2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET) | 979-8-3503-2259-0/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICSE-SEET58685.2023.00008

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-

SEET)

Open Design Case Study - A Crowdsourcing Effort
to Curate Software Design Case Studies

Chun Yong Chong
School of Information Technology
Monash University Malaysia
Malaysia
chong.chunyong @monash.edu

Abstract—Case study-based learning has been successfully
integrated into various courses, including software engineering
education. In the context of software design courses, the use
of case studies often entails sharing of real successful or failed
software development. Using examples of real-world case studies
allows educators to reinforce the applicability and usefulness of
fundamental design concepts, relate the importance of evaluating
design trade-offs with respect to stakeholders’ requirements, and
highlight the importance of upfront design where students that
lack industrial experience tend to overlook. However, the use of
real-world case studies is not straightforward because 1.) there
is a lack of open source repositories for real software design case
studies and 2.) even if case studies are available, they are often
reported without a standardized format, which may hinder the
alignment between the case and the desired learning outcomes. To
address the lack of software design case studies for educational
purposes, we propose the idea of Open Design Case Study, a
repository to crowdsource, curate, and recruit other educators
to contribute case studies for teaching software design courses.
The platform will also allow educators and students to share,
brainstorm, and discuss design solutions based on case studies
shared publicly on the repository.

Index Terms—software engineering education, software design,
case studies.

I. INTRODUCTION

“Software design” refers to a set of activities that are
involved in bridging the gap between requirements and an
implementation, including domain modeling, design space
exploration, architectural design and analysis, as well as
module and code design. It may also involve discovering
or refining requirements. Design has significant impact on
important qualities of the resulting system, such as modularity,
robustness, maintainability, testability, and usability [1].

Despite its importance, software design can be a difficult
topic to teach, partly due to the “abstract nature” of high-
level, abstract concepts in design compared to more concrete
software artifacts (e.g., code), as reported by Galster and An-
gelov [2]. Unlike other software engineering activities such as
software testing, where there are measurable targets (i.e. code
coverage), developing a design solution (e.g., an architecture)
requires a deep understanding of the often-messy problem
domain and use cases, with multiple, alternative solutions that
may not be easily comparable. Hence, it can be challenging
for inexperienced students to grasp the concepts of software

979-8-3503-2259-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEET58685.2023.00008

Eunsuk Kang
School of Computer Science
Carnegie Mellon University
USA
eunsukk @andrew.cmu.edu

23

Mary Shaw
School of Computer Science
Carnegie Mellon University
USA
shaw @cs.cmu.edu

design, especially if it is taught without concrete examples to
relate how such abstract concepts are relevant in a software
engineering (SE) lifecycle.

The challenge of teaching software design is further ag-
gravated by gaps between what is taught in universities and
what is expected from the industry, as discussed by Garousi et
al. [3]. In their systematic review, the authors found that the
curriculum in software design is of high importance and high
gap, meaning that the software design curriculum requires the
most attention with respect to the need for improvements in
tertiary software engineering education programs.

As such, there is an urgent need to improve the way we
teach software design to undergraduate students. Multiple
authors have proposed the use of case studies (fictitious or real-
life examples) to help students to understand the importance of
design choices when dealing with complex software systems
with multiple stakeholder needs [4]-[6]. Note that case studies
mentioned in this paper refers to case-based pedagogical
approach as discussed in the work by Delacey and Leonard
[7]. Although it has been shown to be useful, the effectiveness
of the case study-based approach is highly dependent on the
availability of good case studies. Unfortunately, the difficulty
in obtaining sample design artifacts and documents to be used
for teaching is one of the biggest obstacles for SE educators.
Developers are often reluctant to share them because they
are mostly proprietary, contain trade secrets, or bounded by
non-disclosure agreements; even when they are available,
they are often scattered across institutions and course-specific
repositories.

In this idea paper, we propose “Open Design Case Study”
(ODCS) as a platform for SE educators to crowdsource, share,
and propose new strategies to improve the software design
syllabus. This initiative is inspired by the Open Case Studies
[8], a data science education platform where educators and
practitioners share real-world examples and best practices in
data science. We propose a template! for contributors to share
their real-world software design case studies on GitHub to aid
in curriculum design. Several ideas on how SE educators can
leverage the ODCS repository are discussed in this paper.

"https://github.com/opendesigncasestudies/odcs-template

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from |IEEE Xplore. Restrictions apply.

II. BACKGROUND

A. Challenges in Teaching Software Design

One way to tame the complexity of a software system is
to devise a high-level abstraction of the system that helps to
decompose it into smaller, more manageable components and
allows software engineers to easily identify the dependencies
between the components [9], [10].

However, a major challenge in conveying the importance of
software design to students who lack real-world experience is
that the benefits of explicit design can be difficult to grasp
due to the abstract nature of key design concepts such as
modularity and information hiding. Thus, common questions
arise, such as “Why can’t I start writing the program and
decide the design later?”, “Why do we need to follow these
prescriptive steps when we are adopting agile methodolo-
gies?”, “My program works fine with the given inputs, so why
do I need to care about the design?”. The answers to these
questions can be especially hard to explain if the assignments
are based on fictitious example with artificial requirements that
are not grounded in real-world systems.

Understanding how to compare design alternatives and
evaluate trade-offs between them, usually is reflected through
questions such as: “Should we use this design or pattern?”,
“Why microservice architecture instead of client-server?”,
“What makes this solution superior than the other?”, “Is there
a golden or standard solution for the choice of architecture?”
[11]. As such, it may not be sufficient to simply present a case
study, but to deeply engage students in generating, comparing,
and evaluating design alternatives and systematically arriving
at a solution in consideration of the given requirements.

Shaw et al. [9] designed their Carnegie Mellon software
design course around a set of core competencies (such as
identifying the type and structure of the problem, and under-
standing business and economic constraints). The objectives
of the course was to allow students to understand and make
decisions based on both technical and contextual requirements
from stakeholders and to select design solutions that genuinely
focus on their needs. In order to achieve these core competen-
cies, the use of real-world case studies is also noted as playing
an important role.

B. Case Study-based Learning in Software Design Courses

Recognizing the importance of real-world exposure and
hands-on practices in software engineering education, Varma
and Garg [4] proposed the use of case studies-based learning
in SE education. The goal of the approach is to present
a multifaceted view of software engineering problems that
closely resemble how it is practiced in real-life. However, the
authors also acknowledged a significant obstacle to such an
approach, which is the limited availability of open and public
SE case studies. They further highlight that most open case
studies usually present hypothetical solutions and research
cases that might not be realistic from a practitioners’ point
of view.

24

Lieh and Irawan [12] shared a multi-year analysis of using
case study-based learning to teach software design. They dis-
cussed the importance of imparting practical software design
skills in a university setting and its relevance to the learner’s
environment. To evaluate the effectiveness of case study-based
learning, the authors compared it with traditional problem-
based learning, which does not have predefined goals and
expected outcomes. Based on their findings, the authors found
that case study-based learning is better suited for students
with little to no industry experience, while problem-based
learning is more preferred by working adults with experience
in real-world software design problems. However, the authors
highlight that the proposed approach requires substantial effort
from educators to prepare the course materials, especially to
curate relevant case studies.

C. Awareness of the Need for an Open Repository of Software
Design Case Studies

A Bird of Feathers (BoF) session on teaching software
design was held on May 26, 2022 part of ICSE in Pittsburgh,
USA.? The goal of the BoF was to share experiences and
lessons learned from teaching design and to discuss new ideas
for incorporating design into software engineering curricu-
lums. There were approximately 40 to 50 attendees at the
workshop. The attendees were presented with the following
questions for discussion:

« How do we describe and present design principles to
students?

o What in-class, hands-on activities can we provide to
enhance learning?

o What are some examples of good and bad designs to
study as case studies?

e How do we evaluate how well students learn design?

Some common design principles were mentioned by multi-
ple participants as being taught in existing courses, including
separation of concerns, locality, information hiding, GoF pat-
terns, and architectural patterns. However, others brought up a
number of principles or design dimensions that they believed
were poorly taught or lacking in the existing curricula, par-
ticularly writing, reading, and asking critical questions about
design documents.

One of the key challenges in teaching software design
highlighted during the discussion was the difficulty in obtain-
ing sample software designs and documents to be used for
teaching, because developers are often reluctant to share them.
To address this issue, multiple participants suggested the idea
of developing a shared online repository to collect examples
and case studies for teaching software design courses.

D. Preliminary findings

Through a literature review of the related works, we have
found a lack of publicly available real-world software design
case studies. Part of the reason is that most software design
documents are proprietary and might potentially reveal trade

Zhttps://conf researchr.org/track/icse-2022/icse-2022-birds-of-a-feather

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from |IEEE Xplore. Restrictions apply.

Open Design Case Study Template

1) Citation

2) Title

3) Objectives

4) Stakeholder

5) Requirements
a) Descriptions
b) Constraints
c) Quality Attributes

6) Environment
a) Entities and Assumptions

7) Design Solution(s)

8) Outcome
a) Success
b) Failure

9) Lessons Learned

10) Teaching Materials
a) Suggested Usage

11) Other Notes and Resources

Fig. 1. Proposed Open Design Case Study Template

secrets. Even if such case studies are available, they are usually
reported independently as part of a particular research and are
organized or reported differently. We believe that an obstacle to
collecting and curating such design case studies is the lack of
a generally-accepted template to put together all the necessary
documents in a consistent form.

In the domain of Data Science education, having access
to real-world case studies is also important for students to
understand the need of applying different analytical models
to interpret the data, based on different contexts. Therefore,
the Johns Hopkins Data Science Lab team proposed Open
Case Studies [8], which serves as a platform for sharing
and curating real-world case studies for the design of data
science curriculum. The case studies are meant to be used
in universities to help contextualize real-world data science
problems. To encourage contributors and help facilitate the
sharing of such case studies, the authors proposed a simple
and extensible template to communicate the core information
of each study. Guidelines are available to assist and streamline
the publishing process. With the success of Open Case Studies,
we identify an opportunity to adopt a similar approach in
curating and crowdsourcing case studies for software design
curriculum development.

III. PROPOSED DIRECTION AND APPROACH

In this idea Paper, we propose the Open Design Case Study
(ODCS) project, an attempt to curate real-world software
design case studies through crowdsourcing. The aim is to
provide an open-source repository for SE educators to share
and discuss software design case studies.

To facilitate the sharing of open design case studies, we
propose a template for structuring the case studies, as shown
in Figure 1.

Note that the headings and sub-headings in Figure 1 are
meant as a guideline, and we do not expect contributors to
provide exactly the information mentioned in the template.

25

This flexibility will also allow organizations to selectively
share only parts of a case study that they are able to.
Citation: If the case study is part of a published work or
is hosted on other platform (i.e. Zenodo, Figshare, etc.), the
contributors can choose to include the citation information
related to the case study.

Objectives: Contributors can include the project objectives in
this section.

Stakeholders: Contributors can provide information about the
stakeholders involved in the case study (direct or indirect).
Contributors can also choose to include annoymized informa-
tion about the stakeholders if necessary.

Requirements: To fully leverage the case studies for cur-
riculum design, contributors are advised to include as much
information as possible, including functional requirements,
constraints (technical, environment, or business), as well as
the quality attributes that were significant in the project. If
the Software Requirements Specification (SRS) document is
available, contributors are advised to provide a link to access
the document.

Environment: Contributors can discuss the important entities
and actors in the problem domain (e.g., users or physical com-
ponents), including their properties, roles, and assumptions on
how they interact with the system.

Design Solution(s): Any design artifacts at different levels of
granularity can be added here. For example, design best prac-
tices, design patterns, architectural patterns, UML diagrams
(use cases, classes) etc. Contributors can choose to share the
design artifacts if permissible; it would be ideal to have these.
We acknowledged that some of the case studies might not
have a proposed design solution. This creates an opportunity
for crowdsourcing of design solutions, which will be discussed
in the next section.

Outcome: Contributors can discuss any available success or
failure story based on the proposed design solution. It will be
an added bonus to discuss the root cause of the success or
failure, if applicable.

Lessons Learned: Contributors can include retrospective sec-
tion based on the case study. This can be useful for educators
and students to discuss the lessons learned, such as approaches
to adopt or avoid for a similar type of design problem.
Teaching Materials: Contributors can provide a reusable
teaching materials. They can also discuss the suggested usage
of the case study, including 1.) use to teach a design concept,
2.) use as assignment specification, 3.) use as a case study to
avoid certain bad practices.

To put the ODCS template in practice and demonstrate its
applicability, we have curated several case studies that are
publicly available on GitHub.? In particular, these projects are
real-world case studies discussed in the work by Sommerville
[13] and the London Ambulance Service case study [14].

Contributors are encouraged to utilize our published ODCS
template* to prepare additional the case studies. Once com-

3https://github.com/opendesigncasestudies
“https://github.com/opendesigncasestudies/odcs-template

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from |IEEE Xplore. Restrictions apply.

pleted, they can add their case studies to the centralized
repository to publish them.

A. Suggested Usage of Open Design Case Study by Educators

1) Case studies as a medium to introduce basic design
concepts: The benefits of using case studies to teach and
impart basic design concepts has been reported in multiple
studies [5], [15]. Bolinger et al. [16], described how case
studies can reinforce abstract concepts (design patterns, archi-
tecture, etc.), demonstrate the nature of real client interactions
(conflicting requirements, prioritization of requirements, etc.),
and showcase the relevance of soft skills to students that lack
significant practical experience.

While design patterns are usually used in concert to solve
complex software engineering problems in practice, they are
usually taught using independent examples in universities [15].
By leveraging real-world case studies, educators can discuss
and relate the dynamics of design decision making when
dealing with real-world software systems. Instead of using
dummy examples, educators can provide real examples on
how design patterns can be used to solve real world problems.
However, we do acknowledge that the usage of design case
studies may more easily work with technical decisions rather
than holistic design decisions.

2) Use of case studies for curriculum development: Re-
gurgitating a detailed real-world case study as it is might
be boring and hard to absorb by the students who do not
appreciate the perspective of the original software developers.
When the contents are customized and localized to fit the
students’ level of expertise, it will be easier for the students
to understand the concepts in a way that is consistent with the
fundamental design knowledge that is being taught to them
[16]. We encourage instructors who customize their content
(design case studies) to share their results with the wider SE
educator community on the ODCS GitHub page.

As such, the usage of case studies can be used to drive
curriculum development by allowing educators to use the case
studies to design teaching materials that are more industry
relevant [16]. In-class activities such as tutorials or labs can
be redesigned to revolve around the selected case studies
to reinforce the understanding of abstract concepts. Design
walkthroughs can also help students to understand the rationale
behind the design decisions. Such interactive activities are
opportunities and innovations that are aligned with the concept
of flipped classroom, which has been proven to improve
students’ learning experience [17].

3) Platform to discuss and crowdsource design solutions:
As discussed in Section III, we understand that not all case
studies come with a proposed design solution due to different
factors (trade secrets, incomplete case studies, etc.). Even
when design solutions are available, there is always room to
propose alternative design that can help address the functional
and non-functional requirements from a different perspective.

As such, the proposed ODCS can be used as a platform
to crowdsource design solutions among SE educators and

26

students. In a more controlled teaching and learning environ-
ment, educators can fork a particular case study and instruct
their students to submit pull requests to submit their design
solutions. The design solutions can be further improved and
refined over time.

Apart from that, educators can create use cases that are
more customized to the students’ learning environment by
scaffolding from the real case studies published on ODCS.
This strategy can be used for conducting long-running projects
where the requirements can evolve over multiple semesters.

IV. PLANS TO EVALUATE OPEN DESIGN CASE STUDY

As an initial validation, we have put the proposed ODCS
template (Figure 1) to actual use by converting some of the
open real-world case studies into the proposed format, as
discussed in Section III. In the process, it has helped us refine
the overall structure and subsections of the proposed template
to be more well suited for SE education, focusing on the
“Why” and “How” factors in design decision making. For
instance, the “Outcome” and “Lesson Learned” sections in the
proposed template help provide opportunities for educators to
run retrospective and discussion sessions with the students, and
to teach them how to critique the proposed design solution(s).
We plan to further enrich the ODCS by incorporating more
open case studies on the GitHub repository.

An example of the case study reported using the proposed
template is shown in Figure 2, where the figure shows a snippet
of the iLearn Case Study5 from Sommerville [13]. Educators
can use the “Success” or “Failure” stories to highlight design
decisions to adopt or avoid based on the outcome of real-
world systems. The “Teaching Materials” section provide
some suggested usage of the case studies to facilitate the
sharing of these real-world examples.

We also plan to conduct qualitative studies to collect
feedback from SE educators about the usage of ODCS, its
benefits in their own classrooms as well as limitations, and
use the collected data to further improve the template. Some
of the plans to conduct qualitative studies include focus
group discussions, a survey and questionnaire from conference
attendees (at software engineering venues), as well as an opt-in
survey for SE educators who plan to use or contribute towards
the ODCS. We also plan to evaluate whether the granularity
of the proposed template is too content heavy, or too abstract
or vague to be useful for SE educators. We invite readers who
are interested to participate in the qualitative studies to contact
the authors of this paper.

In addition, for educators who plan to use OCDS for teach-
ing software design courses in universities, they can consider
conducting a comparative study to evaluate the effectiveness of
case study-based learning against traditional learning methods,
similar to the work by Lieh and Irawan [12]. The findings
from the comparative study can help pave way to improve
the pedagogical approach for case study-based learning in
software design courses.

Shttps://github.com/opendesigncasestudies/iLearn-lanSommerville

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from |IEEE Xplore. Restrictions apply.

iLearn Case Study

8) Outcome
a) Success
i) Requirement/Constraint - The need to accommodate a range
of users from age 3 to (potentially) age 83.
The completely configurable architecture meant that versions
of the system could be easily created for different types of
user.
ii) Requirement/Constraint - The very complex system of
governance with no single decision making body.
The flexibility of the system meant that there could be
localised versions if necessary, reflecting the policies of each
local authority.
b) Failure
Root cause(s)

i) A number of different software engineering methods including
viewpoint oriented requirements, use-cases, and UML
modeling were used but ended up failing.

e The main reasons why these software engineering methods
failed were firstly (and most importantly) users did not
care about the system requirements.

ii) Disengaged users - end-users not to wish to take time out
from their normal job to discuss new systems which offer
them no real benefits.

9) Lessons Learned

a) The only approach which worked was user stories, which people
without a technical background could easily relate to.

b) More and more systems are being developed for use by
professionals to support their work. These professionals have the
discretion to accept or reject these systems.

10) Teaching Materials

a) Suggested Usage

o Discussions of the use of user stories as a means of deriving
system requirements. User stories were extensively used here
by the development team to get an overall picture of how the
system might be used.

e Lectures about architecture, where the layered architecture of

the system can be discussed. Elements in the architecture are
implemented as replaceable services.

Fig. 2. Snippet from the iLearn Case Study

V. RELATED WORK

In this section, we discuss some existing attempts at col-
lecting SE case studies or datasets.

There have been multiple attempts at curating open source
repositories and datasets to help improve the replicability and
reliability of software engineering research. One of the earliest
attempt is the PROMISE (PRedictOr Models In Software
Engineering) repository [18] which has been widely used
in different domain of software engineering including defect
prediction, software cost estimation, and reuse prediction.

The Mining Software Repositories (MSR) research com-
munity is one of the strongest advocates of publicly available
datasets where projects such as GitTorrent [19], FLOSSMole
[20], and FLOSSMetrics [21] are widely used in conducting
research related to open source software development. While
open source software development platforms such as GitHub
are frequently used by the MSR communities to conduct
research, Kalliamvakou et al. [22], [23] found that without
proper scrutinization and guidelines, research that relies on
such open source repositories might not be reliable because

27

the majority of the projects hosted on GitHub are personal
and inactive.

On the other hand, open datasets for past software defects
are crucial to enable researchers to evaluate their defect
prediction models. Datasets such as Defects4J [24] and Bug
prediction dataset [25] are some of the most popular open
source datasets for researchers in the domain of bugs/defects
prediction. These kinds of open source defect datasets helps
researchers working in the relevant domain to benchmark
their proposed models against the state-of-art approaches in
a objective and fair manner.

In this section, we discuss some attempts to collect SE case
studies, datasets, or educational materials. Software engineer-
ing educators are usually willing to share their educational
materials. In most cases this sharing centers on materials for a
specific course. A project to support collaborative development
of material in a new topic area was initiated for an emerging
area of “economics-driven software engineering” in 2002 (a
period when the dominate open source repository was Source-
forge). Shaw et al. [26] reported on the CourseForges project,
which provided an interactive platform for faculty to share
the effort of developing course materials under ground rules
modeled on open source principles with Creative Commons
copyright. Although a body of material was shared, there was
little collaborative evolution and the project faded. The main
reasons for the failure seem to be the lack of a clear structure
for the level, granularity, and organization of the material
and some concerns about whether faculty effort on shared
educational artifacts would be appropriately recognized. The
former issue is addressed here by the ODCS template; as to the
latter, we believe that educational contributions have a higher
profile now than they did two decades ago.

VI. CONCLUSION AND FUTURE WORK

In this idea paper, we propose the Open Design Case Study
(ODCS) to provide a platform for SE educators to curate and
obtain real-world software design case studies. The goal of
the initiative is to build a community based on crowdsourcing
efforts that help mold the future of software design curriculum.
By proposing the ODCS template, we aim to use it as a
guideline to provide a focused view of case studies that reveal
how design decisions were made, how design solutions were
proposed to fulfill different quality requirements, and what are
the success or failure stories that students can learn from it.

We do acknowledge that there are some risks of using
the proposed template due to incomplete software design
artifact/documentations, or lack of design solution. To help
mitigate the risk, we have discussed in Section III-A3 on how
students or educators can utilize the ODCS platform as a way
to propose and refine incomplete design artifacts or solutions.

Finally, as part of the future work to improve the readability
of the design artifacts and delivery of contents to a wider
community, we plan to use Jekyll® to convert the current
MARKDOWN contents to static websites.

Ohttps://jekyllrb.com/

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from |IEEE Xplore. Restrictions apply.

[10]

[11]

[12]

[13]
[14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

M. Shaw and P. Clements, “The golden age of software architecture,”
IEEE software, vol. 23, no. 2, pp. 31-39, 2006.

M. Galster and S. Angelov, “What makes teaching software architecture
difficult?” in 2016 IEEE/ACM 38th International Conference on Soft-
ware Engineering Companion (ICSE-C). 1EEE, 2016, pp. 356-359.
V. Garousi, G. Giray, E. Tuzun, C. Catal, and M. Felderer, “Closing
the gap between software engineering education and industrial needs,”
1EEE software, vol. 37, no. 2, pp. 68-77, 2019.

V. Varma and K. Garg, “Case studies: the potential teaching instruments
for software engineering education,” in Fifth International Conference
on Quality Software (QSIC’05). 1EEE, 2005, pp. 279-284.

S. Kurkovsky, “Teaching software engineering with lego serious play,” in
Proceedings of the 2015 ACM Conference on Innovation and Technology
in Computer Science Education, 2015, pp. 213-218.

E. L. Ouh and Y. Irawan, “Applying case-based learning for a post-
graduate software architecture course,” in Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science
Education, 2019, pp. 457-463.

B. J. DeLacey and D. A. Leonard, “Case study on technology and
distance in education at the harvard business school,” Journal of Ed-
ucational Technology & Society, vol. 5, no. 2, pp. 13-28, 2002.

M. R. Breshock, “Expanding access and removing barriers: Data
science education with the open case studies digital platform,” Dec
2021. [Online]. Available: https://jscholarship.library.jhu.edu/handle/
1774.2/66820

M. Shaw, J. Herbsleb, and I. Ozkaya, “Deciding what to design: Closing
a gap in software engineering education,” in Proceedings of the 27th
international Conference on Software Engineering, 2005, pp. 607-608.
M. Shaw, “Software engineering education: A roadmap,” in Proceedings
of the Conference on the Future of Software Engineering, 2000, pp. 371—
380.

C. R. Rupakheti and S. V. Chenoweth, “Teaching software architecture
to undergraduate students: an experience report,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 2.
IEEE, 2015, pp. 445-454.

E. L. Ouh and Y. Irawan, “Teaching adult learners on software archi-
tecture design skills,” in 2018 IEEE Frontiers in Education Conference
(FIE). IEEE, 2018, pp. 1-9.

1. Sommerville, Software Engineering, 10th ed. Pearson, 2015.

A. Finkelstein and J. Dowell, “A comedy of errors: the london ambulance
service case study,” in Proceedings of the 8th International Workshop on
Software Specification and Design (IWSSD). TEEE Computer Society,
1996, pp. 2-5.

Y. Tao and J. Nandigam, “Work in progress: Open source software as
the basis of developing software design case studies,” in Proceedings.
Frontiers in Education. 36th Annual Conference. 1EEE, 2006, pp. 27—
28.

J. Bolinger, M. Herold, R. Ramnath, and J. Ramanathan, “Connecting
reality with theory—an approach for creating integrative industry case
studies in the software engineering curriculum,” in 2011 Frontiers in
Education Conference (FIE). 1EEE, 2011, pp. T4G-1.

L. Gren, “A flipped classroom approach to teaching empirical software
engineering,” IEEE Transactions on Education, vol. 63, no. 3, pp. 155—
163, 2020.

J. Sayyad Shirabad and T. Menzies, “The PROMISE Repository of
Software Engineering Databases.” School of Information Technology
and Engineering, University of Ottawa, Canada, 2005. [Online].
Available: http://promise.site.uottawa.ca/SERepository

G. Gousios and D. Spinellis, “GHtorrent: Github’s data from a firehose,”
in 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). IEEE, 2012, pp. 12-21.

J. Howison, M. Conklin, and K. Crowston, “Flossmole: A collaborative
repository for floss research data and analyses,” International Journal of
Information Technology and Web Engineering (IJITWE), vol. 1, no. 3,
pp. 17-26, 2006.

I. Herraiz, D. Izquierdo-Cortazar, F. Rivas-Hernandez, J. Gonzalez-
Barahona, G. Robles, S. Duenas-Dominguez, C. Garcia-Campos, J. F.
Gato, and L. Tovar, “Flossmetrics: Free/libre/open source software
metrics,” in 2009 13th European Conference on Software Maintenance
and Reengineering. 1EEE, 2009, pp. 281-284.

28

[22]

[25]

[26]

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035-2071,
2016.

——, “The promises and perils of mining github,” in Proceedings of
the 11th working conference on mining software repositories, 2014, pp.
92-101.

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ser. ISSTA 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 437-440. [Online]. Available:
https://doi.org/10.1145/2610384.2628055

M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison
of bug prediction approaches,” in Proceedings of MSR 2010 (7th IEEE
Working Conference on Mining Software Repositories). 1EEE CS Press,
2010, pp. 31 — 41.

M. Shaw, S. Butler, H. Erdogmus, and K. Schmid, “Courseforges.
open source curriculum design for value-based software engineering,”
in Proceedings of the 5th International Workshop on Economic-Driven
Software Engineering Research, 25th International Conference on Soft-
ware Engineering. 1EEE Computer Society, 2003, pp. 4-7.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from |IEEE Xplore. Restrictions apply.

