
Robustification of Behavioral Designs against
Environmental Deviations

Changjian Zhang
Carnegie Mellon University

Pittsburgh, PA USA
changjiz@andrew.cmu.edu

Tarang Saluja
Swarthmore College
Swarthmore, PA USA

tsaluja1@swarthmore.edu

Rômulo Meira-Góes
The Pennsylvania State University

State College, PA USA
romulo@psu.edu

Matthew Bolton
University of Virginia

Charlottesville, VA USA
mlb4b@virginia.edu

David Garlan
Carnegie Mellon University

Pittsburgh, PA USA
dg4d@andrew.cmu.edu

Eunsuk Kang
Carnegie Mellon University

Pittsburgh, PA USA
eunsukk@andrew.cmu.edu

Abstract—Modern software systems are deployed in a highly
dynamic, uncertain environment. Ideally, a system that is robust
should be capable of establishing its most critical requirements
even in the presence of possible deviations in the environment.
We propose a technique called behavioral robustification, which
involves systematically and rigorously improving the robustness
of a design against potential deviations. Given behavioral models
of a system and its environment, along with a set of user-specified
deviations, our robustification method produces a redesign that
is capable of satisfying a desired property even when the
environment exhibits those deviations. In particular, we describe
how the robustification problem can be formulated as a multi-
objective optimization problem, where the goal is to restrict the
deviating environment from causing a violation of a desired
property, while maximizing the amount of existing functionality
and minimizing the cost of changes to the original design. We
demonstrate the effectiveness of our approach on case studies
involving the robustness of an electronic voting machine and
safety-critical interfaces.

I. INTRODUCTION

A fundamental activity in software engineering is establish-
ing the following relationship between requirements, domain
assumptions, and specifications [1], [2]:

M,E ⊢ P

That is, if the machine (e.g., software being developed) sat-
isfies its specification (M) and certain environmental assump-
tions (E) hold, then the desired requirement (P) must follow.

In practice, the environment rarely remains fixed, and often
deviates from its expected behavior over time, due to a fault
or a change in its operating conditions. For example, to ensure
safe treatment, a radiation therapy system may rely on assump-
tions about the order in which a therapist carries out various
actions (e.g., enter patient ID, set radiation settings) through
its clinical software interface. However, the therapist might
inadvertently make a mistake from time to time (e.g., omit or
repeat an action), and unless the system is explicitly designed
to tolerate these errors, safety failures might occur [3]–[5].
Similarly, a web protocol that is proven to be secure may

become vulnerable to attacks when some of its participants
deviate from the intended protocol steps [6], [7].

Ideally, a system that is robust would ensure that a critical
requirement is satisfied even under possible deviations in the
environment (e.g., protect patient from radiation overdose even
if the therapist commits an error). In our prior work [8], we
proposed a formal definition of robustness to enable a rigorous
design-level analysis. In this definition, a system (M) is said
to be robust with respect to some property (P) and some set
of environmental deviations (δ) if M is capable of satisfying
P under the environment (E′) that exhibits these deviations;
i.e., M,E′ ⊢ P (roughly, E′ = E⊕δ, where E is the original,
expected environment). Furthermore, given models of M and
E as labelled transition systems, we proposed a technique for
automatically computing the set of deviations against which
the system is (not) robust. The output of this analysis provides
information about how to redesign the system to be more
robust, although in [8], this step was left as a manual task
for the developer to perform.

In this paper, we propose a technique called behavioral
robustification as an approach to systematically improving
the robustness of a software system at the design stage. In
particular, given models of a system (M) and its environment
(E) specified as transition systems, along with a set of possible
deviations (δ), our approach robustifies M into a new design,
M ′, such that M ′ is capable of satisfying desired property
P even under those deviations. For example, given models
of a user interface for a radiation therapy system (M), the
expected therapist behavior (E), and a set of possible human
errors (δ), our robustification method constructs a redesign of
the interface, M ′, that prevents a safety failure (e.g., patient
overdose) even when the therapist commits one of those errors.

There are a number of technical challenges to overcome in
developing an effective robustification method. First, the space
of possible candidate redesigns (M ′) can be enormous, and
so an effective method must be able to efficiently search this
space. Second, not all of these redesigns may be desirable. If P
is a safety property (i.e., “something bad should not happen”),

1

then a redesign that simply disables all of the environmental
events is a trivial solution, but also not a useful one, as it would
disable existing system functionality. In addition, a redesign
that incurs a small cost of change is arguably more desirable
than one that drastically modifies the existing design.

To capture the desirability of a candidate redesign, we
introduce two types of quality metrics: (1) the amount of
common behavior with respect to the original design M , and
(2) the cost of change. Then, robustification becomes a multi-
objective optimization problem [9], where the goal is to find
a redesign M that preserves as much of the existing behavior
as possible while minimizing the cost of changes incurred.
In this paper, we describe a novel robustification method that
leverages techniques from supervisory control theory [10] to
automatically generate a set of optimal candidate redesigns.
As far as we are aware, our approach is the first to enable
automated robustification of designs that take into account
multiple quality metrics.

We have built a prototype implementation of our robustifi-
cation method and demonstrated its feasibility on three case
studies: (1) an electronic voting protocol, where the original
design was vulnerable to voter fraud [11], (2) a radiation
therapy interface, where the therapist error could result in a
safety failure, and (3) an infusion pump system, where possible
environmental deviations include not only therapist errors but
power failures. We show how our approach can be used to
automatically robustify these systems into ones that are robust
against the respective deviations.

The contributions of this paper are as follows:
• A formal definition of robustification and a formulation as

a multi-objective optimization problem over two quality
metrics for robustified designs, (Section IV);

• A novel approach to robustification that leverages super-
visory control theory (Section V);

• A set of heuristics for efficiently generating optimal
redesigns (Section VI), and;

• Three case studies that illustrate the feasibility of our
approach (Section VII).

II. MOTIVATING EXAMPLE

As a running example, consider a simplified design of an
electronic voting system, described in [12] and based on a real
system that was used in a 2010 election in Kentucky, USA.
During the election, the system was exploited by malicious ac-
tors, where they were able to commit voter fraud by modifying
the vote selection made by other voters [11].

The system consists of a touch-screen voting machine
named iVotronic1. Figure 1a shows a simplified model of the
machine (M) as a labelled transition system (LTS), where
labels on the edges represent events. In a typical scenario, a
voter is expected to interact with the machine by carrying out
the following actions:

• Enter password to verify their identity (password);
• Select the candidate of their choice (select);

1https://verifiedvoting.org/election-system/ess-ivotronic

(a) The voting machine M .

(b) The normative environment E (without the voter omission error in
red); and the deviated environment E′ (with the omission error). Event
prefixes eo and v correspond to the official and the voter, respectively.

Fig. 1: Models of the voting machine and the environment

• Proceed to the next step by pressing vote (vote) or return
to the previous step by pressing back (back);

• Complete the vote by confirming the selection (confirm)
or return to the previous step by pressing back (back).

The voting machine is placed inside a voting booth, and a
nearby election official is responsible for guiding voters to and
away from the booth. We assume that the voting booth can
be occupied by at most one person at a time. In addition, we
assume that some of the election officials may be politically
motivated or malicious, in that they have an intent to tamper
with or manipulate votes that are cast by other voters.

Figure 1b without the red labelled edge represents the
normative behavior of the environment E, which consists of a
(potentially malicious) election official and a voter. This model
shows the voter carrying out the voting process in the expected
order of events, first by entering the booth, entering a password
and desired candidate selection, and confirming the vote before
exiting. Note that the election official can also interact with
the machine, by entering the booth when it is empty.

Next, we describe a typical workflow that the system devel-
oper would follow in our proposed robustification approach.
(1) Analysis under the normative environment: Suppose
that the developer is concerned about potential voter fraud
and wishes to check the design of the machine against the
following integrity requirement:

For each voter, the voting system must record the
vote that was selected by that voter.

This type of system requirement can be specified as a safety
property [13], and existing analysis tools (such as model
checkers [14]) could be leveraged to check that the system
satisfies the property under the normative environment (i.e.,
M ||E |= P , where P is a specification of the property). Given
the specific M and E shown in Figure 1, an analysis tool
confirms that P indeed holds: Since only the voter is able to
enter the password, the official is unable to modify other votes.
(2) Analysis under the deviated environment: The developer
now wishes to check whether the same requirement holds even
when the voter begins to deviate from the expected behavior.

2

In particular, the developer is aware that certain populations
of voters may not be familiar with e-voting interfaces and
inadvertently commit errors from time to time, such as omit-
ting to confirm the vote selection before exiting the voting
booth (also called a post-completion error [15]). This deviation
(δ) is specified by augmenting the original model E with an
additional transition (omit confirm), resulting in a new model
of the environment (i.e., E′ = E⊕ δ), as shown in Figure 1b.

A re-analysis of the same integrity requirement (P) under
this new environment reveals that the property no longer holds
(i.e., M ||E′ ̸|= P). A counterexample depicts the following
scenario in the system: After pressing vote, the voter exits the
booth without confirming; the election official then enters the
booth, presses back twice to go back to the selection screen,
selects the candidate of their own interest, and then completes
the rest of the voting process—resulting in a possibly incorrect
vote being recorded for the voter (i.e., a violation of P). This
scenario depicts the actual voter fraud that was committed by
election officials during the aforementioned Kentucky election
(which ultimately led to arrests of co-conspirators [11]).
(3) Robustification: Based on the result of the analysis in
Step (2), the developer wishes to robustify the existing design
against possible deviations; i.e., it becomes capable of ensuring
P even under the deviated environment. However, given a
large number of ways in which M can be modified, it would be
too costly and time-consuming for the developer to construct
and check candidate redesigns manually. Instead, the developer
can use our tool to perform the following robustification task:

Given system design M , environment E, deviations
δ, and property P such that M ||E′ ̸|= P for deviated
environment E′ = E ⊕ δ, construct a redesign M ′

such that M ′||E′ |= P .

Not every solution to this problem, however, may be desirable
to the developer. For example, one possible way to robustify
M is to remove all of the back transitions; this way, the
election official would be prevented from changing the vote
that was already cast by the voter, thus ensuring that the new
design satisfies the integrity requirement. However, this design
is also undesirable, in that it also removes the ability for the
voter to modify their vote by pressing back.

To enable generation of more “desirable” solutions, we
consider two quality metrics for candidate redesigns: (1) the
solution should retain the behavior of the original design as
much as possible, and (2) the solution should incur minimal
cost of change. Then, the above task can be rephrased as the
following optimization problem:

Given design M , environment E, deviation δ, and
property P , for E′ = E⊕ δ, construct M ′ such that
M ′||E′ |= P , and M ′ maximizes common behavior
with M and minimizes cost of change.

In the following sections, we formally define the robustifica-
tion problem and a notion of optimal redesigns in terms of the
above quality metrics. We then present a method that leverages
supervisory control theory [10] to generate optimal redesigns.

III. PRELIMINARIES

A. Labelled Transition System

A labelled transition system (LTS) T is a tuple
⟨S, αT,R, s0⟩ where S is a set of states, αT is a set of events
called the alphabet of T , R ⊆ S × αT ∪ {τ} × S defines the
state transitions (where τ is a designated event that is unob-
servable to the system’s environment), and s0 ∈ S is the initial
state. An LTS is non-deterministic if ∃(s, a, s′), (s, a, s′′) ∈
R : s′ ̸= s′′ or ∃(s, τ, s′) ∈ R; otherwise, it is deterministic.
An event a ∈ αT is enabled at state s ∈ S if ∃(s, a, s′) ∈ R;
otherwise, a is disabled at s.

A trace σ ∈ αT ∗ of LTS T is a sequence of observable
events from the initial state. Then, the behavior of T is the set
of all the traces generated by T and is denoted beh(T).

1) Operators: For LTS T = ⟨S, αT,R, s0⟩, the projection
operator ↾ exposes a subset of the alphabet of T . Given T ↾
A = ⟨S, αT ∩ A,R′, s0⟩, for any (s, a, s′) ∈ R, if a /∈ A,
then (s, τ, s′) ∈ R′; otherwise, (s, a, s′) ∈ R′. The ↾ operator
also applies to traces; σ ↾ A denotes the trace that results
from removing the occurrences of every event a /∈ A from σ.
The parallel composition || is a commutative and associative
operator that combines two LTSs by synchronizing on their
common events and interleaving the others [16].

2) Properties: In this work, we consider a class of proper-
ties called safety properties [13], which define the acceptable
behaviors of a system. A safety property P can be represented
as a deterministic LTS, and we say that an LTS T satisfies P
if and only if beh(T ↾αP) ⊆ beh(P).

We also consider another class of properties called progress
properties, which are a restricted subset of liveness properties
[13]. A progress property L ⊆ αT states that the system must
eventually be able to execute a ∈ L along all paths [17].

B. Supervisory Control

Our proposed robustification approach leverages techniques
from an area of control theory called supervisory control [10].
Supervisory control assumes an “uncontrolled” system (also
called plant) for which a desired property needs to be enforced.
The premise is that the plant may not satisfy the property on its
own, and it needs to be “controlled” by restricting its behavior
to a subset of its original behavior. This modification is done
by a component named supervisory controller.

Given a deterministic LTS G as the model of a plant that
needs to be controlled, a controller S for G is a function that
maps any trace in beh(G) to a subset of events in αG, i.e.,
S : beh(G) → 2αG. Then, given a trace σ ∈ beh(G), S(σ)
defines the set of events that G is allowed to perform after σ.

A typical controller S has limited actuation and sensing
capabilities. These limited capabilities are described by the
pair of partitions of αG: (1) αGc and αGuc, which represent
the sets of controllable and uncontrollable events; and (2)
αGo and αGuo, which represent the sets of observable and
unobservable events. Intuitively, a controller only perceives
events in αGo and can only disable events in αGc. Then, we
formally define a controller as follows:

3

Definition 3.1: A supervisory controller is a function S :
beh(G↾αGo) → 2αG s.t. ∀σ ∈ beh(G↾αGo) : αGuc ⊆ S(σ).
The control enforced by a controller can change only after
some observable event occurs. Also, in this paper, we assume
that every controllable event is observable, i.e., αGc ⊆ αGo.

A controller S can also be represented as a deterministic
LTS, where given trace σ ∈ beh(G), only events in S(σ)
are enabled at the state reached after executing σ. In the
following sections, unless explicitly specified, S refers to the
LTS representation of a controller. Then, the behavior defined
by applying a controller S to G (i.e., plant under control) can
be represented by beh(S||G).

Finally, the goal of supervisory controller synthesis is to
find a controller S over plant G to achieve property P :

Definition 3.2: Given plant G with controllable events αGc

and observable events αGo, αGc ⊆ αGo, and property P , a
controller synthesis problem C(G,P, αGc, αGo) searches for
a minimally restrictive controller S such that S||G |= P .

Supervisory control theory provides algorithmic techniques
for computing a controller; more details can be found in [10].

IV. ROBUSTIFICATION PROBLEMS

A. Basic Robustification Problem

Let us first introduce the concepts of a deviation model and
the augmentation operator ⊕. A deviation model describes
how the environment may deviate from its original behavior,
in terms of additional transitions, states, or events:

Definition 4.1: Given an LTS T = ⟨S, αT,R, s0⟩ and a
deviation model δ = ⟨Sδ, αδ,Rδ⟩, where S ⊆ Sδ , αT ⊆
αδ, and Rδ ⊆ Sδ × αδ × Sδ , the augmentation operator ⊕
augments T by adding states and transitions to it, i.e., T⊕δ =
⟨Sδ, αδ,R ∪Rδ, s0⟩, and beh(T) ⊆ beh(T ⊕ δ).

For example, in Figure 1b, to model the deviation from
the expected voter behavior, the original environment model
is augmented with an additional transition over a new event,
omit confirm ∈ αδ \ αT , from state s4 to s5.

One might also consider deviations that involve removing
behaviors from the environment (i.e., remove transitions or
states). In this paper, we focus on adding behaviors only, as
we believe that it already captures a large and interesting class
of deviations where the environment exhibits behaviors beyond
those captured in its original model (e.g., security attacks,
human errors, etc., [8]). A deviation model that integrates both
adding and removing behaviors is part of our future work.

Then, the task of robustifying a design is defined as follows:
Definition 4.2 (Robustification): Given system M , envi-

ronment E, a deviation model δ, and property P such that
M ||E |= P , the goal of robustification, Rb(M,E, δ, P), is to
find an LTS M ′ such that for E′ = E ⊕ δ, M ′||E′ |= P .

Property P can be a combination of safety and progress
properties. A safety property defines the unsafe behavior
that should be avoided. However, it is possible to have an
overly restrictive M ′ that satisfies the safety property, but does
nothing “meaningful”. Recall the voting example in Section II;
we could disable all confirm events, but this solution would
also prevent voters from being able to confirm their votes.

A progress property can be specified to avoid such “useless”
solutions by requiring that confirm can eventually occur.

B. Quality Metrics for Robustified Designs

In general, there may be a large number of possible solutions
(i.e., M ′) to the above problem, but some of them may
be considered more desirable than others. We consider two
desirable qualities of a robustified design: (1) the redesign
should retain as much of the important functionality from the
original design as possible, and (2) the cost of modifying M
to M ′ should be small. Let us further elaborate on these two:

1) Common Behavior: To define the first quality, we intro-
duce the notion of preferred behavior. A preferred behavior
D is an execution trace and represents an operational scenario
that the developer wishes for machine T to contain2, i.e.,
D ∈ beh(T ↾ αD). Then, maximizing the common behavior
between the original design M and the new design M ′ can
be formulated as maximizing the number of D’s such that
D |= M ||E and D |= M ′||E′. Formally:

Definition 4.3 (Preferred Behaviors): Given a set of pre-
ferred behaviors D = {D1, D2, . . . , Dn}, we state D |= T

for some LTS T if and only if
∧

Di∈D
Di |= T .

Moreover, the developer may associate each scenario Di

with a different importance value. Then, we can quantitatively
measure the amount of common behavior achieved by M ′ in
terms of the total importance value of the subset of preferred
behaviors D′ ⊆ D that is retained by M ′||E′.

2) Cost of Changes: The second type of quality that we
introduce is the cost of change between the original and new
design. One way to measure the cost would be in terms of
syntactic differences between M and M ′, e.g., the number
of changes to states and transitions. However, these syntactic-
based changes in LTS do not necessarily reflect the actual cost
of redesign effort.

Instead of syntactic changes to an LTS, our intuition is that
the cost of redesign can be better approximated by the set of
environment and system events that are observed or controlled
by the system for the purpose of robustification. Intuitively,
to make the system more robust, one may need to place an
additional sensor to observe a part of the environment (e.g.,
add an ID scanner to observe {v, eo}.enter, {v, eo}.exit) or
modify an existing actuator to disable a particular event under
certain situations (e.g., make the confirm button toggleable).

More precisely, the developer can designate a pair of event
sets, A = (Ac, Ao), where Ac,Ao ⊆ αE ∪ αM , that are
controllable and observable, respectively, for the purpose of
robustification. Furthermore, each event in A can be associated
with a cost measure to reflect the effort of implementing an
actuator or a sensor to control or observe (respectively) that
event in the real world. This, in turn, allows us to measure the
total cost of changes as the sum of the individual costs of the
events in A that are used to robustify the system.

2We denote this as D |= T , based on the interpretation of |= as trace
inclusion, where αD refers to the events in trace D.

4

(a) Redesign by disabling back.

(b) Redesign by observing additional events eo.{enter,
exit} and controlling confirm as needed.

Fig. 2: Alternative ways to robustify the voting machine.

3) Example: Consider two alternative ways to redesign the
voting machine, as shown in Figure 2. In solution (a), we
remove all the back events, to prevent the vote from being
changed. Alternatively, in (b), we add eo.enter and eo.exit
events to the system model so that the machine can keep track
of who is in the voting booth and disable confirm depending
on the context (e.g., if the election official has entered the
booth).

In terms of preserving behavior of the original design, the
developer may decide that being able to select and then go
back is an essential operation that should be retained, since it
is crucial for the voter to be able to change their vote. Then,
the developer could specify trace ⟨select, back⟩ as a preferred
behavior, to assert their preference for its inclusion in the
redesign M ′. It’s easy to see that solution (a) does not satisfy
this preferred behavior but (b) does.

In terms of the cost of changes, both solutions require
adding or removing states and transitions to LTS M , but it
may be inaccurate to conclude that one is less “costly” than
another simply because it requires fewer syntactic changes.
Solution (a) may involve removing all the back buttons from
the user interface (costly if the development of the interface
was outsourced to another company, for example). On the
other hand, the second solution may require extending the
voting machine with an ID scanner to determine the identity.

C. Optimal Robustification Problem
Given a robustification problem Rb(M,E, δ, P), preferred

behavior D, and modifiable events A, let R⃗ = ⟨M ′,D′,A′⟩ be
a solution such that it satisfies a subset of preferred behaviors
D′ ⊆ D using a subset of events A′ = (A′

c,A′
o) where A′

c ⊆
Ac and A′

o ⊆ Ao. We define the following objective function:

U⃗(R⃗) = ⟨UD(R⃗), UA(R⃗)⟩

• UD(R⃗) =
∑

Di∈D′

ud(Di) is the amount of utility gained

from fulfilling the preferred behavior, and

• UA(R⃗) =
∑

ac∈A′
c

uc(ac) +
∑

ao∈A′
o

uo(ao) is the total cost

of events used to redesign M .
The utility function, u = (ud, uc, uo), assigns different degrees
of importance to preferred behaviors and implementation costs
to events. Note that ud(Di) returns a positive integer whereas
uc(ac) and uo(ao) are non-positive, to reflect the positive and
negative impact of preferred behavior and cost, respectively.

Intuitively, using a larger set of events to modify M allows
a more fine-grained control over the behavior of the machine,
which can help maximize the preferred behavior (i.e., larger
UD(R⃗)). However, modifying more events also leads to a
higher cost (i.e., larger negative value of UA(R⃗)). Thus, the
problem becomes a multi-objective optimization problem that
attempts to generate a solution that maximizes these two
conflicting objectives [9]. Formally, this optimization problem,
denoted Opt(Rb,D,A), is defined as follows:

Definition 4.4 (Optimal Robustification): Given a robusti-
fication problem Rb, a set of preferred behaviors, D (where
D |= M ||E), and a set of available events for modification,
A, the goal of Opt(Rb,D, A) is to find one or more solutions
R⃗ = ⟨M ′,D′,A′⟩ such that M ′ is a solution to problem Rb,
D′ |= M ′||E′, and R⃗ maximizes the objective function U⃗ .

Fig. 2 illustrates the trade-off between the amount of pre-
ferred behavior retained and the cost of change. Solution (b)
retains more behavior than solution (a) does but also incurs
potentially higher implementation costs (identity check versus
UI upgrade). In general, the developer may wish to examine
and consider multiple such solutions before selecting the
final redesign. Next, we describe an algorithm that leverages
supervisory control synthesis to generate a set of alternative
Pareto-optimal redesigns [18].

V. OPTIMAL ROBUSTIFICATION METHOD

We present a method for solving the optimal robustification
problem (Defn. 4.4). We first describe an approach for solving
the basic robustification problem (Defn. 4.2) using supervisory
control, and then present an algorithm that builds on this
basic method to generate all Pareto-optimal solutions to the
optimization problem, Opt(Rb,D,A).

A. Basic Robustification as Supervisory Control

The task of robustifying a system can be reduced to the
supervisory controller synthesis problem as follows:

Theorem 5.1: Given machine M , environment E, deviation
δ, property P , and a set of controllable αGc and observable
events αGo, where αGc ⊆ αGo ⊆ αG, let S be a solution
to the controller synthesis problem C(G,P, αGc, αGo), where
G = M ||E′, E′ = E ⊕ δ. Then, M ′ = S||M is a solution
to the robustification problem Rb(M,E, δ, P), where αM ′ =
αM ∪ αGc ∪ αGo.

The intuition behind the reduction is as follows: Since M is
not capable of ensuring P under the deviated environment E′,
their overall composition, G = M∥E′, itself can be treated as
a plant that can behave undesirably (i.e., violates P) and thus
needs to be controlled. The resulting controller, S, describes

5

TABLE I: The priority categories for preferred behavior and
modifiable events. Priority 0 is used for events with no cost
and does not apply to preferred behavior.

0 1 2 3

Behavior - Minor Important Essential
Event No Cost Cheap Moderate Costly

how the interactions between M and E′ should be further
restricted to ensure P . Thus, composing M and S amounts to
augmenting M with the additional control logic in S to ensure
P even under the deviation δ.

Our approach also relies on the fact that supervisory control
synthesis, by default, generates the minimally restrictive con-
troller (Defintion 3.2), which facilitates the goal of retaining
as much behavior from the original design as possible.

Theorem 5.2: Given an optimal robustification problem
Opt(Rb,D,A) and a corresponding controller synthesis prob-
lem C(G,P, αGc, αGo), supervisory controller synthesis gen-
erates a controller S s.t. M ′ = S||M satisfies the maximal
possible D′ ⊆ D for αGc and αGo.

B. Priority-Based Utility Function

The utility function u, introduced in Section IV-C, can be
defined in several possible ways. We present one definition
that assigns utility values based on priorities among preferred
behaviors and modifiable events: Given optimization problem
Opt(Rb,D,A = (Ac,Ao)), the developer assigns priorities to
the elements of D, Ac, and Ao. We provide a default set of
priority categories as shown in Table I; in general, the priorities
can be configured with other user-defined categories.

In Table I, (1) a preferred behavior with a higher priority
indicates that it is more critical to a system (i.e., greater
utility), and (2) a controllable or observable event with a
higher priority means that it is more costly (greater cost).
Formally, let HD be the function that returns the priority of a
given preferred behavior; similarly, Hc and Ho specify prior-
ities for the controllable and observable events, respectively.
Then, the overall utility function u = (ud, uc, uo) is defined
as follows: ud(x) = W (HD(x)), uc(x) = −W (Hc(x)),

uo(x) = −W (Ho(x)), and W (i) = 1 +

i−1∑
k=0

W (k) · |Hk|,

where |Hk| is the number of preferred behaviors and events
with priority k, and W (0) = 0.

This approach to defining utility is called the lexicographic
method [9]. With these rules, the cost of making some event
controllable or observable is assigned the negative utility value
of fulfilling some preferred behavior in the same priority
bracket. Also, these rules prioritize saving a cost or fulfilling
a preferred behavior in a particular priority bracket over
incurring any costs or gaining any utilities with a lower
priority. As discussed later in Section VI-A, this enables our
algorithm to search in the order of higher-to-lower priorities.

For example, in the voting system, we can define operation
sequence “select and then back” as an Essential preferred
behavior because it is crucial for the voter to be able to change

Fig. 3: Overview of NAIVEPARETO for multi-objective search.

their selection. Moreover, one might specify that observing
enter and exit events has Moderate cost; however, it could
be Costly to make them controllable, as doing so requires
additional mechanisms to control who enters the voting booth.

C. Algorithm for Multi-Objective Optimization

Figure 3 outlines the process for finding Pareto-optimal
solutions, called NAIVEPARETO. At high-level, it employs a
top-down, enumerative search approach, where it (1) searches
for a solution that fulfills a subset of preferred behaviors
D′ ⊆ D at the lowest cost possible for D′ and (2) iteratively
reduces D′ to find other Pareto-optimal solutions.

In Step (1), NAIVEPARETO starts out by synthesizing a
controller (Smax) that has access to all of the user-specified
controllable and observable events (Ac and Ao). Then, in
Step (2), we check whether Smax||M satisfies each preferred
behavior D ∈ D. Since this is the most “powerful” controller,
based on Theorem 5.2, it fulfills the maximal subset of the
user-specified preferred behaviors (Dmax), while also being
the most costly solution.

In Steps (3)-(4), NAIVEPARETO incrementally removes
elements from Dmax in the order of utility values to find
solutions with a lower cost. For example, consider Dmax =
{D1, D2, D3} where ud(D1) = ud(D2) < ud(D3); at itera-
tion i = 0, it removes ∅ from Dmax; then, at iteration i = 1,
it tries to find a solution from two D′s by removing {D1} and
{D2}, respectively; then, at i = 2, it removes {D1, D2}, etc.,
terminating after exploring all the subsets of Dmax.

In Step (4), at iteration i with D′
i ⊆ Dmax, it enumerates

all combinations of controllable and observable events except
those where αGc ⊈ αGo (which violates our assumption in
Theorem 5.1) and attempts to synthesize a controller for each
combination. The goal is to find a controller (if one exists) that
fulfills D′

i at the lowest possible cost; if such a solution exists
and is not dominated by any existing solutions, it is stored as
one of the Pareto-optimal solutions, to be returned as the final
output. It then goes back to Step (3) for the next iteration.
Complexity. The complexity of NAIVEPARETO comes from
two tasks: 1) searching all possible combinations of preferred
behaviors and events, and 2) controller synthesis. For (1), the
complexity is O(2|D|+|A>0|) where A>0 is the subset of A
with a non-zero cost. For each combination, the algorithm
solves a controller synthesis problem, which is in general

6

Fig. 4: Illustration of the heuristics in SMARTPARETO.

a hard problem (NP-hard) [19], [20]. Thus, the worst-case
complexity can be approximated as O(2|D|+|A>0|+N) where
N is the number of states of the plant, M ||E′.

VI. HEURISTICS FOR MULTI-OBJECTIVE SEARCH

Given the inherent complexity and the brute-force nature
of the algorithm, NAIVEPARETO is unlikely to scale to larger
models. We present two improved versions of the algorithm:
SMARTPARETO and LOCALSEARCH.

A. SMARTPARETO: Searching with Pruning Strategies

SMARTPARETO is a variant of NAIVEPARETO that lever-
ages the following set of strategies for pruning the search
space, based on insights about supervisory control synthesis:

1) Removing unnecessary events: By analyzing Smax, we
can extract αGu and αGun that indicates the set of con-
trolled/observed events and unused events, respectively. For
any event a ∈ αGun, we can remove it from further searches
if its cost is greater than the total cost of events in αGu. Since
we know that αGu forms a valid solution, then any solution
with event a would always have a higher cost and thus, there
is no need to search for them. Similar reduction of a controller
can be found in [21] but without the consideration of cost.

2) Minimizing cost in the order of event priority: Because
of the strict ordering property of the lexicographic method,
we can always remove high priority events before low priority
ones. For a combination of events, if removing a high priority
event generates a valid solution, then removing a lower priority
event from it cannot generate a solution with a lower cost.

3) Pruning invalid combinations: When a combination of
events produces no controller (i.e., cannot satisfy the property)
or violates some D′, SMARTPARETO can stop minimizing
from this combination. This is because removing events from
such a combination would further limit the behavior of the
controller, which would certainly result in an invalid solution.

For example, in Figure 4, SMARTPARETO first generates
Smax with events {a, b, c, d}. By analyzing Smax, we know
that {a, b, c} forms a valid solution and {d} is not used. Since
d’s cost is higher than the total cost of {a, b, c}, we don’t need
to search for any combinations with d (Heuristic 1). Then, to
minimize {a, b, c}, it first removes event b and c respectively
before a because if {a, b} or {a, c} generate a valid solution,
then we don’t need to search from {b, c} as we cannot find
a lower cost solution from it (Heuristic 2). Finally, if {a, c}

is an invalid solution, its followed set {a} and {c} are also
invalid; thus, they do not need to be searched (Heuristic 3).

As demonstrated in Section VII, these heuristics improve the
performance of search by significantly reducing the number of
synthesis calls while still guaranteeing the Pareto-optimality.

B. LOCALSEARCH: Finding Locally Optimal Solutions

As a further improvement to SMARTPARETO, we present
another algorithm called LOCALSEARCH that gives up the
Pareto-optimality as a trade-off for improved performance.

LOCALSEARCH is similar to NAIVEPARETO but replaces
the minimizing process in Step (4) of Figure 3. At iteration
i with D′

i, instead of enumerating every possible combination
of events, it incrementally removes one event at a time (high
priority events before low priority events) from the given event
set if removing that event would still generate a controller and
retain D′

i. The result is a local-optimal solution w.r.t. D′
i, i.e.,

removing any event from it would produce no controller or
violate D′

i. However, it does not guarantee the cost to be the
minimal and thus is not necessarily Pareto-optimal.

For example, consider events {a, b, c, d} where u(a) =
u(b) = u(c) < u(d). LOCALSEARCH first removes event d
and checks whether a valid solution exists. Then, it arbitrarily
selects one of a, b, or c to be removed since they have the
same cost. Suppose it removes c and finds that removing either
a or b after that would result in an invalid solution; then,
LOCALSEARCH returns {a, b} as a solution. This is locally
optimal but not necessarily Pareto-optimal, since {c} might
also allow a valid solution, and has a lower cost than {a, b}.
Complexity. The complexity of LOCALSEARCH becomes
O(|A>0| ·2|D|+N). Compared to NAIVEPARETO and SMART-
PARETO, it requires much fewer synthesis instances and thus is
more efficient. Although it finds only local-optimal solutions,
our evaluation in Section VII suggests that these solutions are
often good enough compared to Pareto-optimal solutions.

VII. EVALUATION

We present an evaluation of our robustification approach on
three case studies. We focus on two research questions:

RQ1 (Scalability): How well do our robustification algo-
rithms scale? Do the heuristics in SMARTPARETO improve the
performance of NAIVEPARETO? How does LOCALSEARCH
compare against the two?

RQ2 (Quality of robustification): How does our robusti-
fication approach compare to other existing methods in terms
of the quality of the generated solutions?

Our tool3, called FORTIS, builds on two existing tools:
LTSA, a modeling and analysis tool based on a process
algebra called FSP [17], and Supremica [22], a state-of-the-
art supervisory controller synthesis tool. FORTIS uses LTSA
for specifying and verifying system and environment models,
and Supremica to perform controller synthesis as part of the
robustification algorithms. Our experiments were conducted
on a Linux machine with a 3.6GHz CPU and 16GB memory.

3Available at: https://github.com/cmu-soda/Fortis

7

Fig. 5: A model of a radiation therapy system.

A. Electronic Voting Machine

Recall the voting example described in Section II, with the
following safety property: the voting machine must record the
vote that was selected by that voter. We also impose a progress
property that event confirm can eventually take place.
Preferred behaviors and events. In our experiment, we
defined the following preferred behavior:

• D1 (Essential): The voter should be able to change their
vote by performing select, back, select, vote, confirm.

We assigned NoCost for observing all the internal events of the
voting machine but Cheap cost for controlling them. We also
specified that making {v, eo}.enter and {v, eo}.exit observable
has Moderate cost and making them controllable is Costly. In
practice, these costs might manifest as adding an ID scanner
to determine who is entering or exiting (for observability) or a
more costly security mechanism (e.g., an enclose booth with
a machine-controlled door) to control entry into the booth (for
controllability).
Results. With SMARTPARETO, FORTIS returns 16 Pareto-
optimal solutions. As an example, one of them requires
observing eo.{enter, exit} and controlling confirm. It observes
the official entering and exiting, and disables confirm when
the official changes the vote. In addition, the LOCALSEARCH
method returns one of the Pareto-optimal solutions.

B. Radiation Therapy System

Consider a radiation therapy machine described in [8],
similar to the Therac-25 machine that exposed several patients
to overdose [3]. The components of the system (Figure 5) are
the treatment interface (MI) that defines how the operator
controls the machine, the beam setter (MB) that determines
the mode of radiation (electron beam vs stronger X-ray), and
the spreader (MS) that limits dose during the X-ray mode.
The overall system model (M) is given as MB ||MI ||MS .
Deviations. Consider the normative environment E for a
therapist to treat a patient under the electron-beam mode: The
user presses E, Enter, and then B to fire the beam. Then, we
consider a deviation where the user erroneously selects the
X-ray mode. The resulting deviated environment (E′) allows
behavior where the therapist presses X, Up to go back, E to
select the electron beam, Enter to confirm, and finally B to

fire. However, it could be that the beam setter is still in the
process of switching (in state ToEbeam in MB); if the beam
is fired before it is fully switched, the patient could be given
a much higher level of dose (X-ray) than intended.

We consider (1) a safety property stating that the X-ray
beam does not fire until the spreader is in-place and (2)
a progress property that FireXray and FireEBeam should
eventually occur, to ensure that the machine will still be
capable of carrying out treatments even after robustification.
Preferred behaviors and events. We defined the following
preferred behaviors:

• D1, D2 (Essential): The user can select X/E and then Up
to change the mode and fire the beam.

• D3, D4 (Important): The user can perform ⟨Up,Up⟩ after
having pressed Enter to change the mode and fire.

D1 and D2 state that it is Essential to allow the user to switch
the beam in case the wrong one was accidentally selected.
Since it is less likely for the user to select the wrong beam
and then press Enter without noticing the mistake, D3 and D4

are assigned a lower priority of Important.
We assigned NoCost for observing the events of the therapy

machine, which are: X, E, Enter, Up, B, FireXray, FireEBeam,
and Set. Then, we assigned NoCost to control FireXray,
FireEBeam, and Set but Cheap to control X, E, Enter, Up,
and B to reflect the cost of upgrading the user interface for
controllability (e.g., by disabling those buttons contextually).
Results. Running FORTIS with SMARTPARETO generated two
Pareto-optimal solutions. One solution involves (1) disabling B
when the system is in X-ray mode and the spreader is out-place
and (2) re-enabling B when the mode switching is completed
by observing Set. This solution is similar to the manually
devised one in [8]. In addition, LOCALSEARCH finds the other
Pareto-optimal solution which disables Enter instead of B.

C. Infusion Pump

The goal of this case study is to apply our tool to a
system that is considerably more complex than the other two.
Consider an infusion pump machine (M) that is used to
dispense a certain dose of medication through tube lines that
are connected to a patient, based on the machine described
in [23]. The machine is connected to a power system (EP) with
an alarm and a built-in battery which will be charged when
the power cable is plugged in. When the cable is unplugged
during operation, the power system automatically switches to
the battery mode; and when the battery goes low, it rings
the alarm to notify the nurse (EN). We consider the infusion
pump as the machine (M), and the overall behavior of the
environment is given as E = EP ||EN .
Deviations. We consider a deviation that may occur in the
workflow of a nurse (EN). Normally, the nurse plugs in
the cable and starts the machine; then, the nurse sets up
the medication rate, starts the dispensation, and waits for its
completion. However, a deviation is that the user accidentally
unplugs the cable while the pump machine is still dispensing
the medication. In one possible scenario (allowed by E′), the
battery goes low and the user fails to notice the alarm; then,

8

the machine continues dispensing even when the power fails.
This might cause serious medical accidents, such as overdose.

We consider (1) a safety property that if the machine loses
power during medicine dispensation, it should discontinue the
dispensation and (2) a progress property that the dispensation
must be able to eventually complete.
Preferred behaviors and events. In our experiment, we
specified the following two preferred behaviors:

• D1 (Essential): The user should be able to turn on
the machine, start and wait for the completion of a
dispensation, and then turn off.

• D2 (Essential): The user should be able to resume a
dispensation from a power failure.

We define all the machine events to incur NoCost to observe.
Environmental events like plug in and battery charge are
Costly to observe, except for power failure, which is made
unobservable. All the machine events are free to control except
events like turn on and turn off, which are assigned Moderate
as they might require modifying the UI. Environmental events
like plug in are Costly to control, and physical events like bat-
tery spent and power failure are uncontrollable. The details
of the cost assignment can be found in the online repository.
Results. Running SMARTPARETO generated one Pareto-
optimal solution. This solution disables the dispensation when
the machine is unplugged; it then re-enables it after the
machine is plugged in and the battery is charged. The LO-
CALSEARCH method found the same Pareto-optimal solution.

D. Experimental Results

1) RQ1 (Scalability): Table II summarizes the performance
of NAIVEPARETO, SMARTPARETO, and LOCALSEARCH over
the case studies. For scalability evaluation, we also tested them
over larger variants of Voting (by increasing the number of
voters) and Infusion Pump (by adding a dispensation line).

It can be seen that NAIVEPARETO requires a large number
of synthesis calls and times out on the Voting-2,3,4 and Pump-
2 problems. In comparison, our heuristics for pruning the
search space in SMARTPARETO are effective in reducing the
number of synthesis calls, resulting in a significant perfor-
mance improvement over NAIVEPARETO.

The LOCALSEARCH method further improves on the perfor-
mance by giving up on the Pareto-optimality of the generated
solutions. As shown in the case studies, LOCALSEARCH often
finds a solution that is the same or close to Pareto-optimal
solutions, and thus we believe that this is an acceptable com-
promise between performance and qualities of the redesigns.

The table also shows that controller synthesis is the key
bottleneck. The time to solve one synthesis instance and the
size of the solution space grow quickly with the increasing
size of the plant. Moreover, for the same problem, the syn-
thesis becomes harder to solve when fewer controllable and
observable events are provided (when minimizing the cost). In
the future, we plan to explore alternative synthesis techniques,
such as GR(1) reactive synthesis [24]–[26],

TABLE II: Times for generating an optimal solution.

|D| |A>0| |M ||E′| Space∗ #Syn.† Au
§ Time‡

Voting-1-N∗∗

1 13 12 6x107
2,576 (1, 7) 25.24s

Voting-1-S 195 (1, 7) 3.68s
Voting-1-L 9 (1, 7) 0.54s

Voting-2-N
1 19 25 4x1013

- - T/O
Voting-2-S 424 (1, 10) 9.23s
Voting-2-L 14 (1, 11) 1.14s

Voting-3-N
1 24 32 1x1017

- - T/O
Voting-3-S 364 (1, 12) 31.04s
Voting-3-L 17 (1, 14) 4.69s

Voting-4-N
1 29 39 6x1020

- - T/O
Voting-4-S 754 (1, 14) 6m04s
Voting-4-L 20 (1, 17) 28.31s

Therapy-N
4 5 21 1x109

32 (4, 8) 0.98s
Therapy-S 32 (4, 8) 1.02s
Therapy-L 6 (4, 8) 0.56s

Pump-1-N
2 12 104 3x1035

2,304 (7, 14) 1m04s
Pump-1-S 99 (7, 14) 4.85s
Pump-1-L 13 (7, 14) 1.47s

Pump-2-N
4 16 760 6x10234

- - T/O
Pump-2-S - - T/O
Pump-2-L 17 (14, 25) 12.47s
∗ The approximate size of the search space O(2|D|+|A>0|+|M||E′|).
∗∗ -N, -S, and -L stand for NAIVEPARETO, SMARTPARETO, and LO-

CALSEARCH, respectively.
† The number of controller synthesis instances invoked.
‡ All runs have a 10 minutes timeout.
§ No. of controllable and observable events used for robustification.

2) RQ2 (Quality of robustification): We compared the
quality of redesigns generated by our solutions to those by
other approaches for robustifying behavioral models.
OASIS. As far as we know, our definitions of robustification
problems and related qualities (in Section IV) are new, and
there is no existing tool that is directly comparable. However,
one existing work that is close to ours is OASIS by Tun et
al. [12]. Although they do not explicitly mention robustness,
their goal is similar, in that it aims to revise a machine (M) to
fulfill a security requirement (P) in an environment (E) where
some of the users might deviate from their expected behavior.

Like our approach, OASIS also leverages controller syn-
thesis to generate designs that satisfy a property. However,
OASIS and FORTIS differ in the way they generate and
explore alternative designs: OASIS uses an abstraction-based
technique that allows changing the sequencing of actions in
the machine to generate alternative designs, while FORTIS
allows additional events to be observed or controlled by the
redesigned machine.

We note that OASIS is not designed to optimize for the
two quality goals. Our comparison is not intended to show
FORTIS is superior, but rather that if these quality goals are
of importance to the developers, FORTIS may be the preferred
method.
Vanilla Supervisory Control. We also compare FORTIS to a
vanilla approach that utilizes supervisory controller synthesis
to generate robustified designs without considering the two
qualities (i.e., it solves the basic robustification problem).
Experiment. Since no tool for OASIS was publicly available,

9

TABLE III: Comparison results.

Vanilla OASIS FORTIS-LOCAL

Sol.∗ Au Time Sol. Au Time Sol. Au Time

Voting-1 × (5, 5) 0.30s ⊘ (5, 5) 0.45s ✓ (1, 7) 0.54s
Voting-2 × (7, 7) 0.36s × (7, 7) 3.66s ✓ (1, 11) 1.14s
Voting-3 × (8, 8) 0.58s × (8, 8) 23.00s ✓ (1, 14) 4.69s
Voting-4 × (9, 9) 1.30s × (9, 9) 4m13s ✓ (1, 17) 28.31s
Therapy ✓ (8, 8) 0.35s ✓ (8, 8) 0.37s ✓ (4, 8) 0.56s
Pump-1 × (13, 13) 0.42s ⊘ (13, 13) 1.04s ✓ (7, 14) 1.47s
Pump-2 × (24, 24) 0.93s ⊘ (24, 24) 9.01s ✓ (14, 25) 12.47s
∗ ✓: it finds one or more solutions and satisfies all the user-defined

preferred behavior; ⊘: it finds solutions but does not retain all the
preferred behavior; ×: it fails to find a solution.

we implemented the algorithm in [12] with Supremica as
the underlying controller synthesis engine. We then ran the
three approaches over the case study models and compared
them with respect to: (1) generation of a valid solution (i.e.,
satisfies P), (2) preferred behaviors satisfied, (3) the number of
observable and controllable events used, and (4) computation
time, as shown in Table III. For Vanilla and OASIS, the
controller synthesis procedure was given access to all the
machine events as controllable and observable.
Summary. It can be seen that FORTIS is able to generate
solutions that satisfy the preferred behaviors. On the other
hand, Vanilla solves only the Therapy problem; OASIS solves
the Therapy problem, the Voting-1 and Pump problems but
without satisfying the preferred behaviors, and does not solve4

Voting-2,3,4.
The Vanilla approach and OASIS assume that all machine

events are available for generating new designs. By compar-
ison, FORTIS is capable of finding solutions that make use
of fewer events (and thus, a lower cost) in the Therapy. In
addition, it finds solutions with fewer controllable events but
more observable events in the Voting and Pump problems,
while the other two approaches either find no solutions or
fail to retain the preferred behaviors.

On the other hand, FORTIS sometimes takes longer to gen-
erate a solution (for Therapy and Pump), since for optimality,
it typically solves a larger number of synthesis instances than
OASIS and Vanilla do. We believe that this is an acceptable
trade-off between performance and quality of the solutions.

E. Threats to Validity

One potential threat to validity is that the deviations and
preferred behaviors selected for our experiments might have
introduced bias that enabled FORTIS to perform more effi-
ciently. To mitigate this bias, the deviations for our case studies
were derived from the existing literature. In particular, the
deviations for the radiation therapy system were obtained from
[8], and those for the electronic voting were from [12]. For the
infusion pump, robustification was performed with the most
general set of deviations, in that the resulting environment (E′)

4We used a stronger safety property that the recorded vote should be the
one that was selected by the corresponding voter, whereas in [12], it is only
required that the vote not be changed by the official.

allowed the user to perform actions in any order. In addition,
we chose the preferred behaviors based on what we deemed
to be common and important behaviors in these systems (e.g.,
the voter being able to navigate back and change their vote
for a voting machine).

F. Discussion

Our experiment shows that FORTIS is able to generate a
robustified design that (1) retains user-specfied preferred be-
haviors and (2) minimizes the cost of change, at a performance
that is comparable to OASIS. In addition, unlike the two other
approaches, FORTIS can generate the set of all Pareto-optimal
solutions, which allows the developer to explore the trade-offs
between the two qualities.

Vanilla can only restrict, but not extend, the machine
behavior; thus, its ability to generate an optimal robustification
is limited. FORTIS can extend the behavior by extending
the controllability and observability of environmental events.
OASIS does so by changing the sequence of events. However,
such a reordering may prevent it from preserving the behavior
of the original design (e.g., Voting-1 and Pump) or sometimes
result in an unusual design (e.g., in Pump, “starts dispensing”
after the system “turns off”).

On the other hand, by abstracting the machine and changing
its event sequencing, OASIS can produce alternative designs
that are not in the solution space of FORTIS. An approach
that combines the event-based method of FORTIS with the
abstraction-based strategy of OASIS may enable a more
powerful robustification process, and is an interesting direction
that we plan to investigate as future work.

VIII. RELATED WORK

Model repair addresses the following problem: Given sys-
tem M and property P where M ̸|= P , finds a new M ′

such that M ′ |= P . Buccafurri et al. [27], Menezes et al.
[28], Chatzieleftheriou et al. [29], and Ding et al. [30] present
repair approaches for CTL, α-CTL, Kripke Modal Structure,
and LTL, respectively. Our approach can be considered as a
kind of model repair, although robustification addresses how
to enhance the system design (M) to tolerate deviations in
the environment (E), whereas the prior works do not make a
distinction between M and E. Moreover, the existing works do
not consider the cost of a repair or consider costs based on only
the syntactic changes to the model (e.g., adding or removing
transitions), whereas our approach considers multiple quality
metrics that are semantic-based (i.e., behaviors preserved and
events added to control the environment). Among this class of
works, OASIS [12] is the closest to our work, for which we
provide a more thorough comparison in Section VII.

Prior works have investigated synthesizing systems that are
robust against environmental disturbances [31]–[35]. These
works differ from our approach in that they rely on a notion
of robustness that is quantitative in nature (e.g., a numerical
amount by which an input deviates). In comparison, we adopt
a qualitative definition of robustness from [8], which is appli-
cable to the types of discrete deviations that are common in

10

software systems (e.g., user omitting an action). Moreover, our
deviation model generalizes the approach in [36], [37], where
deviations are defined only in terms of additional transitions.

Control theory has also been applied in the context of
self-adaptive systems [38] and run-time verification [39]–[41]
to dynamically enforce system requirements. These run-time
approaches typically assume a fixed sensing and actuating
capability. By comparison, our work focuses on robustifying
a system at design time, which gives developers flexibility to
extend the sensing and actuating ability (by adding observable
and controllable events, respectively).

Alrajeh et al. proposes an approach that leverages a learning
technique to automatically adapt a system to changes in the
environment [42]. Their approach targets adapting system
requirements (specified as goal models [43]) to handle en-
vironmental changes, whereas our work involves modifying
the system itself. However, in certain domains, it may also be
possible to improve the robustness of the system by weakening
a requirement [44] (i.e., given M ||E′ ̸|= P , derive P ′ such that
M ||E′ |= P ′). We plan to study combining these two types of
approaches as an integrative approach to robustifying a system.

D’Ippolito et. al proposes a multi-tier control approach to
self-adaptation, where the developer provides a hierarchy of
environment models that embody different levels of uncer-
tainty, and at run time, the system dynamically switches be-
tween different controllers that best correspond to the current
environment [45]. Their approach is similar to ours in that
it also involves synthesizing different machines (M ′,M ′′,...)
for different environments (E′, E′′,...). However, there are also
some notable differences: (1) their approach aims to achieve
graceful degradation by progressively weakening the system
goal (i.e., property) under different environments (e.g., P ′, P ′′,
...) whereas our aim is to preserve the property, and (2) they
do not specifically consider the relationship between a pair of
machines (i.e., M and M ′) with respect to quality metrics.

IX. DISCUSSIONS

We have introduced the notion of robustification, and an
approach that leverages supervisory control to robustify a
system design against possible deviations in the environment.
Our approach can be used not only to find new, robust designs
but also support design decisions based on trade-offs between
the developer’s preferences (i.e., what behavior the new design
should retain and whether it is cost-effective).

In this paper, we evaluated our approach mainly in the do-
main of human-machine interfaces since the class of deviations
that manifest as human errors have been well studied and
codified into formal models [46], which is well-suited for our
illustration. However, in general, our robustification technique
can be applied to any domain where (1) the system and the
environment can be modeled in LTSs and (2) deviations in
the environment can be captured as additional transitions and
states of the model. Other examples of such domains include
network protocols [8], security protocols [47], and cyber-
physical systems [36], [37].

Our approach relies on identification of relevant devia-
tions in the environment, which typically requires domain
knowledge (e.g., [48] in human factors) and cannot be fully
automated. However, FORTIS has been integrated with the
robustness analysis technique in [8], which can automatically
generate and classify possible deviations into different cate-
gories (e.g., user omitting or repeating an action) and aid the
process of deviation identification.

Currently, our approach focuses on safety properties only. In
the future, we plan to explore the problem of robustification for
liveness properties as well. In particular, during robustification,
new behaviors may need to be added to the system (e.g.,
adding retries in a network protocol, instead of restricting its
behavior as currently done with supervisory control), possibly
leading to a much larger search space and requiring additional
heuristics beyond those presented in this paper. In addition,
we plan to explore a notion of robustness that is stochastic in
nature (e.g., where an environment model E is specified as
a Markov chain) and investigate the robustification problem
under this setting.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation award CCF-2144860, the NSA under Award
No. H9823018D0008, and the Office of Naval Research
under Award N00014172899. It was also supported by
the CAMELOT project (reference POCI-01-0247-FEDER-
045915) which is co-financed by the European Regional
Development Fund and the Portuguese Foundation for Science
and Technology under CMU Portugal. Any views, opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the organizations.

REFERENCES

[1] M. Jackson, “The world and the machine,” in 17th International Con-
ference on Software Engineering (ICSE), 1995, pp. 283–292.

[2] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, “A reference model
for requirements and specifications,” IEEE Software, vol. 17, no. 3, pp.
37–43, 2000.

[3] N. G. Leveson and C. S. Turner, “An investigation of the therac-25
accidents,” Computer, vol. 26, no. 7, pp. 18–41, 1993.

[4] D. Gage and J. McCormick, “We did nothing wrong: Why software
quality matters,” Baseline Magazine, 2004.

[5] H. W. Thimbleby, “Ignorance of interaction programming is killing
people,” Interactions, vol. 15, no. 5, pp. 52–57, 2008.

[6] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich,
“Explicating sdks: Uncovering assumptions underlying secure authenti-
cation and authorization,” in Proceedings of the 22th USENIX Security
Symposium, Washington, DC, USA, August 14-16, 2013, 2013, pp. 399–
314.

[7] S. Sun and K. Beznosov, “The devil is in the (implementation) details:
an empirical analysis of OAuth SSO systems,” in the ACM Conference
on Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, 2012, pp. 378–390.

[8] C. Zhang, D. Garlan, and E. Kang, “A behavioral notion of robustness
for software systems,” in ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2020, p. 1–12.

[9] Y. Collette and P. Siarry, Multiobjective Optimization: Principles and
Case Studies, ser. Decision Engineering. Springer Berlin Heidelberg,
2013.

11

[10] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 3rd ed. Springer, Cham, 2021.

[11] U.S. Attorney’s Office Eastern District of Kentucky, “Clay county
officials and residents convicted on racketeering and voter fraud
charges,” Mar 2010. [Online]. Available: https://archives.fbi.gov/
archives/louisville/press-releases/2010/lo032510.htm

[12] T. T. Tun, A. Bennaceur, and B. Nuseibeh, “OASIS: Weakening user
obligations for security-critical systems,” in 2020 IEEE 28th Interna-
tional Requirements Engineering Conference (RE), 2020, pp. 113–124.

[13] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Transactions on Software Engineering, vol. SE-3, no. 2, pp. 125–143,
1977.

[14] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT
Press, 2001.

[15] J. Reason, Human Error. New York: Cambridge University Press, 1990.
[16] J. Bergstra, A. Ponse, and S. Smolka, Eds., Handbook of Process

Algebra. Amsterdam: Elsevier Science, 2001.
[17] J. Magee and J. Kramer, Concurrency: State Models and Java Programs,

2nd Edition. London: Wiley, 2006.
[18] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software

engineering: Trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, Dec. 2012.

[19] J. N. Tsitsiklis, “On the control of discrete-event dynamical systems,”
in 26th IEEE Conference on Decision and Control, vol. 26, 1987, pp.
419–422.

[20] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’89. New York,
NY, USA: Association for Computing Machinery, 1989, p. 179–190.
[Online]. Available: https://doi.org/10.1145/75277.75293

[21] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems,” Discrete Event Dynamic Systems, vol. 14, no. 1, pp. 31–53,
2004.

[22] R. Malik, K. Åkesson, H. Flordal, and M. Fabian, “Supremica–an effi-
cient tool for large-scale discrete event systems,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5794–5799, 2017, 20th IFAC World Congress.

[23] M. L. Bolton and E. J. Bass, “Evaluating human-automation interaction
using task analytic behavior models, strategic knowledge-based erro-
neous human behavior generation, and model checking,” in 2011 IEEE
International Conference on Systems, Man, and Cybernetics, 2011, pp.
1788–1794.

[24] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthe-
sis of reactive(1) designs,” Journal of Computer and System Sciences,
vol. 78, no. 3, pp. 911–938, 2012, in Commemoration of Amir Pnueli.

[25] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
ACM Symp. POPL, 1989.

[26] S. Maoz and J. O. Ringert, “GR(1) synthesis for LTL specification
patterns,” in Proceedings of Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2015, pp. 96–106.

[27] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone, “Enhancing model
checking in verification by ai techniques,” Artificial Intelligence, vol.
112, no. 1, pp. 57–104, 1999.

[28] M. V. de Menezes, S. do Lago Pereira, and L. N. de Barros, “System
design modification with actions,” in Advances in Artificial Intelligence
– SBIA 2010, A. C. da Rocha Costa, R. M. Vicari, and F. Tonidandel,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 31–40.

[29] G. Chatzieleftheriou, B. Bonakdarpour, S. A. Smolka, and P. Katsaros,
“Abstract model repair,” in NASA Formal Methods, A. E. Goodloe and
S. Person, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 341–355.

[30] Y. Ding and Y. Zhang, “A logic approach for LTL system modification,”
in Foundations of Intelligent Systems, M.-S. Hacid, N. V. Murray,
Z. W. Raś, and S. Tsumoto, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 435–444.

[31] T. A. Henzinger, J. Otop, and R. Samanta, “Lipschitz robustness of finite-
state transducers,” in 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 2014,
December 15-17, 2014, New Delhi, India, 2014, pp. 431–443.

[32] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Job-
stmann, “Specification-centered robustness,” in Industrial Embedded
Systems (SIES), 2011 6th IEEE International Symposium on, SIES 2011.
Vasteras, Sweden, June 15-17, 2011, 2011, pp. 176–185.

[33] P. Tabuada, A. Balkan, S. Y. Caliskan, Y. Shoukry, and R. Majumdar,
“Input-output robustness for discrete systems,” in International Confer-
ence on Embedded Software, *EMSOFT). ACM, 2012, pp. 217–226.

[34] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Job-
stmann, “Robustness in the presence of liveness,” in Computer Aided
Verification (CAV), vol. 6174. Springer, 2010, pp. 410–424.

[35] T. Kobayashi, R. Salay, I. Hasuo, K. Czarnecki, F. Ishikawa, and
S. Katsumata, “Robustifying controller specifications of cyber-physical
systems against perceptual uncertainty,” in International Symposium on
NASA Formal Methods (NFM), 2021, pp. 198–213.

[36] U. Topcu, N. Ozay, J. Liu, and R. M. Murray, “On synthesizing robust
discrete controllers under modeling uncertainty,” in Proceedings of the
15th ACM International Conference on Hybrid Systems: Computation
and Control, ser. HSCC ’12. Association for Computing Machinery,
2012, p. 85–94.

[37] R. Meira-Góes, E. Kang, S. Lafortune, and S. Tripakis, “On tol-
erance of discrete systems with respect to transition perturbations,”
arXiv:2110.04200 [eess.SY], 2021.

[38] R. de Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu,
B. Schmerl, D. Weyns, L. Baresi, N. Bencomo, Y. Brun, J. Camara,
R. Calinescu, M. B. Cohen, A. Gorla, V. Grassi, L. Grunske, P. Inverardi,
J.-M. Jezequel, S. Malek, R. Mirandola, M. Mori, H. A. Müller,
R. Rouvoy, C. M. F. Rubira, E. Rutten, M. Shaw, G. Tamburrelli,
G. Tamura, N. M. Villegas, T. Vogel, and F. Zambonelli, “Software
engineering for self-adaptive systems: Research challenges in the provi-
sion of assurances,” in Software Engineering for Self-Adaptive Systems
III. Assurances, R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, Eds.
Cham: Springer International Publishing, 2017, pp. 3–30.

[39] A. Easwaran, S. Kannan, and O. Sokolsky, “Steering of discrete event
systems: Control theory approach,” Electronic Notes in Theoretical
Computer Science, vol. 144, no. 4, pp. 21–39, 2006, proceedings of
the Fifth Workshop on Runtime Verification (RV 2005).

[40] Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, “Runtime
enforcement monitors: composition, synthesis, and enforcement abili-
ties,” Formal Methods in System Design, vol. 38, no. 3, pp. 223–262,
2011.

[41] Y. Falcone, J.-C. Fernandez, and L. Mounier, “What can you verify
and enforce at runtime?” International Journal on Software Tools for
Technology Transfer, vol. 14, no. 3, pp. 349–382, 2012.

[42] D. Alrajeh, A. Cailliau, and A. van Lamsweerde, “Adapting require-
ments models to varying environments,” in International Conference on
Software Engineering (ICSE). ACM, 2020, pp. 50–61.

[43] A. van Lamsweerde, Requirements Engineering - From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[44] S. Chu, E. Shedden, C. Zhang, R. Meira-Góes, G. A. Moreno, D. Gar-
lan, and E. Kang, “Runtime resolution of feature interactions through
adaptive requirement weakening,” in Proceedings of the 18th Symposium
on Software Engineering for Adaptive and Self-Managing Systems, ser.
SEAMS ’23, 2023.

[45] N. D’Ippolito, V. A. Braberman, J. Kramer, J. Magee, D. Sykes, and
S. Uchitel, “Hope for the best, prepare for the worst: multi-tier control
for adaptive systems,” in 36th International Conference on Software
Engineering (ICSE). ACM, 2014, pp. 688–699.

[46] E. Hollnagel, “The phenotype of erroneous actions,” International
Journal of Man-Machine Studies, vol. 39, no. 1, pp. 1–32, 1993.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0020737383710515

[47] D. Basin, S. Radomirovic, and L. Schmid, “Modeling human errors in
security protocols,” in 2016 IEEE 29th Computer Security Foundations
Symposium (CSF), 2016, pp. 325–340.

[48] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Generating phenotypi-
cal erroneous human behavior to evaluate human–automation interaction
using model checking,” International Journal of Human-Computer
Studies, vol. 70, no. 11, pp. 888–906, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1071581912000997

12

https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm
https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm
https://doi.org/10.1145/75277.75293
https://www.sciencedirect.com/science/article/pii/S0020737383710515
https://www.sciencedirect.com/science/article/pii/S0020737383710515
https://www.sciencedirect.com/science/article/pii/S1071581912000997

	Introduction
	Motivating Example
	Preliminaries
	Labelled Transition System
	Operators
	Properties

	Supervisory Control

	Robustification problems
	Basic Robustification Problem
	Quality Metrics for Robustified Designs
	Common Behavior
	Cost of Changes
	Example

	Optimal Robustification Problem

	Optimal Robustification Method
	Basic Robustification as Supervisory Control
	Priority-Based Utility Function
	Algorithm for Multi-Objective Optimization

	Heuristics for Multi-Objective Search
	SmartPareto: Searching with Pruning Strategies
	Removing unnecessary events
	Minimizing cost in the order of event priority
	Pruning invalid combinations

	LocalSearch: Finding Locally Optimal Solutions

	Evaluation
	Electronic Voting Machine
	Radiation Therapy System
	Infusion Pump
	Experimental Results
	RQ1 (Scalability)
	RQ2 (Quality of robustification)

	Threats to Validity
	Discussion

	Related Work
	Discussions
	References

