
Open Design Case Study - A Crowdsourcing Effort
to Curate Software Design Case Studies

Chun Yong Chong
School of Information Technology

Monash University Malaysia
Malaysia

chong.chunyong@monash.edu

Eunsuk Kang
School of Computer Science
Carnegie Mellon University

USA

eunsukk@andrew.cmu.edu

Mary Shaw
School of Computer Science
Carnegie Mellon University

USA

shaw@cs.cmu.edu

Abstract—Case study-based learning has been successfully
integrated into various courses, including software engineering
education. In the context of software design courses, the use
of case studies often entails sharing of real successful or failed
software development. Using examples of real-world case studies
allows educators to reinforce the applicability and usefulness of
fundamental design concepts, relate the importance of evaluating
design trade-offs with respect to stakeholders’ requirements, and
highlight the importance of upfront design where students that
lack industrial experience tend to overlook. However, the use of
real-world case studies is not straightforward because 1.) there
is a lack of open source repositories for real software design case
studies and 2.) even if case studies are available, they are often
reported without a standardized format, which may hinder the
alignment between the case and the desired learning outcomes. To
address the lack of software design case studies for educational
purposes, we propose the idea of Open Design Case Study, a
repository to crowdsource, curate, and recruit other educators
to contribute case studies for teaching software design courses.
The platform will also allow educators and students to share,
brainstorm, and discuss design solutions based on case studies
shared publicly on the repository.

Index Terms—software engineering education, software design,
case studies.

I. INTRODUCTION

“Software design” refers to a set of activities that are

involved in bridging the gap between requirements and an

implementation, including domain modeling, design space

exploration, architectural design and analysis, as well as

module and code design. It may also involve discovering

or refining requirements. Design has significant impact on

important qualities of the resulting system, such as modularity,

robustness, maintainability, testability, and usability [1].

Despite its importance, software design can be a difficult

topic to teach, partly due to the “abstract nature” of high-

level, abstract concepts in design compared to more concrete

software artifacts (e.g., code), as reported by Galster and An-

gelov [2]. Unlike other software engineering activities such as

software testing, where there are measurable targets (i.e. code

coverage), developing a design solution (e.g., an architecture)

requires a deep understanding of the often-messy problem

domain and use cases, with multiple, alternative solutions that

may not be easily comparable. Hence, it can be challenging

for inexperienced students to grasp the concepts of software

design, especially if it is taught without concrete examples to

relate how such abstract concepts are relevant in a software

engineering (SE) lifecycle.

The challenge of teaching software design is further ag-

gravated by gaps between what is taught in universities and

what is expected from the industry, as discussed by Garousi et

al. [3]. In their systematic review, the authors found that the

curriculum in software design is of high importance and high

gap, meaning that the software design curriculum requires the

most attention with respect to the need for improvements in

tertiary software engineering education programs.

As such, there is an urgent need to improve the way we

teach software design to undergraduate students. Multiple

authors have proposed the use of case studies (fictitious or real-

life examples) to help students to understand the importance of

design choices when dealing with complex software systems

with multiple stakeholder needs [4]–[6]. Note that case studies

mentioned in this paper refers to case-based pedagogical

approach as discussed in the work by Delacey and Leonard

[7]. Although it has been shown to be useful, the effectiveness

of the case study-based approach is highly dependent on the

availability of good case studies. Unfortunately, the difficulty

in obtaining sample design artifacts and documents to be used

for teaching is one of the biggest obstacles for SE educators.

Developers are often reluctant to share them because they

are mostly proprietary, contain trade secrets, or bounded by

non-disclosure agreements; even when they are available,

they are often scattered across institutions and course-specific

repositories.

In this idea paper, we propose “Open Design Case Study”
(ODCS) as a platform for SE educators to crowdsource, share,

and propose new strategies to improve the software design

syllabus. This initiative is inspired by the Open Case Studies

[8], a data science education platform where educators and

practitioners share real-world examples and best practices in

data science. We propose a template1 for contributors to share

their real-world software design case studies on GitHub to aid

in curriculum design. Several ideas on how SE educators can

leverage the ODCS repository are discussed in this paper.

1https://github.com/opendesigncasestudies/odcs-template

23

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

979-8-3503-2259-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEET58685.2023.0000820

23
 IE

EE
/A

C
M

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g:
 S

of
tw

ar
e

En
gi

ne
er

in
g

Ed
uc

at
io

n
an

d
Tr

ai
ni

ng
 (I

C
SE

-S
EE

T)
 |

97
9-

8-
35

03
-2

25
9-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-S

EE
T5

86
85

.2
02

3.
00

00
8

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

A. Challenges in Teaching Software Design

One way to tame the complexity of a software system is

to devise a high-level abstraction of the system that helps to

decompose it into smaller, more manageable components and

allows software engineers to easily identify the dependencies

between the components [9], [10].

However, a major challenge in conveying the importance of

software design to students who lack real-world experience is

that the benefits of explicit design can be difficult to grasp

due to the abstract nature of key design concepts such as

modularity and information hiding. Thus, common questions

arise, such as “Why can’t I start writing the program and

decide the design later?”, “Why do we need to follow these

prescriptive steps when we are adopting agile methodolo-

gies?”, “My program works fine with the given inputs, so why

do I need to care about the design?”. The answers to these

questions can be especially hard to explain if the assignments

are based on fictitious example with artificial requirements that

are not grounded in real-world systems.

Understanding how to compare design alternatives and

evaluate trade-offs between them, usually is reflected through

questions such as: “Should we use this design or pattern?”,

“Why microservice architecture instead of client-server?”,

“What makes this solution superior than the other?”, “Is there

a golden or standard solution for the choice of architecture?”

[11]. As such, it may not be sufficient to simply present a case

study, but to deeply engage students in generating, comparing,

and evaluating design alternatives and systematically arriving

at a solution in consideration of the given requirements.

Shaw et al. [9] designed their Carnegie Mellon software

design course around a set of core competencies (such as

identifying the type and structure of the problem, and under-

standing business and economic constraints). The objectives

of the course was to allow students to understand and make

decisions based on both technical and contextual requirements

from stakeholders and to select design solutions that genuinely

focus on their needs. In order to achieve these core competen-

cies, the use of real-world case studies is also noted as playing

an important role.

B. Case Study-based Learning in Software Design Courses

Recognizing the importance of real-world exposure and

hands-on practices in software engineering education, Varma

and Garg [4] proposed the use of case studies-based learning

in SE education. The goal of the approach is to present

a multifaceted view of software engineering problems that

closely resemble how it is practiced in real-life. However, the

authors also acknowledged a significant obstacle to such an

approach, which is the limited availability of open and public

SE case studies. They further highlight that most open case

studies usually present hypothetical solutions and research

cases that might not be realistic from a practitioners’ point

of view.

Lieh and Irawan [12] shared a multi-year analysis of using

case study-based learning to teach software design. They dis-

cussed the importance of imparting practical software design

skills in a university setting and its relevance to the learner’s

environment. To evaluate the effectiveness of case study-based

learning, the authors compared it with traditional problem-

based learning, which does not have predefined goals and

expected outcomes. Based on their findings, the authors found

that case study-based learning is better suited for students

with little to no industry experience, while problem-based

learning is more preferred by working adults with experience

in real-world software design problems. However, the authors

highlight that the proposed approach requires substantial effort

from educators to prepare the course materials, especially to

curate relevant case studies.

C. Awareness of the Need for an Open Repository of Software
Design Case Studies

A Bird of Feathers (BoF) session on teaching software

design was held on May 26, 2022 part of ICSE in Pittsburgh,

USA.2 The goal of the BoF was to share experiences and

lessons learned from teaching design and to discuss new ideas

for incorporating design into software engineering curricu-

lums. There were approximately 40 to 50 attendees at the

workshop. The attendees were presented with the following

questions for discussion:

• How do we describe and present design principles to

students?

• What in-class, hands-on activities can we provide to

enhance learning?

• What are some examples of good and bad designs to

study as case studies?

• How do we evaluate how well students learn design?

Some common design principles were mentioned by multi-

ple participants as being taught in existing courses, including

separation of concerns, locality, information hiding, GoF pat-

terns, and architectural patterns. However, others brought up a

number of principles or design dimensions that they believed

were poorly taught or lacking in the existing curricula, par-

ticularly writing, reading, and asking critical questions about

design documents.

One of the key challenges in teaching software design

highlighted during the discussion was the difficulty in obtain-

ing sample software designs and documents to be used for

teaching, because developers are often reluctant to share them.

To address this issue, multiple participants suggested the idea

of developing a shared online repository to collect examples

and case studies for teaching software design courses.

D. Preliminary findings

Through a literature review of the related works, we have

found a lack of publicly available real-world software design

case studies. Part of the reason is that most software design

documents are proprietary and might potentially reveal trade

2https://conf.researchr.org/track/icse-2022/icse-2022-birds-of-a-feather

24

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from IEEE Xplore. Restrictions apply.

Open Design Case Study Template
1) Citation
2) Title
3) Objectives
4) Stakeholder
5) Requirements

a) Descriptions
b) Constraints
c) Quality Attributes

6) Environment

a) Entities and Assumptions

7) Design Solution(s)
8) Outcome

a) Success
b) Failure

9) Lessons Learned
10) Teaching Materials

a) Suggested Usage

11) Other Notes and Resources

Fig. 1. Proposed Open Design Case Study Template

secrets. Even if such case studies are available, they are usually

reported independently as part of a particular research and are

organized or reported differently. We believe that an obstacle to

collecting and curating such design case studies is the lack of

a generally-accepted template to put together all the necessary

documents in a consistent form.

In the domain of Data Science education, having access

to real-world case studies is also important for students to

understand the need of applying different analytical models

to interpret the data, based on different contexts. Therefore,

the Johns Hopkins Data Science Lab team proposed Open

Case Studies [8], which serves as a platform for sharing

and curating real-world case studies for the design of data

science curriculum. The case studies are meant to be used

in universities to help contextualize real-world data science

problems. To encourage contributors and help facilitate the

sharing of such case studies, the authors proposed a simple

and extensible template to communicate the core information

of each study. Guidelines are available to assist and streamline

the publishing process. With the success of Open Case Studies,

we identify an opportunity to adopt a similar approach in

curating and crowdsourcing case studies for software design

curriculum development.

III. PROPOSED DIRECTION AND APPROACH

In this idea Paper, we propose the Open Design Case Study

(ODCS) project, an attempt to curate real-world software

design case studies through crowdsourcing. The aim is to

provide an open-source repository for SE educators to share

and discuss software design case studies.

To facilitate the sharing of open design case studies, we

propose a template for structuring the case studies, as shown

in Figure 1.

Note that the headings and sub-headings in Figure 1 are

meant as a guideline, and we do not expect contributors to

provide exactly the information mentioned in the template.

This flexibility will also allow organizations to selectively

share only parts of a case study that they are able to.

Citation: If the case study is part of a published work or

is hosted on other platform (i.e. Zenodo, Figshare, etc.), the

contributors can choose to include the citation information

related to the case study.

Objectives: Contributors can include the project objectives in

this section.

Stakeholders: Contributors can provide information about the

stakeholders involved in the case study (direct or indirect).

Contributors can also choose to include annoymized informa-

tion about the stakeholders if necessary.

Requirements: To fully leverage the case studies for cur-

riculum design, contributors are advised to include as much

information as possible, including functional requirements,

constraints (technical, environment, or business), as well as

the quality attributes that were significant in the project. If

the Software Requirements Specification (SRS) document is

available, contributors are advised to provide a link to access

the document.

Environment: Contributors can discuss the important entities

and actors in the problem domain (e.g., users or physical com-

ponents), including their properties, roles, and assumptions on

how they interact with the system.

Design Solution(s): Any design artifacts at different levels of

granularity can be added here. For example, design best prac-

tices, design patterns, architectural patterns, UML diagrams

(use cases, classes) etc. Contributors can choose to share the

design artifacts if permissible; it would be ideal to have these.

We acknowledged that some of the case studies might not

have a proposed design solution. This creates an opportunity

for crowdsourcing of design solutions, which will be discussed

in the next section.

Outcome: Contributors can discuss any available success or

failure story based on the proposed design solution. It will be

an added bonus to discuss the root cause of the success or

failure, if applicable.

Lessons Learned: Contributors can include retrospective sec-

tion based on the case study. This can be useful for educators

and students to discuss the lessons learned, such as approaches

to adopt or avoid for a similar type of design problem.

Teaching Materials: Contributors can provide a reusable

teaching materials. They can also discuss the suggested usage

of the case study, including 1.) use to teach a design concept,

2.) use as assignment specification, 3.) use as a case study to

avoid certain bad practices.

To put the ODCS template in practice and demonstrate its

applicability, we have curated several case studies that are

publicly available on GitHub.3 In particular, these projects are

real-world case studies discussed in the work by Sommerville

[13] and the London Ambulance Service case study [14].

Contributors are encouraged to utilize our published ODCS

template4 to prepare additional the case studies. Once com-

3https://github.com/opendesigncasestudies
4https://github.com/opendesigncasestudies/odcs-template

25

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from IEEE Xplore. Restrictions apply.

pleted, they can add their case studies to the centralized

repository to publish them.

A. Suggested Usage of Open Design Case Study by Educators

1) Case studies as a medium to introduce basic design
concepts: The benefits of using case studies to teach and

impart basic design concepts has been reported in multiple

studies [5], [15]. Bolinger et al. [16], described how case

studies can reinforce abstract concepts (design patterns, archi-

tecture, etc.), demonstrate the nature of real client interactions

(conflicting requirements, prioritization of requirements, etc.),

and showcase the relevance of soft skills to students that lack

significant practical experience.

While design patterns are usually used in concert to solve

complex software engineering problems in practice, they are

usually taught using independent examples in universities [15].

By leveraging real-world case studies, educators can discuss

and relate the dynamics of design decision making when

dealing with real-world software systems. Instead of using

dummy examples, educators can provide real examples on

how design patterns can be used to solve real world problems.

However, we do acknowledge that the usage of design case

studies may more easily work with technical decisions rather

than holistic design decisions.

2) Use of case studies for curriculum development: Re-

gurgitating a detailed real-world case study as it is might

be boring and hard to absorb by the students who do not

appreciate the perspective of the original software developers.

When the contents are customized and localized to fit the

students’ level of expertise, it will be easier for the students

to understand the concepts in a way that is consistent with the

fundamental design knowledge that is being taught to them

[16]. We encourage instructors who customize their content

(design case studies) to share their results with the wider SE

educator community on the ODCS GitHub page.

As such, the usage of case studies can be used to drive

curriculum development by allowing educators to use the case

studies to design teaching materials that are more industry

relevant [16]. In-class activities such as tutorials or labs can

be redesigned to revolve around the selected case studies

to reinforce the understanding of abstract concepts. Design

walkthroughs can also help students to understand the rationale

behind the design decisions. Such interactive activities are

opportunities and innovations that are aligned with the concept

of flipped classroom, which has been proven to improve

students’ learning experience [17].

3) Platform to discuss and crowdsource design solutions:
As discussed in Section III, we understand that not all case

studies come with a proposed design solution due to different

factors (trade secrets, incomplete case studies, etc.). Even

when design solutions are available, there is always room to

propose alternative design that can help address the functional

and non-functional requirements from a different perspective.

As such, the proposed ODCS can be used as a platform

to crowdsource design solutions among SE educators and

students. In a more controlled teaching and learning environ-

ment, educators can fork a particular case study and instruct

their students to submit pull requests to submit their design

solutions. The design solutions can be further improved and

refined over time.

Apart from that, educators can create use cases that are

more customized to the students’ learning environment by

scaffolding from the real case studies published on ODCS.

This strategy can be used for conducting long-running projects

where the requirements can evolve over multiple semesters.

IV. PLANS TO EVALUATE OPEN DESIGN CASE STUDY

As an initial validation, we have put the proposed ODCS

template (Figure 1) to actual use by converting some of the

open real-world case studies into the proposed format, as

discussed in Section III. In the process, it has helped us refine

the overall structure and subsections of the proposed template

to be more well suited for SE education, focusing on the

“Why” and “How” factors in design decision making. For

instance, the “Outcome” and “Lesson Learned” sections in the

proposed template help provide opportunities for educators to

run retrospective and discussion sessions with the students, and

to teach them how to critique the proposed design solution(s).

We plan to further enrich the ODCS by incorporating more

open case studies on the GitHub repository.

An example of the case study reported using the proposed

template is shown in Figure 2, where the figure shows a snippet

of the iLearn Case Study5 from Sommerville [13]. Educators

can use the “Success” or “Failure” stories to highlight design

decisions to adopt or avoid based on the outcome of real-

world systems. The “Teaching Materials” section provide

some suggested usage of the case studies to facilitate the

sharing of these real-world examples.

We also plan to conduct qualitative studies to collect

feedback from SE educators about the usage of ODCS, its

benefits in their own classrooms as well as limitations, and

use the collected data to further improve the template. Some

of the plans to conduct qualitative studies include focus

group discussions, a survey and questionnaire from conference

attendees (at software engineering venues), as well as an opt-in

survey for SE educators who plan to use or contribute towards

the ODCS. We also plan to evaluate whether the granularity

of the proposed template is too content heavy, or too abstract

or vague to be useful for SE educators. We invite readers who

are interested to participate in the qualitative studies to contact

the authors of this paper.

In addition, for educators who plan to use OCDS for teach-

ing software design courses in universities, they can consider

conducting a comparative study to evaluate the effectiveness of

case study-based learning against traditional learning methods,

similar to the work by Lieh and Irawan [12]. The findings

from the comparative study can help pave way to improve

the pedagogical approach for case study-based learning in

software design courses.

5https://github.com/opendesigncasestudies/iLearn-IanSommerville

26

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from IEEE Xplore. Restrictions apply.

iLearn Case Study
.....
.....

8) Outcome

a) Success

i) Requirement/Constraint - The need to accommodate a range
of users from age 3 to (potentially) age 83.
The completely configurable architecture meant that versions
of the system could be easily created for different types of
user.

ii) Requirement/Constraint - The very complex system of
governance with no single decision making body.
The flexibility of the system meant that there could be
localised versions if necessary, reflecting the policies of each
local authority.
.....

b) Failure
Root cause(s)
i) A number of different software engineering methods including

viewpoint oriented requirements, use-cases, and UML
modeling were used but ended up failing.

• The main reasons why these software engineering methods
failed were firstly (and most importantly) users did not
care about the system requirements.
.....

ii) Disengaged users - end-users not to wish to take time out
from their normal job to discuss new systems which offer
them no real benefits.

9) Lessons Learned

a) The only approach which worked was user stories, which people
without a technical background could easily relate to.

b) More and more systems are being developed for use by
professionals to support their work. These professionals have the
discretion to accept or reject these systems.

10) Teaching Materials

a) Suggested Usage

• Discussions of the use of user stories as a means of deriving
system requirements. User stories were extensively used here
by the development team to get an overall picture of how the
system might be used.

• Lectures about architecture, where the layered architecture of
the system can be discussed. Elements in the architecture are
implemented as replaceable services.

Fig. 2. Snippet from the iLearn Case Study

V. RELATED WORK

In this section, we discuss some existing attempts at col-

lecting SE case studies or datasets.

There have been multiple attempts at curating open source

repositories and datasets to help improve the replicability and

reliability of software engineering research. One of the earliest

attempt is the PROMISE (PRedictOr Models In Software

Engineering) repository [18] which has been widely used

in different domain of software engineering including defect

prediction, software cost estimation, and reuse prediction.

The Mining Software Repositories (MSR) research com-

munity is one of the strongest advocates of publicly available

datasets where projects such as GitTorrent [19], FLOSSMole

[20], and FLOSSMetrics [21] are widely used in conducting

research related to open source software development. While

open source software development platforms such as GitHub

are frequently used by the MSR communities to conduct

research, Kalliamvakou et al. [22], [23] found that without

proper scrutinization and guidelines, research that relies on

such open source repositories might not be reliable because

the majority of the projects hosted on GitHub are personal

and inactive.

On the other hand, open datasets for past software defects

are crucial to enable researchers to evaluate their defect

prediction models. Datasets such as Defects4J [24] and Bug

prediction dataset [25] are some of the most popular open

source datasets for researchers in the domain of bugs/defects

prediction. These kinds of open source defect datasets helps

researchers working in the relevant domain to benchmark

their proposed models against the state-of-art approaches in

a objective and fair manner.

In this section, we discuss some attempts to collect SE case

studies, datasets, or educational materials. Software engineer-

ing educators are usually willing to share their educational

materials. In most cases this sharing centers on materials for a

specific course. A project to support collaborative development

of material in a new topic area was initiated for an emerging

area of “economics-driven software engineering” in 2002 (a

period when the dominate open source repository was Source-

forge). Shaw et al. [26] reported on the CourseForges project,

which provided an interactive platform for faculty to share

the effort of developing course materials under ground rules

modeled on open source principles with Creative Commons

copyright. Although a body of material was shared, there was

little collaborative evolution and the project faded. The main

reasons for the failure seem to be the lack of a clear structure

for the level, granularity, and organization of the material

and some concerns about whether faculty effort on shared

educational artifacts would be appropriately recognized. The

former issue is addressed here by the ODCS template; as to the

latter, we believe that educational contributions have a higher

profile now than they did two decades ago.

VI. CONCLUSION AND FUTURE WORK

In this idea paper, we propose the Open Design Case Study

(ODCS) to provide a platform for SE educators to curate and

obtain real-world software design case studies. The goal of

the initiative is to build a community based on crowdsourcing

efforts that help mold the future of software design curriculum.

By proposing the ODCS template, we aim to use it as a

guideline to provide a focused view of case studies that reveal

how design decisions were made, how design solutions were

proposed to fulfill different quality requirements, and what are

the success or failure stories that students can learn from it.

We do acknowledge that there are some risks of using

the proposed template due to incomplete software design

artifact/documentations, or lack of design solution. To help

mitigate the risk, we have discussed in Section III-A3 on how

students or educators can utilize the ODCS platform as a way

to propose and refine incomplete design artifacts or solutions.

Finally, as part of the future work to improve the readability

of the design artifacts and delivery of contents to a wider

community, we plan to use Jekyll6 to convert the current

MARKDOWN contents to static websites.

6https://jekyllrb.com/

27

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Shaw and P. Clements, “The golden age of software architecture,”
IEEE software, vol. 23, no. 2, pp. 31–39, 2006.

[2] M. Galster and S. Angelov, “What makes teaching software architecture
difficult?” in 2016 IEEE/ACM 38th International Conference on Soft-
ware Engineering Companion (ICSE-C). IEEE, 2016, pp. 356–359.

[3] V. Garousi, G. Giray, E. Tuzun, C. Catal, and M. Felderer, “Closing
the gap between software engineering education and industrial needs,”
IEEE software, vol. 37, no. 2, pp. 68–77, 2019.

[4] V. Varma and K. Garg, “Case studies: the potential teaching instruments
for software engineering education,” in Fifth International Conference
on Quality Software (QSIC’05). IEEE, 2005, pp. 279–284.

[5] S. Kurkovsky, “Teaching software engineering with lego serious play,” in
Proceedings of the 2015 ACM Conference on Innovation and Technology
in Computer Science Education, 2015, pp. 213–218.

[6] E. L. Ouh and Y. Irawan, “Applying case-based learning for a post-
graduate software architecture course,” in Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Science
Education, 2019, pp. 457–463.

[7] B. J. DeLacey and D. A. Leonard, “Case study on technology and
distance in education at the harvard business school,” Journal of Ed-
ucational Technology & Society, vol. 5, no. 2, pp. 13–28, 2002.

[8] M. R. Breshock, “Expanding access and removing barriers: Data
science education with the open case studies digital platform,” Dec
2021. [Online]. Available: https://jscholarship.library.jhu.edu/handle/
1774.2/66820

[9] M. Shaw, J. Herbsleb, and I. Ozkaya, “Deciding what to design: Closing
a gap in software engineering education,” in Proceedings of the 27th
international Conference on Software Engineering, 2005, pp. 607–608.

[10] M. Shaw, “Software engineering education: A roadmap,” in Proceedings
of the Conference on the Future of Software Engineering, 2000, pp. 371–
380.

[11] C. R. Rupakheti and S. V. Chenoweth, “Teaching software architecture
to undergraduate students: an experience report,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 2.
IEEE, 2015, pp. 445–454.

[12] E. L. Ouh and Y. Irawan, “Teaching adult learners on software archi-
tecture design skills,” in 2018 IEEE Frontiers in Education Conference
(FIE). IEEE, 2018, pp. 1–9.

[13] I. Sommerville, Software Engineering, 10th ed. Pearson, 2015.

[14] A. Finkelstein and J. Dowell, “A comedy of errors: the london ambulance
service case study,” in Proceedings of the 8th International Workshop on
Software Specification and Design (IWSSD). IEEE Computer Society,
1996, pp. 2–5.

[15] Y. Tao and J. Nandigam, “Work in progress: Open source software as
the basis of developing software design case studies,” in Proceedings.
Frontiers in Education. 36th Annual Conference. IEEE, 2006, pp. 27–
28.

[16] J. Bolinger, M. Herold, R. Ramnath, and J. Ramanathan, “Connecting
reality with theory—an approach for creating integrative industry case
studies in the software engineering curriculum,” in 2011 Frontiers in
Education Conference (FIE). IEEE, 2011, pp. T4G–1.

[17] L. Gren, “A flipped classroom approach to teaching empirical software
engineering,” IEEE Transactions on Education, vol. 63, no. 3, pp. 155–
163, 2020.

[18] J. Sayyad Shirabad and T. Menzies, “The PROMISE Repository of
Software Engineering Databases.” School of Information Technology
and Engineering, University of Ottawa, Canada, 2005. [Online].
Available: http://promise.site.uottawa.ca/SERepository

[19] G. Gousios and D. Spinellis, “GHtorrent: Github’s data from a firehose,”
in 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). IEEE, 2012, pp. 12–21.

[20] J. Howison, M. Conklin, and K. Crowston, “Flossmole: A collaborative
repository for floss research data and analyses,” International Journal of
Information Technology and Web Engineering (IJITWE), vol. 1, no. 3,
pp. 17–26, 2006.

[21] I. Herraiz, D. Izquierdo-Cortazar, F. Rivas-Hernández, J. Gonzalez-
Barahona, G. Robles, S. Duenas-Dominguez, C. Garcia-Campos, J. F.
Gato, and L. Tovar, “Flossmetrics: Free/libre/open source software
metrics,” in 2009 13th European Conference on Software Maintenance
and Reengineering. IEEE, 2009, pp. 281–284.

[22] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
2016.

[23] ——, “The promises and perils of mining github,” in Proceedings of
the 11th working conference on mining software repositories, 2014, pp.
92–101.

[24] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ser. ISSTA 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 437–440. [Online]. Available:
https://doi.org/10.1145/2610384.2628055

[25] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison
of bug prediction approaches,” in Proceedings of MSR 2010 (7th IEEE
Working Conference on Mining Software Repositories). IEEE CS Press,
2010, pp. 31 – 41.

[26] M. Shaw, S. Butler, H. Erdogmus, and K. Schmid, “Courseforges.
open source curriculum design for value-based software engineering,”
in Proceedings of the 5th International Workshop on Economic-Driven
Software Engineering Research, 25th International Conference on Soft-
ware Engineering. IEEE Computer Society, 2003, pp. 4–7.

28

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:14:56 UTC from IEEE Xplore. Restrictions apply.

