equated to itself). The number of possible partitions of X that fit a
template grows exponentially with respect to the template’s lexicographic order
in the integer partitions of |X| and then decreases exponentially.

We capture this behavior by fitting a normal distribution over the integer
partitions of |X|. A random sample is constructed by first picking an integer
partition as a template, and then randomly equating variables according to this
template. The partitions are applied to the generator set to get a representative
for an equivalence class. In our experiments, this approach removed an expo-
nentially strong bias towards larger and more complex equivalence classes. The
plots (a) and (d) in Figure 9 show the na̋ıve random sampling algorithm with
this correction applied. Our data suggests that this is a cost effective approach
to sample design spaces with varying forms of symmetry in their generator sets.

5.3 Highly Constrained Design Spaces

Another difficulty arises when the design space is highly constrained. The plot (c)
in Figure 9 shows all the solutions for the platform mapping under the generator
set described in equation (5). In this case, there are only 41 non-isomorphic
solutions out of 11,233, and these solutions are also highly clustered. By virtue of
the solution set, no degree of random sampling can avoid the inherent clustering
found here.

In order to address these cases, we add tuning probability pgen to the Sample-
Class method. The method selects the generating set G with probability pgen
as the sample to search or a random sample with probability 1 − pgen (using
the technique described in Section 5.2). Recall, from the discussion of ExploreII,
that the generating set is the most general sample, and so when the solver is
invoked on this sample, a either a new solution is returned or the sampling
process terminates. The plot (c) was generated by setting pgen = 1, thereby
enumerating a new solution with every invocation of the solver. The plot (a)
was generated by running the na̋ıve random algorithm on the same problem.
Though the distribution of points is fairly random, none of these points hit
a satisfiable equivalence class. Finally, the plot (b) was generated by setting
pgen = 0.5. Here we see the algorithm alternating between randomized and
solver-driven exploration patterns. Our initial results suggest that 0.5 provides a
reasonable default trade-off between finding diverse solutions and quickly finding
some solutions.

However, pgen = 1 is not a reasonable solution to DSE. We relaxed the
constraints on the motivating example by removing conflict constraints and the
relational/functional constraints on Channel and Binding. Under this relaxation
there are 4298 equivalence classes with solutions, and these classes are more
evenly distributed about the space. The plot (f) shows sampling the relaxed
space with pgen = 1. In this case, the solutions are highly clustered due to the



solver’s backtracking strategy. The plot (d) uses na̋ıve random sampling and is
even able to find some solutions. Finally, the plot (e) uses pgen = 0.5 and finds
a solution for almost every sample but does not exhibit the clustering behavior
that is observed in the plot (f).

6 Related Work

6.1 DSE Frameworks

DESERT [26] is a framework that is closely related to FORMULA, with a goal
of exploring design alternatives at the architectural level. Unlike FORMULA,
design alternatives must be expressed as hierarchy of AND-OR choices with
Boolean constraints describing interaction of design choices. DESERT encodes
the design space and constraints symbolically, using BDDs [5]. However, the
exploration in this framework is largely manual; the user specifies a constraint
that should be true and DESERT prunes the design space accordingly. The
user can also export points in the space to a modeling tool called the Generic
Modeling Environment (GME).

CoBaSa [22] is a tool for automating the assembly of commercial off-the-shelf
(COTS) components. It compiles system requirements and constraints among
components into a pseudo-Boolean satisfiability (PBSAT) problem, which is
tackled by a constraint solver. However, they focus on generating a solution
that satisfies a large number of constraints, and do not focus on the exploration
of the design space.

The technique developed by Hu et al. [14] collapses a multi-dimensional de-
sign space into a 3-dimensional space, after which the user selects portions of
the space to explore with Cartesian co-ordinates. Their approach is similar to
ours in that we both incorporate the user’s feedback into the exploration. Their
goal is not to enumerate distinct designs, but to find ones that are optimal with
a particular fitness metric.

Kakita et al. [18] developed an algebraic approach for DSE of dataflow sys-
tems. In this approach, each point in the design space is defined as a dataflow
graph. Graph rewrite rules are applied to an initial graph iteratively to generate
a set of alternative designs that preserve the scheduling constraints of the original
design. The authors tackle the problem of the exponential growth in the design
space by representing regularity in structures with compact recurrence relations.
This approach has been implemented in the METROPOLIS framework [1].

There have been a great number of works that focus on the goal of finding a
set of globally optimal solutions, many of which are surveyed in [13]. We believe
that our exploratory approach is complementary to theirs. In an early phase of
the design, where the overall architecture of the system has not been clearly
defined, coming up with optimization functions is difficult. Hence, it is desirable
for the designer to sample and experiment with a diverse set of alternatives. In
addition, even if objective functions can be defined, there may be a large number
of optimal solutions, which would then be examined and evaluated per-basis.



6.2 Exploration Techniques

Tabu search [12] is a technique in combinatorial optimization that uses a memory
structure to keep track of solutions that it has already visited in the search space.
Our approach is similar to Tabu search in that it also store points that it has
explored. In embedded system design, several groups [4, 11, 32] have evaluated
Tabu search with respect to its effectiveness in finding globally optimal solutions.
As far as we are aware of, Tabu search has not been used to exhaustively explore
the design space.

Planning in AI solves the problem of finding a path between a pair of source
and destination points on a search space. There is a wealth of literature on al-
gorithms and heuristics to prune parts of the space that need not be explored.
Some of these techniques, such as simulated annealing [31] and rapidly-exploring
random trees [20], use random sampling to increase diversity during the explo-
ration. Our random sampling approach was inspired by them.

Partitioning a large search space into equivalence classes has been employed
in other areas of software engineering. In testing, the space of the test input
can be partitioned based on a certain notion of equivalence, and only a single
test case from each class needs to be executed [25]. In model checking [6], state
abstraction can be used to group related states together, thereby reducing the
size of the space that the model checker needs to visit. As far as we are aware
of, our work is the first one to apply the partitioning method to explore distinct
solutions in a design space.

In software product lines, researchers have studied techniques to explore and
analyze the space of product configurations based on feature models [2, 3]. These
works focus on managing variability in features, whereas constraints in FOR-
MULA describe non-functional, architectural properties such as scheduling and
security requirements. Constraint solvers use symmetry breaking predicates to
avoid searching through solutions that are isomorphic to each other [8]. These
predicates operate on low-level representations such as Boolean propositions,
and do not take into account high-level domain knowledge.

6.3 DSL Specification Languages

A number of tools exist for specifying DSLs, with various degrees of automated
analysis. We have already mentioned the work of DESERT [26]. Additionally,
the Atlas Model Management Architecture (AMMA) [29] uses the OMG’s meta-
object facility (MOF) [27] as the DSL specification language. Abstract state
machines (ASMs) are used to define the behavioral semantics of DSLs. These
tools are built on top of the Eclipse Modeling Framework (EMF).

The KerMeta [24] framework provides a MOF compliant specification lan-
guage. At the time of writing, KerMeta provides static type analysis and run-time
checking of pre/post conditions. Additional formal methods are provided by ex-
porting to other tools. The KerMeta language is inspired by the programming
language Eiffel and is object-oriented in nature. It provides its own imperative
language for specifying DSL behavioral semantics. The AToM3 [9] framework is



integrated with the Maude theorem prover [7]. AToM3 focuses on behavioral and
transformational DSL semantics. It uses the term rewriting formalism of Maude
to evaluate LTL queries on models.

7 Discussion and Conclusion

In conclusion, we have presented an approach for exploring the design space of
complex systems in our framework, FORMULA. Our framework combines results
from domain-specific languages, symbolic execution, and automated theorem
proving in order to quickly move from a specification of a design space to a
set of distinctive solutions. Our exploration algorithms go further than finding
non-isomorphic solutions; they attempt to quickly visit a diverse set of solutions
across the design space. We have presented initial data to show the efficacy of
our approach.

In the improved exploration algorithm (ExploreII ), the predicate ¬C can be
considered to be a complete symmetry breaking predicate [8]—complete because
it guarantees that the solver will not find any instance that is isomorphic to
the ones that have already been discovered. But computing a full symmetry
breaking predicate is generally expensive. In our case, the computation of a
homomorphism from a sample to the ones in valid can be costly; no polynomial
algorithms are known for this problem. An alternative approach is to use a partial
symmetry breaking predicate, which provides a weaker guarantee but is much
cheaper to compute [8, 23, 30]. We are currently investigating a way to integrate
this partial approach into our framework.

We are also interested in studying other mechanisms to differentiate solutions
in design spaces. In case studies for embedded systems, we encountered scenarios
where a partial order over records would also be useful mechanism to distinguish
solutions. This also raises interesting theoretical and practical questions on how
to combine various differentiation mechanisms, and how to fairly sample and
efficiently encode more general equivalence classes into an SMT solver.

The opportunities to combine DSE with rapid prototyping and optimization
appear promising. The DSL approach in general, and FORMULA in particu-
lar, allow behavioral semantics to be assigned to DSLs. Thus, it is possible to
automatically simulate and profile designs as they are sampled. Either the user
or a utility function could rank solutions, and then these results could be used
to further prune the design space. In this instance, pruning would mean adding
more constraints to the SMT formula ϕ to refine the design space.
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