
Platform-Independent QoS Parameters
and Primitive APIs for Automotive Software

BaekGyu Kim1 Chung-Wei Lin2 Eunsuk Kang3 Nobuyuki Tomatsu1 Shinichi Shiraishi4

Abstract— Modern ITS (Intelligent Transportation System)
applications are becoming increasingly sophisticated and di-
verse, following the growing trends of connectivity and au-
tonomous driving. For example, a vehicle can be equipped with
advanced sensors (e.g., LIDAR, camera or radar) to perform
complex driving maneuvers by itself and/or communicate with
other vehicles or road-side infrastructures to assist drivers in
safer driving. Since the operation of an automotive application
is closely tied to the underlying platform characteristics, it
requires significant integration effort when the application
needs to operate on a wide range of platforms such as
other vehicle types or road-side infrastructures. To reduce
such effort, we propose a method to implement automotive
applications in a platform-independent way. Our approach is to
define the automotive domain-specific QoS (Quality of Service)
parameters that allow an application to specify the expected
quality of sensor input or actuator output independent of a
particular platform for safe operation. The application interacts
with a platform through several primitive APIs to inform QoS
requirements, to read/write sensors/actuators values according
to the specified QoS, and to handle exceptions upon any QoS
violation. We implement a multi-mode ACC (Adaptive Cruise
Control) application on a RC-car platform to demonstrate how
an automotive application can be implemented based on the
proposed QoS parameters and primitives.

I. INTRODUCTION

Software plays a key role in the implementation and
deployment of ITS (Intelligent Transportation System) appli-
cations, such as autonomous driving or traffic management.
These types of software rely on not only on-board sensors
and actuators, but also those that are equipped on remote
vehicles or road-side infrastructures. Many examples can be
found in the ARC-IT (Architecture Reference for Cooper-
ative and Intelligent Transportation) project sponsored by
USDOT [16]; for example, an ITS application may utilize the
speed sensor input of remote vehicles to implement adaptive
cruise control via wireless communication such as DSRC;
another type of application may provide road-side lighting
systems with location and motion information to control
their brightness on demand. Such aspects of ITS applications
show that modern vehicle software needs to interact with a
wider range of sensors and actuators, in contrast to traditional
vehicles that typically rely on on-board sensors and actuators
only.

1Toyota InfoTechnology Center, U.S.A., Inc., Mountain View, California
{bkim, ntomatsu}@us.toyota-itc.com

2National Taiwan University, Taipei, Taiwan
cwlin@csie.ntu.edu.tw

3Carnegie Mellon University, Pittsburgh, Pennsylvania
eskang@cmu.edu

4Toyota InfoTechonology Center Co., Ltd., Tokyo, Japan
sshiraishi@jp.toyota-itc.com

This trend poses a significant challenge to automotive
engineers, since control software needs to be integrated
with a wide range of platforms such as other vehicle types
or road-side infrastructures. As the reliable operation of
the control software heavily depends on the quality of the
underlying sensor input, the challenge is to achieve the
same quality of control across different types of platforms
that the software may be deployed on. For example, the
adaptive cruise control needs to measure the distance of a
front vehicle to determine acceleration or deceleration rates
to maintain appropriate speeds and distances. The distance
can be measured with various sensors (e.g., on-board sensors
or remote sensors) that provide different levels of accuracy,
such as a millimeter wave radar sensor, a stereo camera or a
LIDAR (Light Detection and Ranging). Therefore, engineers
may be required to spend a significant amount of time to
manually modify (or tune) software configuration parameters
to the platform-specific sensor in order to achieve the same
behavior across different platforms. The need to perform
this time-consuming, manual activity for each new platform
is a major bottleneck in developing a wide range of ITS
applications.

A better method of ITS software development would
be to allow engineers to implement an application in a
platform-independent manner, while platform-specific details
are hidden from them. Then, a separate mechanism can be
provided to automatically check if the integration of the
software with the particular platform can preserve the level
of quality and accuracy that is demanded by the application
uses.

Many prior academic works proposed general approaches
to decouple the software development from the platform
integration, for example, by providing reconfigurable com-
ponents [4], designing APIs to hide the platform details [7],
specifying the performance requirements [14] or preserving
timing guarantee [6]. In particular, this trend can be also
found in the recent development of Adaptive AUTOSAR
standard [1] by providing a concept of manifest to explicitly
specify the desired configuration of the platform on which
the application can perform its intended operations under
dynamic integration scenarios. Such a change from the
classic AUTOSAR intends to accommodate the nature of
ITS applications where the software needs to interact with
a wide range of platforms. However, those works are rather
intended for establishing a framework for general systems,
and we believe that additional research needs to be done to
refine such a general decoupling process for ITS applications
in automotive domain.

To this end, we introduce the platform-independent QoS
(Quality of Service) parameters and associated API primi-
tives with which automotive software can be implemented in
a platform-independent way. First, we categorize sensors and
actuators according to their usages and extract their common
properties that typically affect the performance of software.

Based on those hardware-specific properties, we iden-
tify QoS parameters that can be specified by software to
guarantee its performance in a platform-independent way.
Second, we introduce a set of primitive APIs for the software
to interact with the next level of system layers (i.e., a
platform) according to the specified QoS parameters. The
primitives are defined as set/get methods to read/write sen-
sor/actuator data according to the specified QoS. With these
primitives, software can request QoS requirements to the
platform needed to appropriately control the vehicle. Then,
the platform delivers the sensor data to the software as long
as the QoS requirements are preserved. If the platform fails
to meet the QoS requirements, it triggers an exception so
that the software can handle it in an appropriate way (e.g.,
deactivate the ADAS (Advanced Driver-Assistance Systems)
feature or mode switching).

The contributions of this paper are as follows:
• A set of approximately 40 platform-independent QoS

parameters for common automotive applications (Sec-
tion III),

• A prototype implementation of APIs that provide primi-
tive operations for the manipulation of these parameters
(Section IV-A), and

• The demonstration of the feasibility of the proposed
platform-independent development approach through a
case study on a radio-controlled (RC) car (Section IV-
B).

In addition, we provide a discussion of potential research
problems to be tackled in order to make this style of
development practical and applicable to a wide range of
automotive applications (Section V).

II. TRENDS ON SOFTWARE PLATFORM TECHNOLOGY IN
AUTOMOTIVE DOMAIN

Decoupling an application development process from a
platform integration is an important trend in the automotive
domain [5]. In particular, a future vehicle is expected to
operate aftermarket applications developed by third party
or to update and add new safety critical functions via the
over-the-air update. This trend will fundamentally change the
way how current OEMs (Original Equipment Manufacturers)
develop software where engineers assume most software is
pre-installed providing little rooms for end-users to reconfig-
ure the vehicle system. We introduce two software platform
technologies aligned with this trend.

A. AUTOSAR Adaptive

AUTOSAR Adaptive [1] is a new automotive architec-
ture standard that offers flexible configurations of vehicle
software. This standard is designed as an evolution of the

AUTOSAR Classic standard, which allowed only static con-
figurations. To provide this additional flexibility, AUTOSAR
Adaptive explicitly distinguishes the application development
process from its deployment process. An application code
is allowed to be developed independently of a particular
deployment scenario. Hence, the developed code can be
deployed on a range of platform configurations later on.

Even though such a decoupling makes the application
development process easier by hiding the details of the
deployment scenario, it may also cause some issues due to
lack of information of the underlying platform. For example,
the application is not aware of available resources from the
platform, such as computation resource (e.g., the number
of CPU cores, memory) and communication resource (data
bandwidth between different electronic control units), to
guarantee its correct operation; when it is deployed to a
platform that has insufficient resources, the system cannot
guarantee its intended operations.

To bridge this gap, AUTOSAR Adaptive introduces the
manifest to specify the desired configuration of the platform
on which the application can perform its intended operations.
With this information, the deployment stage determines if
the application can operate as intended on a particular
deployment scenario. In addition, this manifest plays a role
of limiting any non-intended behavior of an application at
run time. That is, a platform utilizes the manifest to monitor
the unintended behavior of an application at runtime, and
limit its operation upon violation, such as exceeding allowed
computation resource usages.

B. Publish-Subscriber Communication

The publisher-subscriber communication model is de-
signed to decouple the communication entity that produces
data (i.e., publisher) from another entity that consumes the
data (i.e., subscriber). More specifically, a publisher may
produce data without knowing who will consume it, and
a subscriber may receive the data without knowing who
produced it. This compares to the client-server commu-
nication model where clients and a server should know
each other to exchange any information. Such decoupled
communication increases flexibility in building a large scale
distributed system in that one can easily add a new publisher
or subscriber without requiring any changes of the existing
system.

Even though both publisher and subscriber are not aware
of each other in exchanging data, there are some cases,
especially for the safety critical applications, where the
communication needs to be performed according to some
Quality-of-Service (QoS) requirements such as latency, de-
livery confirmation and so on. This implies that there should
be a way to specify such non-functional requirements for the
communication between publishers and subscribers.

There are two standards that adopt the publisher-subscriber
communication model with such QoS consideration: Data
Distribution Service (DDS) [13] and Message Queuing
Telemetry Transport (MQTT) [12]. In MQTT, one can spec-
ify QoS parameters for the message delivery confirmation.

(a)
(c)

(f)

(b)

(g)

(d)

(e)

(2) Grid-based QoS parameter

basic_shape_id=square
basic_shape_size_x=2
basic_shape_size_y=1.5

basic_shape_id= half_circle
basic_shape_size_x=1
basic_shape_size_y=1

(3) Shape-based QoS parameter (1) Physical sensing areas

(Stereo Camera) (Radar Sensor)

Fig. 1. Example characterization of QoS parameters for sensing area.

When a publisher and a subscriber need to exchange data on
unreliable network, this parameter allows the communication
to happen with a certain level of guarantee such as the
message will be delivered at most once (i.e., QoS level
0), at least once (i.e., QoS level 1) and exactly once (i.e.,
QoS level 2). In DDS, one can specify more diverse QoS
parameters including the maximum acceptable delay (i.e.,
LATENCY BUDGET), the frequency of sample update (i.e.,
DEADLINE) or the maximum duration of validity of the
published data (i.e., LIFESPAN).

As introduced in the earlier two standards, it is necessary
to specify QoS requirements in a quantitative format so
that the deployment process can use the information to
check the correctness of the integration. However, the above
QoS parameters are rather domain independent, which is
necessary but not sufficient enough for automotive engi-
neers to implement safety critical application in a platform-
independent manner. In the rest of section, we introduce
our preliminary result in defining automotive-domain specific
QoS parameters that can be used to implement platform-
independent software for vehicle systems.

III. QOS PARAMETER IDENTIFICATION

A. Categorization of Sensors and Actuators

Many automotive applications needs to guarantee various
QoS requirements. For example, the adaptive cruise control
(i.e., an application) should correctly detect the distance of
the front vehicle and maintain an appropriate distance and
speed. Engineers need to take into account many hardware-
dependent parameters to realize desirable QoS (i.e., main-
taining the distance and speed with a certain tolerance).
Even though many sensors are capable of detecting the
distance of the front vehicle, each has different detection
area as illustrated in Fig. 1-(1). A stereo camera can sense
a wider and shorter detection area compared to a radar
sensor. In order to have the adaptive cruise control the same
performance with different sensor types, engineers spend
significant effort to finely tune the control parameters of the
software to accommodate the sensor variation.

From the software engineering perspective, it is better
to separate the programming concerns from such hardware
dependent aspects. By doing so, the software will become
reusable across a range of sensors and actuators. In ad-
dition, engineers can focus on implementing control logic

TABLE I
CATEGORIZATION OF SENSORS AND ACTUATORS

Device Category Examples Sensors and Actuators
Surrounding LIDAR, radar, camera (stereo, infrared), ultrasonic
Environment sensor, temperature/humidity/brightness/rain sensor.

Power train (engine, motor), yaw rate sensor,
Vehicle Control wheel speed, brake, brake/acceleration pedal,

steering, shift position, suspension.
Power seat, seat position, air conditioner, door
sensor, door lock, side window, moonloof, room

Cabin Control lamp, display, speaker, mic, side mirror indicator,
mirror display, trunk opener/closer, seat belt, air
bag, side mirror.

Diagnostics Fuel tank, battery, tire pressure, device health.
Communication DSRC, Bluetooth, WiFi, cellular network.

without worrying about the changes of sensor and actuator
specifications throughout the development process. To allow
engineers to program at a higher level of abstraction, we
define platform-independent QoS parameters.

The platform-independent QoS parameters quantify the
degree of quality assurance in reading or writing the en-
vironment input/output necessary to implement a certain au-
tomotive function. The parameters are platform-independent
and the quantity is not associated to a particular sensor or
actuator, but is associated to the functions to be implemented.

To extract such QoS parameters, we first categorize sen-
sors and actuators according to their common purposes. This
categorization is performed based on our prior knowledge
of vehicle systems and the information of existing vehicle
simulation tools [15]. Table I shows the example sensors
and actuators that we consider to define the five category as
follows.
Surrounding environment: Many automotive applications
require a vehicle to recognize objects, such as preceding
vehicles for the adaptive cruise control, lanes for the lane
keep assist or pedestrians for pre-collision systems. The
surrounding environment category includes sensors to rec-
ognize such objects in the close proximity of the vehicle,
which allow applications to operate appropriately. Those
applications are typically safety-critical functions that require
recognition of the surrounding environment to be performed
in a timely manner with high precision.
Vehicle control: Those safety-critical applications need to
control the vehicle based on the sensor input, such as
deceleration as a preceding vehicle reduces its speed, steering
the wheel of the vehicle or applying a brake as a pedestrian
steps onto the road. The vehicle control category includes
sensors and actuators involved in controlling the vehicle
according to the objective of each application. The vehicle
control software typically calculates a new control input (e.g.,
new speed), and the input needs to take in effect through the
actuators with a certain level of quality assurance (e.g., the
set speed should be reached within x seconds).
Cabin control: Some applications also involve vehicle con-
trol for driver’s comfort purposes, such as temperature con-
trol, door, mirror or light control. The cabin control category
includes sensors and actuators engaged to provide in-vehicle

driving comfort. The cabin controls are typically non-safety
critical so the precision of the sensors may require less strict
quality assurance compared to the vehicle control category.
Diagnostics: There are vehicle components that need to be
regularly monitored for its proper operation, such as fuel
levels, battery or tire pressure. The diagnostics category
includes sensors that can monitor such information to alert
drivers to maintain the vehicle condition at a desirable level.
The monitoring features typically do not require input as
frequently as that of the surrounding environment category.
However, sensor values should precisely reflect the current
status of vehicle components.
Communication: Modern vehicle is equipped with commu-
nication modules to not only allow drivers to communicate
with the vehicle with their hand-held devices (e.g., smart
phone), but also allow the vehicle to communicate with other
vehicles or infrastructure, such as vehicle-to-vehicle (V2V)
communication or vehicle-to-infrastructure (V2I) commu-
nication. The communication category includes the device
that allows the vehicle to exchange information with other
systems. Each application that utilizes the information from
other systems requires the communication module to deliver
information with a certain level of latency.

B. Defining QoS Parameters

We believe that the five categories reasonably characterize
the intention of sensors and actuators that are typically
equipped in a vehicle. Sensors and actuators from each cate-
gory need to deliver the information to applications with their
respective quality assurance. Based on this categorization, we
define the QoS parameters by hiding the details of specific
sensor or actuator characteristics.

Each category requires multiple quantities to be measured.
For example, the surrounding environment category needs to
measure speed, orientation/size of other vehicles or pedes-
trian for collision avoidance. It would be ideal to obtain those
quantities with a perfect precision and zero latency so that an
application can perform its functions as intended. However,
there are many sources that make applications unable to
utilize ideal quantities. For example, a camera cannot detect
all objects with a perfect accuracy at nights; a camera
needs additional computation time to decode and classify
the image, which makes an application use the input after
some delay. We define QoS parameters over such quantities
to be measured. The QoS parameters need to be specified
in a different way depending on the type of quantity. Here,
we explain the example QoS parameters of the sensing area
that is an important aspect to implement many autonomous
features.

As illustrated in Fig. 1, a camera and a radar have different
sensing areas. Table II shows two different ways to specify
the sensing area illustrated in Fig. 1. The first one is the grid-
based representation that allows an application to specify the
sensing area in the form of a grid. It defines a rectangular area
where multiple grid units are located with their unit sizes.
The position of the area is specified as the center position
and the orientation with respect to the vehicle position.

An application can determine the necessary sensing area
by specifying units in the grid. For example, each unit is
assigned to an identification and the application can pass a
set of identifications to the platform to express the sensing
area. Then, the platform needs to check if the sensor has
enough capability to detect the objects within this area. If
it matches, the platform allows the application to utilize the
quantity generated from the sensor; otherwise, the platform
rejects the request from the application or generates warning
signals, which implies that the sensor cannot detect objects
according to the given QoS. The shape-based representation
can be interpreted in a similar way, but we do not give
details here. Engineers can choose an appropriate sensing
area representation for the control objective.

Other QoS parameters may be specified in a relatively
simpler form. For example, the QoS parameter of distance
from the preceding vehicle can be specified in terms of how
much errors can be tolerable in meters (e.g., ± 3 meters).
In the next section, we introduce API primitives that allow
an application to interact with a platform to use the QoS
parameters.

IV. PLATFORM-INDEPENDENT PRIMITIVE APIS

A. Three Primitive APIs

An application specifies the expected quality of the envi-
ronment input and output for its safe operation in the form
of the QoS parameters. The QoS parameters can then be
used by a platform to deliver the corresponding environment
input to the application and the application output to the
environment according to the specified quality. We introduce
three types of API primitives that make such an interaction
possible between an application and a platform.
Get/Set value primitives: This primitive intends to set a
new control output to the actuator (set-value primitive) or
to get new sensor input (get-value primitive). An application
calls the get-value primitive, and then the platform delivers
the corresponding sensor input to the application. For ex-
ample, we defined getObjectInfo (v-area) primitive for an
application to receive the object information located in the
area of interest specified as v-area. Note that the object
detection can be done through a camera, a LIDAR or a radar
sensor, but the application does not need to specify such a
particular sensor type when it calls the primitive. The object
information returned by a platform may include the object
type (e.g., pedestrian or vehicle), size or position.

An application calls the set-value primitive, and then the
platform commands the actuator according to the set value.
For example, we defined setSpeed (p-spd) primitive for an
application to set a new vehicle speed specified as p-spd.
Note that there are several ways to adjust vehicle speed,
such as controlling a throttle, a gear or a brake. But, the
application does not need to specify a specific way to reach
the new speed when it calls the primitive.
Get/Set QoS primitives: This primitive intends to set QoS
requirements to the value primitive or get QoS that a platform
can currently provide. An application calls the set-QoS prim-
itives to inform the platform of QoS requirements over the

TABLE II
EXAMPLE QOS PARAMETERS OF SENSING AREA

Variation Item Description
area grid Grid representation of area (Fig. 1(a))
grid orientation local Angle between in-vehicle local axes and grid orientation (Fig. 1(b))
grid orientation global Angle between global axes and grid orientation
grid center position local (x,y) Position in in-vehicle local coordinates (Fig. 1(c))

Grid-Based Representation grid center position global (longitude, latitude) Position in global coordinates
number of grid x Number of x-axis grids (Fig. 1(d))
number of grid y Number of y-axis grids (Fig. 1(e))
grid length x Length of an x-axis grid (Fig. 1(f))
grid length y Length of a y-axis grid (Fig. 1(g))
number of basic shape Number of shapes
basic shape id Array of IDs of shapes (e.g., square: 0, circle: 1, half circle: 2)
basic shape size x Array of sizes along x-axis of shapes

Shape-Based Representation basic shape size y Array of sizes along y-axis of shapes
basic shape position x Array of positions along x-axis of shapes
basic shape position y Array of positions along y-axis of shapes
basic shape orientation Array of orientations of shapes

quantity to be measured or to be set. For example, we defined
setQoS-ObjectInfo (q-area) primitive for an application to
specify the quality of the area to be observed as described
in Table II. With this information, the platform checks if the
equipped sensor can detect objects within the area; if the
sensor can cover the area, the platform returns the object
information when the corresponding value primitive (i.e.,
getObjectInfo) gets called by the application. Similarly, we
defined setQoS-setSpeed (q-spd) primitive for an application
to specify the quality of the speed. One can specify the QoS
parameter (q-spd) as to, for example, how fast the target
speed should be reached (e.g., the target speed should be
reached within 5 seconds) or how much difference between
the actual speed and the set speed is tolerable (e.g., the speed
difference should be within ± 1 mph). The platform checks
if the equipped actuator can reach the set speed according to
the QoS requirement when the corresponding value primitive
(i.e., setSpeed) gets called by the application.

On the other hand, an application calls the get-QoS
primitives to obtain the QoS that a platform is currently
providing. The platform returns this information in a similar
form that the set-QoS primitive passes as a parameter. Note
that the return value of the get-QoS primitive is not same as
the QoS requirement specified in the set QoS primitive. This
result of the get-QoS primitive can be used by an application
that need to react differently depending on the QoS level at
run time (e.g., a mode change in the control algorithm). We
introduce this usage in detail in the case study.
QoS exception primitives: This primitive intends to in-
form an application of any violation of QoS that has been
requested through the set-QoS primitive. An application
first registers an exception handler that needs to be asyn-
chronously called when the platform cannot guarantee QoS
in delivering sensor/actuator value. The platform detects any
QoS violation and then calls the registered exception handler.
The application is responsible for specifying what needs to
be done upon such an exception occurrence. Considering a
pre-collision system that automatically applies a brake upon
detection of any object in the frontal area of the vehicle,

OK
(e.g., LIDAR with ±0.5 meters and

Camera with ±3 meters)

LIDAR
Stereo
camera

Distance to be maintained

Demo prototype Demo scenario setting

setQoS_distance (q-dist)
(e.g., ±0.5 meters)

OK

get_distance (v-dist)

exception_qos_distance ()

Platform

Distance
(e.g., 5 meters)

(a)

(b)

LIDAR malfunction
(e.g., hardware failure)

Check platform-specific QoS
(e.g., LIDAR and Camera)

Ask LIDAR’s measurement

Return LIDAR’s measurement

(c)

Application Hardware
(Sensor/Actuator) Middleware (ROS)

Fig. 2. Example of the primitive usage and the experimental setup. A
video can be viewed at https://youtu.be/uxkVmeA5GWQ.

the platform may deliver the object information through a
stereo camera. However, the camera may not be able to detect
objects as the surrounding environment becomes darker due
to the changing weather conditions, encounter other obstacles
or hardware malfunctions (e.g., a dirty camera lense). In this
case, the application can implement an exception handler
that triggers alarm sounds to inform drivers to perform more
cautious driving since the pre-collision system cannot work
as intended.

B. Demo Prototyping

We implemented the prototype system to demonstrate the
usage of the aforementioned API primitives. Fig. 2 illustrates
the RC-car demo system and the usage of the primitives in
the case study. The demo platform consists of the RC car
chassis (1/5 scale of actual car) and NVIDIA Jetson TK1
board running ROS (Robot Operating Systems) that controls

the RC car motor; additional sensors are integrated to the
board, such as a LIDAR, a stereo camera, an IMU sensor
and an encoder.

We implemented a multi-mode ACC (adaptive cruise con-
trol) application to demonstrate the usage of the primitives.
The main objective of this application is to maintain a
constant distance from the preceding vehicle. Our application
implements three modes depending on the quality of sensor
input that determines the distance from the preceding vehicle.
If the sensor input guarantees the distance accuracy on the
order of centimeters (e.g., the distance error is within 0.5
meters), the ACC stays in the mode to maintain a short
distance. If the sensor input guarantees distance accuracy
on the order of meters (e.g., the distance error is less within
3 meters), the ACC switches to another mode to maintain a
wider gap. If the sensor input cannot guarantee any bounded
accuracy, the ACC is deactivated.

Fig. 2 shows the example primitive calls made in the
demonstration. In Fig. 2(a) the ACC application sets the
QoS requirements to maintain the short distance (e.g., ± 0.5
meters) through the set QoS primitive. Then, the platform
checks if the equipped hardware is able to provide the
distance measurement according to the QoS requirement,
then acknowledge the application. We use two sensors to
measure the distance, a LIDAR and a stereo camera. A
LIDAR is known to have a higher accuracy in detecting
distances from obstacles compared to a stereo camera. Before
starting the demonstration, we perform an experiment to
calibrate and obtain the accuracy of the LIDAR and camera;
we have the platform maintain this information. When the
application calls the set QoS primitive, the platform uses
this information to decide if the QoS requirements can be
satisfied. Since both LIDAR and camera are available to use
in the beginning, the application is informed with OK.

In Fig. 2(b), since the QoS can be guaranteed, the appli-
cation can maintain the short distance based on the LIDAR
input (note that camera input is ignored by the platform
at this moment since its measurement does not match with
the QoS requirements). In Fig. 2(c), we detach the LIDAR
physically to simulate a potential hardware malfunction.
This makes the platform unable to receive LIDAR input
any more, but the camera input is still available. However,
the camera input cannot guarantee the QoS requirement
requested by the current mode of ACC application, so
the platform triggers the exception to let the application
automatically switch to the conservative mode to maintain
a larger gap. We further detach the camera physically to
simulate another potential hardware malfunction, and the
ACC is deactivated for safety guarantee. A video can be
viewed at https://youtu.be/uxkVmeA5GWQ.

Through this case study, we showed how the application
can be designed using the platform-independent primitives
by hiding the details of the hardware dependent aspects. We
believe this way of implementing automotive software will
make engineers implement applications easier and in a more
reusable way across various hardware platforms.

V. DISCUSSION

While the preliminary experiments show a promise for
the proposed platform-independent approach, a number of
research challenges remain to further improve and make
this style of development applicable to a wide range of
automotive applications.

This paper has focused primarily on QoS parameters,
but there are other types of system properties that may
be desirable to specify in a platform-independent manner,
such as security, availability, and reliability. For instance,
depending on the security requirements of an application
(e.g., confidentiality or integrity), the engineer may specify
certain data elements to be encrypted or signed before being
transmitted over a network. The middleware would then
select and apply appropriate cryptographic primitives (e.g.,
RSA or SHA) to fulfill the given specification, while hiding
the details of these primitives from the engineer. Depending
on the computational capacity of the underlying hardware,
cryptographic primitives of varying strengths would be con-
sidered for selection (e.g., some resource-constrained devices
may be limited to shorter key lengths). Prior works on
security-aware platform mappings [17] may be a promising
place to start for this problem.

Certain QoS parameters, such as latency and accuracy of
sensor data acquisition, may be in conflict with each other,
and so it may not always be possible to fully satisfy the en-
gineer’s requirements. In such cases, it may be useful for an
API to expose options for the engineer to indiciate priorities
among different parameters. Alternatively, when conflicting
parameters yield multiple parameter choices, the middleware
may perform a multi-objective optimization procedure [11] to
enumerate the space of pareto-optimal solutions and present
them to the engineer.

With the identified QoS parameters, another research
direction would be to utilize them to automate some of
the development process. For example, one can use the
QoS parameters to automatically generate platform-specific
source code in a way that meets timing requirements [9] or
architectural requirements [10]. In addition, when a platform-
independent software needs to be integrated with a particular
platform, one can also use the platform-specific verification
technique to formally prove the correctness of the integra-
tion [8].

Better language support is needed for specifying and
reasoning about QoS guarantees provided by the underlying
platform. For example, the developer of an API may an-
notate its key operations with pre- and post-conditions that
describe the expected properties of QoS parameters (similar
to functional specifications in languages like Java [3] or
C# [2]). This specification could then be leveraged by a
static analysis tool to reason about the overall properties of
the application that makes use of the API; conversely, the
same specification may be leveraged by the API developer
to analyze its implementation for potential bugs.

Currently, in our approach, an API primitive throws an
exception when it fails to fulfill the given QoS requirements.

However, in certain use cases (especially those that involve
the control of safety-critical hardware), it may not be appro-
priate to rely solely on the client application to handle such
exceptions. Instead, in the case of an unexpected hardware
failure, the underlying platform may perform its own fault-
tolerant actions by, for example, enabling a backup hardware
device or disabling the application access to certain actuators.
More generally, it may be necessary to design the platform
with certain safety invariants that it must attempt to maintain
at all times, regardless of application requirements or the
status of hardware devices.

VI. CONCLUSION

Many modern ITS applications rely on various sensor
inputs, and sensor performance is being improved rapidly
to which those applications need to adapt accordingly. Fur-
thermore, the concept of sensors is further expanding with
the recent trend of connected vehicles. Any source, such as
another vehicle or road-side infrastructure, can play a sensing
role by providing useful information over the network. To
meet this trend, it is necessary to appropriately virtualize the
platform so that automotive applications can be developed in
an independent way. Our platform-independent QoS param-
eters allow applications to specify their own requirements
independently of a particular sensor. Then, the application
can use the proposed primitive APIs to communicate with
the platform and perform its operation according to the
specified QoS. As a result, the application can be easily and
systematically integrated with a wide range of sensor types
to assure the system-wide quality assurance. In the future, we
plan to extract more QoS parameters for connected vehicles
to facilitate the development of more intelligent applications.

REFERENCES

[1] AUTOSAR. AUTOSAR Adaptive Platform. https://www.

autosar.org/standards/adaptive-platform. [Online].
[2] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte,

and H. Venter. Specification and verification: the Spec# experience.
Commun. ACM, 54(6):81–91, 2011.

[3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML tools and
applications. STTT, 7(3):212–232, 2005.

[4] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachariadis.
The runes middleware: a reconfigurable component-based approach
to networked embedded systems. In 2005 IEEE 16th International
Symposium on Personal, Indoor and Mobile Radio Communications,
volume 2, pages 806–810 Vol. 2, Sept 2005.

[5] D. Gangadharan, J. H. Kim, O. Sokolsky, B. Kim, C.-W. Lin, S. Shi-
raishi, and I. Lee. Platform-based plug and play of automotive safety
features: Challenges and directions (invited paper). In 2016 IEEE 22nd
International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 76–84, Aug 2016.

[6] T. A. Henzinger and C. M. Kirsch. The embedded machine: Pre-
dictable, portable real-time code. ACM Transactions on Programming
Languages and Systems (TOPLAS), 29(6):33, 2007.

[7] A. A. Jerraya and W. Wolf. Hardware/software interface codesign for
embedded systems. Computer, 38(2):63–69, Feb 2005.

[8] B. Kim, L. Feng, L. T. X. Phan, O. Sokolsky, and I. Lee. Platform-
specific timing verification framework in model-based implementation.
In 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 235–240, March 2015.

[9] B. Kim, L. Feng, O. Sokolsky, and I. Lee. Platform-specific code
generation from platform-independent timed models. In 2015 IEEE
Real-Time Systems Symposium, pages 75–86, Dec 2015.

[10] B. Kim, L. T. X. Phan, O. Sokolsky, and L. Lee. Platform-
dependent code generation for embedded real-time software. In 2013
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), pages 1–10, Sept 2013.

[11] R. T. Marler and J. S. Arora. Survey of multi-objective optimization
methods for engineering. Structural and Multidisciplinary Optimiza-
tion, 26(6):369–395, Apr 2004.

[12] OASIS. MQTT version 3.1.1. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html, 2014. [Online].

[13] Object Management Group. DDS version 1.4.
http://www.omg.org/spec/DDS/1.4, 2015. [Online].

[14] D. C. Schmidt. Middleware for real-time and embedded systems.
Communications of the ACM, 45(6):43–48, 2002.

[15] TASS International. PreScan. https://www.

tassinternational.com/prescan. [Online].
[16] USDOT. Architecture reference for cooperative and intelligent trans-

portation.
[17] B. Zheng, C.-W. Lin, H. Yu, H. Liang, and Q. Zhu. CONVINCE:

a cross-layer modeling, exploration and validation framework for
next-generation connected vehicles. In Proceedings of the 35th
International Conference on Computer-Aided Design, ICCAD 2016,
Austin, TX, USA, November 7-10, 2016, page 37, 2016.

