
Quotient for Assume-Guarantee Contracts

Íñigo Íncer Romeo1, Alberto Sangiovanni-Vincentelli1, Chung-Wei Lin2, and Eunsuk Kang3
1 University of California, Berkeley
{inigo, alberto}@eecs.berkeley.edu

2 National Taiwan University
cwlin@csie.ntu.edu.tw

3 Carnegie Mellon University
eskang@cmu.edu

Abstract—We introduce a novel notion of quotient set for a
pair of contracts and the operation of quotient for assume-
guarantee contracts. The quotient set and its related operation
can be used in any compositional methodology where design
requirements are mapped into a set of components in a library.
In particular, they can be used for the so called missing com-

ponent problem, where the given components are not capable
of discharging the obligations of the requirements. In this case,
the quotient operation identifies the contract for a component
that, if added to the original set, makes the resulting system
fulfill the requirements.

1. Introduction

Contracts have been proposed as a formal mechanism
to support compositional design first for complex software
(e.g., see [1] and references therein) and later for system
design (e.g., see [2] and references therein). We embed our
contribution on contracts in reuse-based, meet-in-the-middle
design methodologies such as Platform-Based Design (e.g.,
see [3]). In these methodologies that are fairly common
in industry, during the top-down phase, the specification
for a system is decomposed into a set of refined specifi-
cations of sub-components, i.e., the high-level architecture
of the design is determined. This step fits in a refinement
driven process where higher level specifications are mapped
into lower level implementations. This decomposition is
“guided” by the existence of a set of predefined components
in a library, the bottom-up part of the methodology.

More formally, suppose a designer wishes to implement
a system that satisfies a top-level specification T , and will
use in this design a set of n components from a library
with specifications F = (Ti)ni=1. If the composition of
these n design elements refines the top level specification
T , the design assembled from the components satisfies the
specification. However, if this is not the case, the designer
must add at least one element to the library. In other words,
the designer must identify a specification TM such that its
composition with the composition of (Ti)ni=1 refines T .

This problem corresponds to identifying the missing (un-
known) component in a library (e.g., see [4] and references
therein). In the language of contract-based design, we need
to compute the contract quotient that guarantees that TM
is as “large” a specification as possible in the refinement
order so that whoever is in charge of adding the element to

Lin and Kang were at Toyota ITC U.S.A. Inc., when this work was done.

the library has the maximum degree of freedom in its im-
plementation. In industry, this problem is in general tackled
heuristically. Our proposed notion of quotient for assume-
guarantee contracts aims at finding a rigorous procedure for
the determination of the largest specification of the missing
component.
Related work. In [5], Le et al. address the problem of fixing
a decomposition so that it refines a specification: given a
top-level contract C and family of contracts (Ci)ni=1 whose
composition may not refine C, find a family (C0

i)
n
i=1 such

that C0
i  Ci for all i and

Nn
i=1 C0

i  C. In this setting,
the designer begins with a high-level specification C and
an initial decomposition of the specification into various
components, but the specification, Ci, of any component may
need to be corrected to C0

i.
Notions similar to quotients have been previously in-

vestigated in the context of various behavioral formalisms.
Chilton et al. formulate in [6] an assume-guarantee frame-
work for reasoning about components modeled as a variant
of interface automata introduced by Chen et al. [7], includ-
ing quotient operations. Similarly, Bhaduri and Ramesh [8]
investigate the problem of synthesizing, given P and Q as
interface automata, R such that the composition of R and
P refines Q; they provide a game-theoretic formulation of
the problem as computing winning strategies over a game
between P and Q. In addition, Raclet [9] introduces the
concept of a residual specification in the context of modal
automata.

Another related line of research is on assumption gen-
eration in the context of compositional verification [10]–
[12]: Given a component M and a desired property P , what
is the weakest assumption A that M can make about its
environment such that M �A |= P ? These works typically
assume M and A to be labelled transition systems, and
exploit their structures as part of a learning algorithm (e.g.,
L* [13]).

Compared to the contributions mentioned above, our
approach differs in that we provide a general form for
the contract quotient for assume-guarantee contracts, i.e., a
formulation that holds for all variants of assume-guarantee
contracts. Furthermore, as far as we know, our approach is
the first to introduce the notion of a quotient set, which
defines a range of contracts that can be composed with C1

to yield the largest contract that refines C.
Specific Contributions. Benveniste et al. in their com-
prehensive review of contract based design [2], on page
188, state that “no Least Upper Bound and no quotient are

978-1-5386-6195-6/18/$31.00 c�2018 IEEE

known for A/G contracts.” One of our contributions is an
explicit form for the quotient operation of A/G contracts
(Theorem 3.5 in Section 3). We point out that notions
similar to quotients have been proposed for A/G contracts
before, but these operations are defined when contracts are
expressed in specific formalisms [6], [10], [14]. To the best
of our knowledge, the quotient operation for general A/G
contracts has not been addressed.

We also introduce the notion of the quotient set (Def-
inition 3.6), a set that contains all contracts C0 such that
C0 ⌦ C1 = (C/C1) ⌦ C1 for given contracts C and C1. The
quotient set tells us which contracts extend C1 into C in the
largest way possible. We fully characterize the quotient set
in Theorem 3.7 (Section 3).

A further contribution of our paper is an alternate def-
inition of the quotient operation for the meta-theory of
contracts (Section 4). The new definition makes the quotient
operation an obvious dual of the composition operation
and makes the derivation of the quotient for A/G contracts
almost immediate.

Finally, we show a methodology and examples of the use
of the quotient operation in the design of an ALU and of an
automotive system (Section 5). We believe the theory in this
paper can significantly improve the integration process in
practical system design. For example, it can assist automo-
tive Original Equipment Manufacturers (OEMs) in defining
the specification of a component to be implemented1. We
show that with appropriate automation tools, which are left
as future work, the process can be formal but still efficient.

2. Contract-Based Design

Contract-based design (CBD) [15] has emerged as a
formal methodology for system-level design (see [2]
for a comprehensive analysis of the state-of-the-art). This
methodology supports open systems and the ability to fuse
multiple viewpoints in a single component. The former is
needed to support independent design, and the later to enable
the independent characterization of complementary aspects
of the same component (e.g., functionality and timing). At
the core of the contract algebra lies the notion of a compo-
nent. Components are described by their IO connectivity and
by their dynamics. A specification, or contract, has seman-
tics given by a pair (E ,M) of sets of components which are,
respectively, environments for the contract and of compo-
nents which are implementations for the contract. Contracts
provide a designer with (i) formal notions of refinement (to
enable substitution of components) and parallel composition
(to enable merging multiple components into one); (ii) the
ability to check compatibility between the objects to be
composed; and (iii) a formal means of communication of
requirements to suppliers. With a contract, a supplier has
all the required information to implement a subsystem in a
way which guarantees system integration.

1. In industrial designs, OEMs generally keep most of the components
and only change as few components as possible when a new design is
developed. The task here is to perform the minimum amount of work
needed to identify and implement the new components

To be able to manipulate contracts, we need to as-
sume more structure in them. Thus, there exist two spe-
cialized contract theories: interface theories and the assume-
guarantee framework, our focus in this paper. In the assume-
guarantee theory, components are modeled as sets of behav-
iors, where behaviors are successive assignments of values
to the various variables in the modeling framework (which
also determines the granularity of this succession: discrete,
continuous, asynchronous, etc.). For instance, if a designer
is implementing synchronous digital logic, his modeling
framework uses a discrete-event model of computation,
where behaviors are infinite, discrete sequences of values for
all variables under consideration. More concretely, suppose
we are dealing with only two boolean variables a and b; one
possible behavior is a b, a¬b,¬a¬b, a b . . . If the designer is
implementing a cyber-physical system, his modeling frame-
work may need to enable analysis of continuous dynamics.

An assume-guarantee contract C is given by a pair
(A,G), where A and G are, respectively, sets of behav-
iors for assumptions and for guarantees. In other words,
assumptions and guarantees are properties, sets of traces,
and thus can be expressed in any formal language, such as
LTL, MTL, and STL (e.g., [16]–[18]). This means that A/G
contracts are very flexible. We say a component M satisfies
a contract if it provides the contract guarantees subject to the
contract assumptions, i.e., if M ✓ G[¬A. With this notion
of satisfaction of an A/G contract, many A/G contract pairs
(A,G) can have the same semantics. In order to deal with
unique objects, we use contracts in saturated form. We say
contract C is saturated if G = G [¬A. Saturated contracts
have a maximal set of guarantees.

The algebra of contracts defines an order relation called
refinement and a binary operation called composition. Re-
finement allows designers to substitute a component with
another that has at least the same capabilities. This order
is defined as follows: let C0

= (A

0
, G

0
) and C = (A,G) be

saturated contracts. Contract C0 refines C, written C0  C,
if G

0 ✓ G and A ✓ A

0. Refinement amounts to weaken-
ing assumptions and strengthening guarantees. The binary
operation of composition produces a contract which rep-
resents the simultaneous operation of the two given con-
tracts: let C00

= (A

00
, G

00
) be a saturated contract. Given C0

and C00, the binary operation ⌦ generates a new contract
C0 ⌦ C00

= (A

0 \ A

00 [¬G0 [¬G00
, G

0 \ G

00
). This is

usually called the horizontal composition of the contracts
C0 and C00. The composite of two contracts is required
to provide the guarantees of both; the composite assumes
simultaneously the assumptions of C0 and of C00 but relaxes
these assumptions by the guarantees of both C0 and C00. This
relaxation occurs because the guarantees of each contract
may help the to meet the other’s assumptions.

Refinement and composition allows us to discuss the
binary operation of quotient, a central topic of this paper.
The quotient between contracts C and C1, expressed C/C1,
is defined as

C0  C/C1 () C0 ⌦ C1  C. (1)

The quotient provides the largest contract in the refine-
ment order that, when composed with C1, refines C. The
explicit formulation of the quotient is not known for A/G
contracts [2]. One of our key contributions is the explicit
expression for this quotient.

3. Quotient of Assume-Guarantee Contracts

Assume that C = (A,G) is the top-level specification
we wish to implement and that C1 = (A1, G1) is the
specification of a component that will be used in the design.
We are interested in the part of the specification that is not
discharged by C1, and in the maximal specification we can
form by composing C1 with a missing specification with
the result refining C. We introduce the quotient operation of
assume-guarantee contracts in Section 3.1. We introduce in
section 3.2 the quotient set (Definition 3.6), a notion that
expresses what we need to do to complement C1 to satisfy
C in a maximal way in the refinement order. Theorems 3.5
and 3.7 are our main results in this section. Theorem 3.5
provides an explicit formula for the quotient operation for
assume-guarantee contracts, and Theorem 3.7 provides a
complete characterization of the quotient set as an interval
of contracts. Throughout this section, we assume all A/G
contracts are given in saturated form. We observe that this
is not restrictive since a contract can always be saturated
through the mapping (A,G) 7�! (A,G [¬A). A contract
is semantically equivalent to its saturated form. In our ma-
nipulations, we evaluate set-theoretic operators in the order
¬, \, [. Missing proofs are given in the appendix.

3.1. Quotient Operation of A/G Contracts

In this section we introduce the quotient operation of
A/G contracts. Given contracts C and C1, we recall from (1)
that the quotient operation C/C1 results in a contract with
the following defining property: for any saturated contract
C0, we have C0 ⌦ C1  C if and only if C0  C/C1. To
derive the quotient, we first define contract R. Lemma 3.4
shows that R has properties akin to those of the quotient
operation, and Theorem 3.5 uses this result to provide the
quotient operation.
Definition 3.1. Let C = (A,G) be an A/G contract. We

use the notation a(C) and g(C) to refer to the sets
of assumptions and guarantees of C, respectively, i.e.,
(A,G) A

a and (A,G) G

g
.

We provide various bounds on a saturated contract C0

that satisfies C0 ⌦ C1  C.
Lemma 3.2. Let C = (A,G), C1 = (A1, G1), and C0

=

(A

0
, G

0
) be saturated A/G contracts such that C0 ⌦ C1 

C. Then

g(C0
) ✓ ¬G1 [G, (2)

g(C0 ⌦ C1) ✓ G1 \G, (3)
A [¬G1 ✓ a(C0 ⌦ C1), and (4)
A \G1 ✓ a(C0

). (5)

We proceed to define contract R, which is computed
from C and C0. We show in Lemma 3.4 that contract R has
properties that resemble those of the quotient operation, and
in Theorem 3.5 we use this result to provide the quotient
operation.
Definition 3.3. Let C = (A,G) and C1 = (A1, G1) be

saturated contracts. We define the contract

R(C, C1) := (A \G1, G [¬G1) .

When the context of C and C1 is clear, we may use the
notation R = R(C, C1).

Lemma 3.4. Let C, C1, and C0 be saturated contracts. The
following statements are equivalent:

i. C0 ⌦ C1  C and
ii. C0  R and A \G

0 ✓ A1.

Proof: (i.) ii.). Let C0 be a saturated contract such
that C0 ⌦ C1  C. From Lemma 3.2, g(C0

) ✓ G [¬G1 =

g(R) and a(C0
) ◆ A \G1 = a(R), i.e., C0  R. Moreover,

from i., A ✓ A1\A

0[¬G1[¬G0 ✓ A1[¬G0. Intersecting
both sides with G

0, we obtain A \G

0 ✓ A1.
(ii.) i.). Assume C0  R and A \ G

0 ✓ A1. Then
g(C0 ⌦ C1) = g(C0

) \ G1 ✓ g(R) \ G1 ✓ g(C). From ii.,
we have A \ G

0 ✓ A1 and A \ G1 = a(R) ✓ a(C0
) = A

0;
thus, A1 \ A

0 ◆ A \ G

0 \ G1. Therefore, we can write
A1 \A

0
= A1 \A

0 [A\G

0 \G1 (since we are just adding
a subset). With this identity, we have a(C0⌦C1) = A1\A0[
¬G0[¬G1 = A1\A0[¬G0[¬G1[A\G0\G1 ◆ A = a(C).
We conclude that C0 ⌦ C1  C.
Theorem 3.5 (Quotient of A/G contracts). Given saturated

contracts C and C1, the operation defined as

C/C1 := (A \G1, A1 \G [¬(A \G1)) (6)

is the quotient in the formalism of assume-guarantee
contracts.

Proof: We observe that the operation just defined
produces a contract in saturated form. We wish to show
that this operation satisfies (1).

(() in (1). Suppose C0 is a saturated contract such that
C1 ⌦ C0  C. By Lemma 3.4, A \ g(C0

) ✓ A1) g(C0
) ✓

A1 [¬A and C0  R) g(C0
) ✓ G [¬G1. Thus, g(C0

) ✓
(A1[¬A)\(G[¬G1) = g(C/C1). Moreover, since C0  R,
it follows that a(C0

) ◆ A\G1 = a(C/C1). We thus conclude
that C0  C/C1.

()) in (1). Suppose C0 is a saturated contract such that
C0  C/C1. We have g ((C/C1)⌦ C1) = G1\A1\G[G1\
¬A ✓ g(C). We also have a ((C/C1)⌦ C1) = A1\A\G1[
¬G1 [A \ G1 \ (¬A1 [¬G) ◆ A = a(C). We conclude
that C � (C/C1)⌦ C1 � C0 ⌦ C1.

We can develop intuition about the expression we de-
rived. A component which is designed to the specifications
of the quotient can use the assumptions of C and can assume
that C1 will meet its guarantees; thus the assumptions of
the quotient are A \ G1. On the side of guarantees, the
component built to the quotient specifications must provide
the guarantees of C and the assumptions of C1 (to make

sure C1 can meet its guarantees); however, the component
can relax its guarantees by the assumptions of C and by the
guarantees of C1. This results in the guarantees we derived
for the quotient.

3.2. Quotient Set of A/G Contracts

We introduce the concept of quotient set to answer two
questions:

• When designing a system to meet a specification C,
what is the biggest specification achievable if a component
with specification C1 must be used in the design? That is,
we seek to characterize the contracts whose compositions
with C1 result in the biggest possible contract that refines C.

• Given a contract C1 and a contract C that is the result
of the composition of C1 with another contract, what are all
contracts C0 that satisfy C = C1 ⌦ C0? In this case, we solve
the inverse problem to composition.

We call the set of such contracts the quotient set. We
begin our quest for the quotient set with an observation:
suppose that C0 is a saturated contract that satisfies C0 ⌦
C1  C. Then C0  C/C1. This last statement implies that
C0 ⌦ C1  C/C1 ⌦ C1. Thus, the greatest resulting contract
achievable by composing C1 with a contract with the result
refining C is C1 ⌦ C/C1. A quick computation reveals that

C1 ⌦ C/C1 = (A [¬G1, G1 \ (A1 \G [¬A)) .

Thus, we define a set Q whose elements are saturated con-
tracts whose composition with C1 is equal to the composition
we just derived (Definition 3.6). We then show in Theorem
3.7 that the quotient set is completely characterized as an
interval of contracts. After providing this result, we discuss a
special and important case of contract decomposition which
allows us to simplify many expressions.
Definition 3.6. Let C = (A,G) and C1 = (A1, G1) be

saturated contracts. We define the quotient set Q(C, C1)
as

Q(C, C1) := {C0 | C0 is saturated,
g(C0 ⌦ C1) = G1 \ (A1 \G [¬A),

a(C0 ⌦ C1) = A [¬G1}.

We also define the lower quotient operation (C/C1)� as

(C/C1)� := (A [¬G1 [¬A1, G1 \ (A1 \G [¬A)).

Theorem 3.7. Let C = (A,G) and C1 = (A1, G1) be
saturated contracts. Then Q(C, C1) = [(C/C1)�, C/C1].

Proof: (() Let C0 be a saturated contract with
(C/C1)�  C0  C/C1. We wish to show that C0 2 Q.
A quick calculation shows that C/C1, (C/C1)� 2 Q, which
means that C1 ⌦ (C/C1)� = C1 ⌦ C/C1 = C1 ⌦ C00 for
any C00 2 Q. Composing our assumption with C1 results
in C1 ⌦ (C/C1)�  C1 ⌦ C0  C1 ⌦ C/C1; therefore,
C1 ⌦ C0

= C1 ⌦ C00, which implies that C0 2 Q.
()) Let C0

= (A

0
, G

0
) 2 Q. From the definition of Q,

it follows immediately that C1 ⌦ C0  C. Thus, C0  C/C1.

We need to show that (C/C1)�  C0. Expanding C1 ⌦ C0

and using the fact that C0 2 Q gives

A [¬G1 = a(C1 ⌦ C0
) = A1 \A

0 [¬G1 [¬G0 and (7)
G1 \ (A1 \G [¬A) = g(C1 ⌦ C0

) = G1 \G

0
. (8)

Equation (8) gives the following bounds:

G1 \ (A1 \G [¬A) ✓ G

0 ✓ A1 \G [¬A [¬G1.

Plugging any of these bounds in (7) results in A [¬G1 =

A1\A0[¬G1[¬G[A\¬A1. From this expression, we get
the bound A

0 ✓ A[¬G1 [¬A1 = a ((C/C1)�). Moreover,
we note that the leftmost expression of (8) is g ((C/C1)�);
thus, (8) gives us g ((C/C1)�) ✓ G

0. We conclude that
(C/C1)�  C0.
It should be emphasized that Theorem 3.7 gives a full
characterization of the quotient set, which tells the contracts
extending C1 into C in the largest way possible. The bounds
we obtained are the quotient operation and the lower quo-
tient. We understand what the quotient operation gives us
(the part of the top-level spec C that C1 is missing). But
what is the lower quotient? We start by recalling that Q

contains the contracts whose composition with C1 gives the
biggest possible contract that refines C; the result of this
composition is C1⌦C/C1 since the quotient gives the largest
extension of C1 into C. We showed that (C/C1)� 2 Q, so
C1 ⌦ (C/C1)� is the biggest contract achievable by using
C1 while refining C. We observe that the assumptions of the
lower quotient are A [¬G1 [¬A1, i.e., the lower quotient
must fulfill its guarantees when the assumptions of C are
met, when the assumptions of C1 are not met, or when
the guarantees of C1 are not met; this means that if C1
fails to behave as it promised, (C/C1)�’s guarantees are
in force. And what are these guarantees? If A holds, these
guarantees are G1 \ A1 \ G, i.e., the contract meets the
guarantees of C and meets the assumptions and guarantees
of C1; if A does not hold, these guarantees are G1. Thus,
we interpret (C/C1)� as the contract whose implementations
are maximally redundant with respect to contract C1 while
completing C1 in the largest possible way. In contrast, C/C1
relies completely on the fact that C1 will behave as it
promises.

3.2.1. A simplification of the quotient. Now we consider
a simplification that occurs to the quotient operation when
A \ G ✓ A1. This condition holds when, for instance, all
inputs of C1 can be mapped directly to either compatible
inputs or compatible outputs of C; note that in this case
we are interpreting the assumptions and guarantees of C1 in
terms of IO behavior. The following corollary shows how
the quotient set and its bound simplify when A \G ✓ G1:
Corollary 3.8. Let C = (A,G) and C1 = (A1, G1) be

saturated contracts. If A \ G ✓ A1, the quotient set
simplifies to

Q(C, C1) := {C0 | C0 is saturated,
g(C0 ⌦ C1) = G1 \G,

a(C0 ⌦ C1) = A [¬G1},

the quotient operation becomes C/C1 = R(C, C1), and the
lower quotient becomes (C/C1)� = L(C, C1), where

L(C, C1) := (A [¬(G1 \A1), G \G1) .

Corollary 3.8 tells us that R is equal to the quotient
operation and L is equal to the lower quotient when the
condition A \ G ✓ A1 holds. Observe the form of R:
R = (A \G1, G [¬G1). It assumes the assumptions of
C and the guarantees of C1, and it guarantees g(C) re-
laxed by whatever C1 guarantees. This is a very intu-
itive notion of the quotient. And what is L? Note that
L = (A [¬(G1 \A1), G \G1). This contract is respon-
sible for its guarantees when either the assumptions of C
are in force or when either the assumptions or guarantees
of C1 are not met (i.e., when C1 fails). And the guarantees
of L are G\G1, i.e., L provides the guarantees of both C1
and C. Thus, L is correlated with a maximally redundant
design.

We now consider a simple example that demonstrates
the use of these concepts.

3.3. An Illustrative Example

Suppose we are designing a system with a Boolean input
r and Boolean outputs s and p. Upon the assertion of r,
the purpose of this system is to eventually assert s and
to eventually assert p as long as the environment respects
reasonable physical constraints. That is, the system must
guarantee G(r �! Fs ^ Fp), subject to the assumptions
e 2 E (i.e., a continuous environment variable is within
some acceptable set). The top level contract is

C = (A,G) = (e 2 E,G(r �! Fs ^ Fp) _ e 62 E) .

Suppose a component to be used in the design guarantees the
assertion of s one time event after the assertion of r. More-
over, suppose that this component has laxer requirements
on the environment than the top-level spec. It follows this
component obeys the contract

C1 = (A1, G1) = (e 2 E1,G(r �! Xs) _ e 62 E1) ,

where E1 ◆ E.
If a component with contract C1 is used to build a design

that meets the spec C, we compute the quotient to determine
how much of the top-level spec C1 is missing. Intuitively,
what do we expect the quotient to give us? We see that C1
can satisfy the Fs part of C. Thus, we expect the quotient
to only have to guarantee G(r �! Fp). We now carry out
the computation.

Since A ✓ A1, it follows that R is the contract quotient
C/C1 (Corollary 3.8). We compute R = (A\G1, G[¬G1):

a(R) =e 2 E ^G(r �! Xs) _ e 2 E ^ e 62 E1

g(R) =G(r �! Fs ^ Fp)

_ e 62 E _ ¬G(r �! Xs) ^ e 2 E1.

Since E ✓ E1, we can simplify the assumptions to a(R) =

e 2 E ^G(r �! Xs). The guarantees become

g(R) =G(r �! Fs ^ Fp) _ e 62 E _ ¬G(r �! Xs)

=G (r �! Fs ^ Fp) ^G (r �! Xs)

_ e 62 E _ ¬G(r �! Xs)

=G ((r �! Fs ^ Fp) ^ (r �! Xs))

_ e 62 E _ ¬G(r �! Xs)

=G(r �! Xs ^ Fp)

_ e 62 E _ ¬G(r �! Xs)

=G(r �! Fp) _ e 62 E _ ¬G(r �! Xs).

R is (up to saturation) what we posited was missing:
G(r �! Fp).

Computing L = (A [¬(A1 \ G1), G \ G1) results in
a(L) = e 2 E _ e 62 E1 _ ¬G(r �! Xs) and g(L) =

G(r �! Xs ^ Fp) _G(r �! Xs) ^ e 62 E _ e 62 E1. As
we discussed before, L has the characteristic of providing
the guarantees of C and of C1, i.e., L provides a specification
with redundancy.

4. Quotient in the Meta-Theory of Contracts

In this section, we consider contracts at their most
general level, i.e., we stop considering the assume-guarantee
framework and operate on our contracts as defined in the
meta-theory of contracts. Our contributions are a new defi-
nition for the quotient operation and the introduction of the
quotient set in the meta-theory. Our purpose in introducing
a new (but equivalent) definition of the quotient operation
is that the new formulation is an obvious adjoint of the
composition operation, making the definition of quotient
symmetrical to the definition of composition. From our
definition, the derivation of the quotient operation in the
assume-guarantee framework comes readily. Hence, at the
end of the section we provide a second derivation of the
A/G quotient.

4.1. What is the Meta-Theory of Contracts?

Before discussing various contract theories, Benveniste
et al. [2] introduce a meta-theory of contracts. This meta-
theory defines contracts on a set of primitives and allows
for a birds-eye view of the subject, focusing on semantic
concepts. Several key facts can be proved at this level. We
can interpret other contract theories, like assume-guarantee
and interface theories, as specializations of the meta-theory.

In the meta-theory, the most primitive concept is the
component. Composition, ⇥, is a partial binary operation on
components. We say components M1 and M2 are compos-
able if M1⇥M2 is well-defined. We say a component E is
an environment for component M if M⇥E is well-defined.
A contract C has semantics given by (E ,M), where E and
M are sets of components which are valid environments
and implementations, respectively, of the contract C.

A contract C is called consistent if M 6= ; and com-
patible if E 6= ;. We say that a component M is an

implementation of contract C (M |=M C) iff M 2 M;
we say that a component E is an environment of contract
C (E |=E C) iff E 2 E .

Refinement in the meta-theory is defined as follows: we
say contract C0

= (E 0
,M0

) is a refinement of contract C =

(E ,M) if E 0 ◆ E and M0 ✓ M. For contracts C and C0, C^
C0 and C_C0 are the Greatest Lower Bound (GLB) and Least
Upper Bound (LSB), respectively, in the refinement order.
In the meta-theory, we make the following assumption:
Assumption 1. Both the GLB and LUB are well-defined.

Now we get to composition. The composition of con-
tracts C1 = (E1,M1) and C0

= (E 0
,M0

) is defined as fol-
lows: C1⌦C0 is well-defined if M1 and M

0 are composable
for all M1 2 M1 and M

0 2 M0. If it is well-defined, this
composition is C1 ⌦ C0

= ^CC1,C0 , where

CC1,C0
=

8
>>><

>>>:
C

���������

M1 ⇥ E |=E C0
, M

0 ⇥ E |=E C1,
and M

0 ⇥M1 |=M C for all
E,M1,M

0 such that E |=E C,
M1 |=M C1, and M

0 |=M C0

9
>>>=

>>>;
.

The quotient operation is defined as C/C1 = _ {C0 | C0⌦
C1  C}, i.e., the greatest C0 such that C0 ⌦ C1 refines C.
Any contract that refines the quotient also refines C when
composed with C1 and vice versa, as expressed in (1).

4.2. The Quotients in the Meta-Theory

We define the following sets of contracts:
Definition 4.1. Given contracts C and C1, let

• S := {C0 | C0 ⌦ C1  C}. Contracts whose composi-
tion with C1 refines C.

• U := {C0 ⌦ C1 | C0 2 S}. The compositions of C1 that
refine C.

• Q := {C0 | C0 ⌦ C1 = _U}. Quotient set: contracts
whose composition with C1 is largest while refining
C.

The definition of quotient in the meta-theory is given by
C/C1 = _S. From the definitions we introduced, it is clear
that C/C1 = _Q. We now introduce another set of contracts
which we will show is equivalent to S (Lemma 4.3).
Definition 4.2. Given contracts C and C1, we define the

following set of contracts:

CC/C1
:=

8
>>><

>>>:
C0

���������

M1 ⇥ E |=E C0
, M

0 ⇥ E |=E C1,
and M

0 ⇥M1 |=M C for all
E,M1,M

0 such that E |=E C,
M1 |=M C1, and M

0 |=M C0

9
>>>=

>>>;
.

Lemma 4.3. CC/C1
= S.

It follows that we can define the contract in the meta-
theory as C/C1 = _CC/C1

. This definition is analogous to
the definition of composition (C1 ⌦ C0

= ^CC1,C0). Finally,
we can define the lower quotient operation for the meta-
theory as (C/C1)� = ^Q. We now show that this definition
of quotient in the meta-theory readily leads to a derivation
of the quotient operation for assume-guarantee contracts.

4.3. A second derivation of the quotient operation
of assume-guarantee contracts

We use the new definition of the contract quotient to
derive the quotient operation of A/G contracts. The key is
expressing CC/C1

in the A/G framework. We do this in the
following lemma:
Lemma 4.4. Let C, C1, and C0 be saturated contracts. CC/C1

in the A/G framework is given as follows:

CC/C1
=

8
>>><

>>>:
(A

0
, G

0
)

���������

(A

0
, G

0
) is saturated,

A \G

0 ✓ A1,

A \G1 ✓ A

0
, and

G

0 \G1 ✓ G

9
>>>=

>>>;
. (9)

We said we can define the quotient operation as C/C1 =

_CC/C1
. Using Lemma 4.4 we obtain another derivation of

the A/G quotient operation. First we write the quotient in
the A/G framework:

C/C1 = max

8
>>><

>>>:
(A

0
, G

0
)

���������

(A

0
, G

0
) is saturated,

A \G

0 ✓ A1,

A \G1 ✓ A

0
, and

G

0 \G1 ✓ G

9
>>>=

>>>;
.

From this expression, we obtain the assumptions and guar-
antees:

a(C/C1) = A \G1 and

g(C/C1) = max

⇢
G

0
����
G

0 \A ✓ A1 and
G

0 \G1 ✓ G

�

= (A1 [¬A) \ (G [¬G1)

= A1 \G [¬(A \G1).

This derivation of the quotient operation was possible due
to the new definition of the contract operation in the meta-
theory of contracts.

5. Examples

Theorem 3.5 can be used as the basis of a decomposition
methodology with contracts: suppose we have a top-level
contract C = (A,G), and one component with contract
C1 = (A1, G1) will be used in the design. Then the set of
refinements of C/C1 is the same as the set of contracts that,
when composed with C1, refine C. Consequently, in order to
synthesize a new contract C0 with the property C0⌦C1  C,
we can compute C/C1, and we know that any refinement of
C/C1 will have the property we seek. Moreover, if we wish
to synthesize C0, we can seek a refinement of the quotient
which is expressible with few parameters in order to make
synthesis efficient.

We provide two examples of contract decomposition us-
ing the quotient. The first is a logic design example dealing
with an Arithmetic Logic Unit (ALU), and the second is an
automotive application dealing with Cooperative Adaptive
Cruise Control (CACC). Our intention is to show that the

add()

mult()

outFalse

True

a

b

inst

out_int

r

Figure 1. ALU diagram of example 5.1. The ALU is required to output
either the sum or the product of the inputs a and b, according to the value
of the input inst: if inst is deasserted, the output is the sum; otherwise,
it is the product. Suppose there is a component available that implements
the addition part of the specification. We expect the quotient to indicate
that the multiplication remains to be implemented. We use monospace font
to refer to constants, variables, and functions.

operations we derived do indeed provide what one would
intuit are the missing specifications in a design, assuming
that a given component will be used in the final system. To
simplify our presentation, both of our examples meet the
requirement that A\G ✓ A1, so according to Corollary 3.8,
the quotient operation (6) becomes equal to R(C, C1) (see
Definition 3.3); thus, we will repeatedly refer to R as the
quotient in these examples. Finally, both examples are given
in LTL, but we show the propositions explicitly in order to
carry out simplifications.

5.1. Implementing an ALU

Consider an ALU with the functionality shown in Fig-
ure 1. The design receives as input numbers a and b,
a trigger signal r, and an instruction inst. When r is
asserted, within n time units the output out is equal to
either the sum or the multiplication of a and b, according
to the value of inst. For this ALU, we can write the top-
level contract C = (A,G), with

G =

n_

i=1

⇢�
(r^¬inst) ! Xi

out = add(a,b)

�
^

�
(r ^ inst) ! Xi

out = mult(a,b)

��
_ ¬A

and A = r !
✓ n̂

i=1

(Xi¬r) ^ (Xi
a = a) ^ (Xi

b = b)

^ (Xi
inst = inst)

◆
,

i.e., we assume that once r asserts, r will remain deasserted
during the next n time ticks, and all other input signals will
not change value during this time; the contract guarantees
that at some point during the next n clock ticks, the output
will be equal to the addition or multiplication of a and b,
according to the value of inst.

Now suppose we have a component which outputs the
addition of a and b at the n-th time tick after the assertion
of r. If we use this component in our design, we expect

only the multiplication remains to be implemented. The
component we are using in the design obeys the contract
C1 = (A1, G1) defined as follows:

G1 = (r ! Xn
out_int = add(a,b)) _ ¬A1 and

A1 = r !
✓ n̂

i=1

(Xi¬r) ^ (Xi
a = a) ^ (Xi

b = b)

◆
.

C1 guarantees that the output out_int will be equal to the
addition of the inputs a and b n ticks after the assertion of
r. Since C1 guarantees the addition part of the guarantees
of C, we expect the quotient operation to allow us to
find a contract that only guarantees the multiplication of
the inputs since this is what C1 is missing from C. Let
↵ = r !

Vn
i=1(X

i
inst = inst). We observe that

A = ↵ ^ A1, so A ✓ A1 ✓ A1 [¬G1, meaning that
R(C, C1) = (A2, G2) is the quotient operation (Corollary
3.8). Define � = (r ! Xn

out_int = add(a,b)). We
compute

A2 =A1 ^ ↵ ^ � and

G2 =

n_

i=1

⇢�
(r ^ ¬inst) ! Xi

out = add(a,b)

�
^

�
(r ^ inst) ! Xi

out = mult(a,b)

��
_ ¬A2.

Now we rewrite G2 as

G2 =

n�1_

i=1

⇢�
(r ^ ¬inst) ! Xi

out = add(a,b)

�
^

�
(r ^ inst) ! Xi

out = mult(a,b)

��
_

⇢�
(r ^ ¬inst) ! Xn

out = Xn
out_int

�
^

�
(r ^ inst) ! Xn

out = mult(a,b)

��
_ ¬A2.

Since A ✓ A1 [¬G, any refinement of R refines C when
composed with C1. We propose the refinement C0

= (A

0
, G

0
)

with

G

0
=

�
(r ^ ¬inst) ! Xn

out = Xn
out_int

�
^�

(r ^ inst) ! Xn
out = mult(a,b)

�
_ ¬A0 and

A

0
=A1 ^ ↵.

Contract C0 is saturated and satisfies C0  R. Since we also
have A ✓ A1[¬G, Corollary 3.8 guarantees that C0⌦C1 
C. We observe that C0 only guarantees the multiplication
of a and b, as we intuited, and that it does not make any
assumption about out_int; in particular, while R keeps a
complete description of the arithmetic relationship between
out_int and the inputs a and b, this information is hidden
from C0.

Figure 2. In Cooperative Adaptive Cruise Control, the vehicle on the left,
Va, attempts to keep a fixed distance from the other vehicle, Vb. To run
its control algorithm, Va must use estimates of its own state and of the
state of vehicle Vb: the more faithful the estimates, the more reliable the
functionality. Suppose that Vb can estimate its own state much better than
Va can estimate it. Vb can share wirelessly the measurements of its state
with Va for the latter to make better control decisions.

5.2. Connected Vehicles

Connectivity with other vehicles or with the infrastruc-
ture can be used to extend the capabilities of a vehicle by
increasing the number, types, and quality of sensors that it
can access, or by providing more computational capabilities
that the vehicle can use to tackle a task.

Consider the application of connectivity to Cooperative
Adaptive Cruise Control (CACC). We consider the scenario
of Figure 2: a vehicle Va, moving with velocity va, attempts
to drive on the highway at a certain distance from vehicle Vb.
As the top-level spec C = (A,G), we ask that the distance
dr between the two vehicles be contained in intervals that
depend on the speed at which Va moves. Thus, we have the
guarantees

G =

^

i2I
va 2 Vi ! dr 2 [L

�
i , L

+
i] _ ¬A,

where Vi stand for ranges of velocities indexed over a set
I; L+

i and L

�
i are real numbers which serve as the limits

of dr for various values of the speed va.
We observe that vehicle Va, in order to follow vehicle

Vb, must know something about its own state and the state
of Vb. Let xi be the state of vehicle Vi. Assume that x̂i are
the observations which vehicle Va makes of the states of
each car and which it uses to make control decisions. Note
that the xi are the actual state variables that correspond to
reality, but the x̂i are the state observations that Va can
access either by making the measurement using its sensors
or by receiving data from external sources (Vb in this case).
These observations are affected by the intrinsic accuracy
of the sensors, and by the time delays which exist from
the analog-to-digital converters that capture physical data
to the processors that implement the CACC. These time
delays are crucial since, for instance, even if Va has access
to an extremely accurate velocity measurement of Vb that
was captured 10 minutes ago, the measurement is useless
for the purposes of CACC, which operates in real-time.

In order to be able to guarantee its behavior G, Va must
assume that the states of the vehicles are constrained to
reasonable values (e.g., that the speeds of the vehicles are
bounded) and that the state observations made by Va are
faithful to the reality up to a known tolerance. Then, we

can write the assumptions for the contract (we assume that
operations are evaluated in the order ¬, ^, !, _):

A =e 2 E ^ xa 2 Xa ^ xb 2 Xb^^

i2I
va 2 Vi ! D 2 [L

�
i , L

+
i].

In these expressions, e represents the current state of the
environment; E is a set of restrictions of possible behaviors
of the environment; the Xj are restrictions on possible be-
haviors of the states of the cars; and D is a setting configured
by the user and which determines how closely she wishes
car Va to follow Vb. Note that the contract assumes that the
user sets D to a value bounded by the limits L

�
i and L

+
i .

In summary, contract C assumes that the environment
and vehicles behave within certain limits (given by the sets),
and guarantees that the relative distance between the cars
will be bounded by a certain interval, according to the
velocity of the first car. We observe that dr and vi can be
derived from the state variables xi.

Suppose that when the driver sets the value of D, the
CACC controller of Va is capable of making Va stay at a
distance D from vehicle Vb up to a tolerance f", i.e., the
CACC guarantees |dr �D| < f". This tolerance f" reflects
the capability of the CACC control system and depends on
the states of both vehicles and on how well the sensors of
Va match reality. The dependence of f" on the states is
obvious since it should be harder to keep a fixed distance to
a moving target when that target is accelerating, for instance.
The dependence of f" on the state observations reflects the
fact that the more faithfully the estimates match reality, the
more reliably the control system behaves. Therefore, f" is
a function of many arguments: f" = f"(kxa � x̂ak, kxb �
x̂bk, xa, xb, e), where k · k is a semi-norm used to tell how
well the observations x̂i match reality xi. To shorten our
expressions, we will simply use f" for f"(kxa� x̂ak, kxb�
x̂bk, xa, xb, e). We can write a contract C1 = (A1, G1) for
Va:

A1 =A, and
G1 =|dr �D| < f" _ ¬A,

Since A ✓ A1[¬G, the refinements of R = (AR, GR) also
refine C in composition with C1. We compute

AR =A ^ |dr �D| < f" and

GR =

^

i2I
va 2 Vi ! dr 2 [L

�
i , L

+
i] ^ |dr �D| < f"

_ ¬AR.

Now that we have computed the quotient, we know
that R contains the part of C not met by C1. Observe that
up to this point all manipulations have been mechanical:
we have simply computed the quotient starting from the
specifications. We are interested, however, in a refinement
of the quotient that we can implement, and to find this
good refinement we need knowledge from the designer.
As designers, we introduce a clause in the guarantees to

bound the value of the tolerance. Define the proposition c

as follows:

c = f" < min(L

+
i �D,D � L

�
i).

We can now write a contract C0
= (A

0
, G

0
) that refines R

using this clause:

A

0
=AR and

G

0
=

^

i2I
va 2 Vi ! dr 2 [L

�
i , L

+
i] ^ |dr �D| < f" ^ c

_ ¬A0
,

We observe that A ✓ A

0; thus, A0 contains the clause
va 2 Vi ! D 2 [L

�
i , L

+
i] for all i 2 I. We can use this

clause to rewrite G

0 as follows:

G

0
=

^

i2I
va 2 Vi !

0

BBB@

dr 2 [L

�
i , L

+
i] ^

|dr �D| < f" ^
f" < min(L

+
i �D,D � L

�
i) ^

D 2 [L

�
i , L

+
i]

1

CCCA

_ ¬A0
.

The clause dr 2 [L

�
i , L

+
i] is redundant and can thus be

eliminated, resulting in

G

0
=

^

i2I
va 2 Vi !

0

B@
|dr �D| < f" ^
f" < min(L

+
i �D,D � L

�
i) ^

D 2 [L

�
i , L

+
i]

1

CA

_ ¬A0
.

Finally, since A

0 contains the clauses va 2 Vi ! D 2
[L

�
i , L

+
i] and |dr �D| < f", we can write G

0 as

G

0
=

^

i2I
va 2 Vi ! f" < min(L

+
i �D,D � L

�
i) _ ¬A0

.

We observe that the guarantees of G

0 do not directly
refer to dr; thus, we can further refine C0 with a contract
C00

= (A

00
, G

00
) as follows:

A

00
=A and

G

00
=

^

i2I
va 2 Vi ! f" < min(L

+
i �D,D � L

�
i) _ ¬A00

.

Since C00 is a refinement of the quotient, we know it
can be used to complete the design. But now we ask, how
can we implement contract C00? We started from a high
level requirement on the relative distance between the two
vehicles and through the quotient obtained a restriction on
f" = f"(kxa � x̂ak, kxb � x̂bk, xa, xb, e), the bounds on
Va’s ability to stay close to Vb. From a design standpoint,
a design external to Va has no control over the states of
the vehicles xi or over the environment e; however, an
external component can impact kxb � x̂bk, i.e., how closely
vehicle Va can track the state of Vb. While a component
of the observation error of xb by Va is comprised of the
sensors used, contract C00 can potentially be implemented by
guaranteeing that network latency stays within acceptable
bounds; that is, the network guarantees that vehicle Va

always maintains updated information about the state of Vb,
enabling the control system of Va to make better control
decisions.

5.3. Observations

We now discuss some commonalities that emerged in
the manipulation of contracts in our examples.

1) Once the quotient Cq = (Aq, Gq) is computed, the
next step in a decomposition methodology is to compute
a refinement C0 of Cq (recall that in composition with C1
(the given component contract), this contract is guaranteed
to refine C). To do this, we manipulate the contract Cq by
adding and removing clauses. First, we observe that Aq can
often be expressed as a conjunction of clauses, i.e., Aq =V

i ai, and in our ALU and automotive examples Gq is of
the form Gq =

V
j(pj ! sj) _ ¬Aq . Observe that p ! s _

¬a = p ! s ^ a _ ¬a. This equivalence was used to insert
an assumption clause into the guarantees in the examples in
order to carry out simplifications in s^a. Further, conjoining
clauses to s results in a subset of Gq , providing a refinement
of Cq .

2) The saturation of the quotient implies that Gq con-
tains all the information needed to carry out simplifications,
i.e., no other clauses are needed.

3) Refining the contract quotient involves a notion of
what constitutes a good refinement, and set-theoretic opera-
tions enriched with simplifications allowed in the formalism
in which assumptions and requirements are expressed. The
former sets the goal of the simplification process (and thus
needs guidance from the designer), while the latter is a
systematic mechanism which can be automated. The mech-
anization of this task is correlated with the identification
of the platforms that a given industrial vertical segment
will adopt to specify contracts. Here we anticipate that the
availability of tools supporting design for a given formalism
would stimulate industry adoption. At the same time, a
determination of the platforms to be used in an industrial
vertical domain would encourage academic research to de-
velop the “right” formalism needed to manipulate contracts
for that platform. The question now is how to spark this
win-win interaction.

6. Conclusions

We have introduced the notion of quotient set for the
theory of contracts, and an explicit formula to compute the
quotient operation between two assume-guarantee contracts.
We illustrated a decomposition methodology of high-level
specifications based on the A/G quotient operation. Some
lines of future research are the use of the lower quotient
operation to devise specifications with redundancy (to ensure
reliability) and the creation of software tools that exploit
these concepts to decompose specifications.

Acknowledgments

We gratefully acknowledge helpful conversations with
Shinichi Shiraishi, Eric Kim, and Kosuke Watanabe dur-
ing the preparation of this manuscript. We thank Professor
Albert Benveniste and our anonymous reviewers for their
valuable suggestions for improving this work.

This work was supported in part by the TerraSwarm
Research Center, one of six centers supported by the STAR-
net phase of the Focus Center Research Program (FCRP)
a Semiconductor Research Corporation program sponsored
by MARCO and DARPA, by NSF Contract CPS Medium
1739816, and by Toyota InfoTechnology Center, U.S.A.,
Inc.

Appendix

Proof of Lemma 3.2. Suppose G

0 6✓ G [¬G1, i.e., ; 6=
G

0\¬(G[¬G1) = G

0\¬G\G1. Then G

0\G1 6✓ G, which
contradicts C0 ⌦ C1  C. Thus, G0 ✓ G[¬G1, proving (2),
and G

0 \G1 ✓ (G [¬G1) \G1 = G \G1, and (3) holds.
Now we prove (4). Since C0 ⌦ C1  C, we have

A ✓ (A1 \A

0
) [¬G1 [¬G0 (10)

For (10) to hold, we must have

¬G0 ◆ A \ ¬ ((A1 \A

0
) [¬G1)

= A \G1 \ (¬A1 [¬A0
).

Equation (10) becomes

(A1 \A

0
) [¬G1 [¬G0

◆ (A1 \A

0
) [¬G1 [(A \G1 \ ¬(A1 \A

0
))

= (A1 \A

0
) [¬G1 [(A \G1 \ ¬(A1 \A

0
))

[(A \G1) [A = A [¬G1 [(A1 \A

0
) ◆ A [¬G1,

proving (4). Now, from (10), A \ G

0 \ G1 ✓ A1 \ A

0)
A \ G

0 \ G1 ✓ A

0. Due to the saturation of C0, we also
have A

0 ◆ ¬G0; then A

0 ◆ A\G

0 \G1 [¬G0
= A\G1 [

¬G0) A

0 ◆ A \G1, proving (5).

Proof of Corollary 3.8. Let A\G ⇢ A1. Then G1\ (A1\
G [¬A) = G1 \ (A1 \G [¬A [G \ ¬A1) = G1 \G.

Therefore, we have

Q(C, C1) =

8
<

:C0

������

C0 is saturated,
g(C0 ⌦ C1) = G1 \ (A1 \G [¬A),

a(C0 ⌦ C1) = A [¬G1

9
=

;

=

8
<

:C0

������

C0 is saturated,
g(C0 ⌦ C1) = G1 \G,

a(C0 ⌦ C1) = A [¬G1

9
=

; .

Moreover, (C/C1)� = (A[¬G1[¬A1, G1\ (A1\G[
¬A)) = (A [¬G1 [¬A1, G1 \G) = L.

Finally, we observe that A1\G[¬(A\G1) = A1\G[
¬A [¬G1 = A1 \G [¬A [¬G1 [G \ ¬A1 = G [¬G1.
We thus have C/C1 = (A \G1, A1 \G [¬(A \G1)) =

(A \G1, G [¬G1) = R(C, C1).

Proof of Lemma 4.3. We have S = {C0 | C0 ⌦ C1  C}.
We observe we can write S as

S =

8
>>>>>><

>>>>>>:

C0

������������

C0 ⌦ C1  C,
M1 ⇥ E |=E C0

, M

0 ⇥ E |=E C1,
and M

0 ⇥M1 |=M C1 ⌦ C0 for all
E,M1,M

0 such that E |=E C1 ⌦ C0
,

M1 |=M C1, and M

0 |=M C0

9
>>>>>>=

>>>>>>;

since we have just conjoined a true statement to the condi-
tions that define the set. Now, since C1 ⌦ C0  C within the
conditions of S, E |=E C) E |=E C1 ⌦ C0. Therefore,
for any M1 |=M C1, M 0 |=M C0, and E |=E C, we have
M1⇥E |=E C0, M 0⇥E |=E C1, and M

0⇥M1 |=M C1⌦C0.
Using again the fact that C1⌦C0  C gives M 0⇥M1 |=M C.
Therefore, S becomes

S =

8
>>>>>><

>>>>>>:

C0

������������

C0 ⌦ C1  C,
M1 ⇥ E |=E C0

, M

0 ⇥ E |=E C1,
and M

0 ⇥M1 |=M C for all
E,M1,M

0 such that E |=E C,
M1 |=M C1, and M

0 |=M C0

9
>>>>>>=

>>>>>>;

.

We observe that the second condition means that C 2 CC1,C0 .
This implies that C1⌦C0

= ^CC1,C0  C, which means that
the first condition is redundant. We can thus write S as

S =

8
>>><

>>>:
C0

���������

M1 ⇥ E |=E C0
, M

0 ⇥ E |=E C1,
and M

0 ⇥M1 |=M C for all
E,M1,M

0 such that E |=E C,
M1 |=M C1, and M

0 |=M C0

9
>>>=

>>>;
,

that is, S = CC/C1
.

Proof of Lemma 4.4. (This proof follows closely that of
Lemma 4 in [2].)

(✓). Let C0
= (A

0
, G

0
) be a saturated contract in CC/C1

.
Let E = A, M1 = G1, and M

0
= G

0. Since C0 2 CC/C1
, we

have M1⇥E |=E C0, M 0⇥E |=E C1, and M

0⇥M1 |=M C.
These three expressions are equivalent to G1 \ A ✓ A

0,
G

0 \ A ✓ A1, and G

0 \ G1 ✓ G, respectively. Hence, C0

belongs to the set on the right hand side of 9.
(◆). Let C0

= (A

0
, G

0
) belong to the set on the right

hand side of 9. Let E ✓ A, M1 ✓ G

0, and M1 ✓ G1. We
have

E ⇥M1 = E \M1 ✓ A \G1 ✓ A

0) E ⇥M1 |=E C0

E ⇥M

0
= E \M

0 ✓ A \G

0 ✓ A1) E ⇥M

0 |=E C1
M1 ⇥M

0
= M1 \M

0 ✓ G1 \G

0 ✓ G

) M1 ⇥M

0 |=M C.

Thus, C0 2 CC/C1
, proving the left set inclusion.

References

[1] B. Meyer, Touch of Class: Learning to Program Well Using Object
Technology and Design by Contracts. Springer, Software Engineer-
ing, 2009.

[2] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Hen-
zinger, and K. G. Larsen, “Contracts for system design,” Foundations
and Trends R� in Electronic Design Automation, vol. 12, no. 2-3, pp.
124–400, 2018.

[3] F. Balarin, M. D’Angelo, A. Davare, D. Densmore, T. Meyerowitz,
R. Passerone, A. Pinto, A. Sangiovanni-Vincentelli, A. Simalatsar,
Y. Watanabe, G. Yang, and Q. Zhu, Chapter 10. Platform-Based
Design and Frameworks. Cham: CRC Press, 2009, pp. 259–322.

[4] T. Villa, N. Yevtushenko, R. Brayton, A. Mishchenko, A. Petrenko,
and A. Sangiovanni-Vincentelli, The Unknown Component Problem:
Theory and Applications. Springer, 2012.

[5] T. T. H. Le, R. Passerone, U. Fahrenberg, and A. Legay, “Contract-
based requirement modularization via synthesis of correct decom-
positions,” ACM Trans. Embed. Comput. Syst., vol. 15, no. 2, pp.
33:1–33:26, Feb. 2016.

[6] C. Chilton, B. Jonsson, and M. Kwiatkowska, “Compositional
assume-guarantee reasoning for input/output component theories,”
Science of Computer Programming, vol. 91, pp. 115–137, 2014,
special Issue on Formal Aspects of Component Software (Selected
Papers from FACS’12).

[7] T. Chen, C. Chilton, B. Jonsson, and M. Kwiatkowska, A Compo-
sitional Specification Theory for Component Behaviours. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 148–168.

[8] P. Bhaduri and S. Ramesh, “Interface synthesis and protocol conver-
sion,” Formal Asp. Comput., vol. 20, no. 2, pp. 205–224, 2008.

[9] J. Raclet, “Residual for component specifications,” Electr. Notes
Theor. Comput. Sci., vol. 215, pp. 93–110, 2008.

[10] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu, “Learning
assumptions for compositional verification,” in Tools and Algorithms
for the Construction and Analysis of Systems, 9th International Con-
ference, TACAS 2003, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland,
April 7-11, 2003, Proceedings, 2003, pp. 331–346.

[11] R. Alur, P. Madhusudan, and W. Nam, “Symbolic compositional
verification by learning assumptions,” in Computer Aided Verification,
17th International Conference, CAV 2005, Edinburgh, Scotland, UK,
July 6-10, 2005, Proceedings, 2005, pp. 548–562.

[12] M. G. Bobaru, C. S. Pasareanu, and D. Giannakopoulou, “Automated
assume-guarantee reasoning by abstraction refinement,” in Computer
Aided Verification, 20th International Conference, CAV 2008, Prince-
ton, NJ, USA, July 7-14, 2008, Proceedings, 2008, pp. 135–148.

[13] D. Angluin, “Learning regular sets from queries and counterexam-
ples,” Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987.

[14] D. Giannakopoulou, C. S. Pasareanu, and H. Barringer, “Assumption
generation for software component verification,” in 17th IEEE Inter-
national Conference on Automated Software Engineering (ASE 2002),
23-27 September 2002, Edinburgh, Scotland, UK, 2002, pp. 3–12.

[15] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, Multiple Viewpoint Contract-Based Specification and
Design. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
200–225.

[16] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977)(FOCS), Sept
1977, pp. 46–57.

[17] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255–299, Nov 1990.

[18] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.

