
Trade-off-Oriented Development:
Making Quality Attribute Trade-offs First-Class

Tobias Dürschmid
Carnegie Mellon University

duerschmid@cmu.edu

Eunsuk Kang
Carnegie Mellon University

eskang@cmu.edu

David Garlan
Carnegie Mellon University

garlan@cs.cmu.edu

Abstract—Implementing a solution for a design decision that
precisely satisfies the trade-off between quality attributes can be
extremely challenging. Further, typically quality attribute trade-
offs are not represented as first-class entities in development
artifacts. Hence, decisions might be suboptimal and lack require-
ments traceability as well as changeability. We propose Trade-
off-oriented Development (ToD), a new concept to automate
the selection and integration of reusable implementations for
a given design decision based on quality attribute trade-offs.
Implementations that vary in quality attributes and that solve
reoccurring design decisions are collected in a design decision
library. Developers declaratively specify the quality attribute
trade-off, which is then used to automatically select the best
fitting implementation. We argue that thereby, software could
satisfy the trade-offs more precisely, requirements are traceable
and changeable, and advances in implementations automatically
improve existing software.

Index Terms—Design decision, software architecture, quality
attribute, non-functional property, reuse, software design

I. INTRODUCTION

Software developers have to make trade-offs between qual-
ity attributes, such as security, performance, power consump-
tion, reliability, and availability that are implicit in the imple-
mented code [1]. For example, there are many considerations
in implementing a pipe [2, pp. 53–70] to connect two com-
ponents: Should the data stream be encrypted and signed to
ensure confidentiality, which could decrease performance as
side effect, and if yes, which algorithms to use? Should a
ping / echo tactic or heartbeat tactic [1, pp. 87–89] be used to
ensure availability of both components, which could reduce the
bandwidth, and if yes, how often should the ping or heartbeat
occur, and which implementation should be used? Should the
data stream be compressed to increase the bandwidth, which
could add a small performance overhead at both components?

To make optimal design decisions, developers have to be
experts in all of these domains to know and evaluate a large
set of alternatives [3]. However, nowadays, software is often
developed by non-domain-experts. Studies in the security do-
main have shown that developers often lack necessary domain
knowledge and struggle with finding and using a library for
security features [4]. Therefore, they demand would benefit
from techniques to specify and reason about at a higher level
of abstraction [4]. Furthermore, since these trade-offs have to
be made at various places of the software, quality attribute

This research was supported by the Siebel Energy Institute award A022598.

implementations are scattered over the code [5]. Additionally,
design decisions that involve quality attribute trade-offs are
typically implicit and not directly observable in the code.
So it is often difficult to trace quality attributes and trade-
offs among them to implementations or adjust the software if
those requirements change [5], [6]. Cross-module changes, for
example, are especially error-prone [7].

To address these problems, we propose a new development
concept called ToD that makes quality attribute trade-offs first
class entities of programming by making them explicitly part
of the code and design. ToD reuses existing implementations
to a reoccurring design decision in a design decision library
created by domain experts; enables non-expert developers
to declaratively specify quality attributes, optionally with a
priority, for each design decision; and automatically selects
the best-suited implementation from those in the library.

We argue that this concept has three main advantages: (1)
developers need less domain knowledge to create software
with the demanded quality attributes, because ToD simplifies
the reuse of expert solutions; (2) the resulting system more
easily responds to changing requirements, because develop-
ers need only to adjust the declaratively specified quality
attributes; and (3) if a new implementation that better suits the
defined requirements is added to the design decision library,
the software automatically uses the new implementation and,
therefore, improves the overall software quality attributes.

II. RELATED WORK

Feature-Oriented Programming [8] is an approach for flexi-
ble composition of objects and systems from a set of features.
It provides variability in the functional dimension of the
requirements by activating and deactivating features. While
quality attributes can be affected by the activation of a feature,
the focus is on changing the functionality. In contrast, the
proposed concept provides variability in the non-functional
dimension while keeping the functionality fixed. By changing
the implementation of each feature, the intent is to specifically
control the quality attributes of the system.

Aspect-Oriented Programming (AOP) [9] is a technique to
modularize cross-cutting concerns (e.g., logging, monitoring,
security). However, AOP is not designed to modularize quality
attributes that are intently scattered (e.g., performance, mem-
ory consumption). So AOP is not intended to provide a first-
class representation of all quality attribute trade-offs.



Banking Application

q[] : Quality Attributes

Design Decision Library

1: findSatisfying(a, q[])

2: i

3: init(sink, source)

sink : Component

source : Component
pc : Pipe Contract

i : DeflatedStream
PipeImplementation

i3 : CheckedStream
PipeImplementation

control : Control

Message
Dependency
Generalization

a : Application Context

s : Implementation Selector <Pipe>

i2 : CipherStream
PipeImplementation

q[“performance”]=low
q[“security”]=high

a[“CPUsMin”]=2
a[“CPUsMax”]=4

Fig. 1. Overview of ToD applied to the pipe example. The colors of the concepts are used in all following figures. Quality attributes are green, contracts are
yellow, and implementations are blue. Other ToD concepts are red, while classes belonging to the example are white. The control needs a pipe implementation.
The control forwards the quality attribute trade-off and the application context to the implementation selector (findSatisfying), which determines the best
matching implementation. Afterwards the control initializes (init) the returned pipe implementation to connect the source component with the sink component.

The modeling technique Concern-Oriented Software De-
sign [10] supports developers in selecting a reusable imple-
mentation by offering model-driven tools for exploring a hier-
archical design space. Similarly, End-user architecting [11]
is a concept that enables non-professional programmers to
compose functionality to create programs. In these approaches,
developers explicitly make each design decision by select-
ing one solution for each variation point without having to
know the details of the low-level implementation. This guides
developers in creating high quality software. However, the
software does not express the trade-offs behind each decision.
Therefore, it lacks requirements traceability. Furthermore,
since the developers select one implementation, they can build
upon implicit assumptions. Hence, later it is hard to change a
decision if these requirements change. Our proposed approach
targets these challenges by explicitly stating the required
quality attributes while keeping the decision transparent.

TradeMaker [12] is an approach that automatically analyses
trade-off spaces of design decisions and synthesizes an imple-
mentation from an abstract specification of object-relational
mappers. It is focused on one domain and its performance-
related quality attributes. So ToD generalizes this approach.
Further, ToD builds on reuse rather than program synthesis.

III. TRADE-OFF-ORIENTED DEVELOPMENT (TOD)

This section introduces the generic concepts of ToD, as
visualized in Figure 1. As an example for ToD, to implement a
pipe for connecting two components of a banking application,
a developer would have to (1) search for the functional
contract (explained below) of a pipe in the design decision
library, (2) prioritize the involved quality attributes (e.g., data
confidentiality, data integrity, and reliability), and (3) bind the
inputs and outputs of the pipe contract to the application.
Then the implementation that best satisfies this trade-off is
automatically selected and used. Thereby, the trade-off of
the required quality attributes is first-class represented in the
code and easily changeable. Additional details of the use case
scenarios can be found in Section IV.

A) Contract. A contract is a functional interface for design
decision implementations that vary in quality attributes. Each
contract can be implemented by a set of implementations

Ciper

Banking Application

Deflated Checked

RSA
AES

Key Exchange Contract

Diffie-Hellman Implementation

Contract
satisfies

Legend
Encryption Contract

Pipe Contract

Fig. 2. Tree of design decisions. Implementations of contracts can delegate
responsibilities to other contracts. Since quality attribute trade-offs are for-
warded to the children, the peripheral application controls all decisions.

(e.g., encryption algorithms or pipe implementations). How-
ever, to provide changeability, developers should not make
assumptions on a concrete implementation of a design de-
cision. Instead, the best matching implementation is auto-
matically selected according to the required quality attributes
with associated priorities as defined in the source code. Thus,
developers can explicitly weight the requirements, so that the
design decision implementation that is optimal in this context
will be selected and the trade-off becomes first class.

B) Design Decision Implementation. A design decision im-
plementation is a concrete implementation of a corresponding
contract. It is characterized by the degree to which it supports
certain quality attributes. A contract can be implemented by
many different implementations. Each implementation offers
quality attributes across various dimensions (e.g., performance,
memory consumption, security). An implementation provides
some of these properties to a higher degree than other prop-
erties. Hence a utility function is used to assess the design
decision’s suitability for a concrete context.

Implementations can delegate responsibilities to other con-
tracts created by other domain experts, as shown in Figure 2.
The quality attribute trade-offs are forwarded to the child
decisions to tailor them to the peripheral application. Thereby,
implementations can be reused while hiding the hierarchy
from the user and delaying all inner decisions to the target
application. Hence, a tree of design decision can be created
that provides multiple levels of abstraction and a larger amount
of context-tailored reuse.



Contract Use
Legend

Module

Quality Attribute 
Scope

Client Server Database

Security
Send message

Performance

Send message

Send message

Display Page

Store Data

Store Data

Fig. 3. The scope of quality attributes can cross-cut multiple modules (e.g.,
security), be limited to one single module (performance in the database
module), or influence only a singe contract. Quality attribute scopes can
overlap with each other.

C) Quality Attributes. A quality attribute is one dimension
for characterizing an implementation of a contract. Examples
are performance, memory consumption, security, or domain-
specific properties, such as precision or fault-tolerance.

The application developer then specifies the trade-off be-
tween quality attributes by creating a utility function that
weights the quality attributes. This could be a linear combina-
tion of the quality attributes, or quality attribute scenarios [1],
or it could also include conditional logic (e.g, as long as the
computation is faster than one second, I do not care about
performance). By explicitly specifying the utility function that
evaluates the implementations, the trade-off becomes fist class.

Each quality attribute has a scope to which it applies, as
shown in Figure 3. This can be the use of a single contract,
but it can also be a whole module (such as the networking
component), or a cross-cutting feature of the system (such as
all messages sent to one specific receiver). For example, if
one part of the system becomes a bottleneck, the performance
requirements can be prioritized higher for this specific part
of the system. So there is no need to consider performance
for other system parts that do not constitute a bottleneck.
To implement scopes, quality attributes can be expressed as
separate artifacts that, similarly to pointcuts in AOP, abstractly
specify the contracts, modules, or features to which they apply.
Further, reoccurring configurations of quality attribute trade-
offs can be defined as presets (e.g., high security, high avail-
ability, and low scalability for the SmallWebApp preset) to
be reused and optionally refined conveniently and frequently.

D) Application Context. Information about the hardware
on which the software is expected to run (e.g., memory,
CPU speed, amount of cores, and GPU properties) and the
environment (e.g., speed, reliability and security of the net-
work) can influence the decision about which implementation
is best suited. Therefore, developers can optionally specify
information about the application context in a standardized
format (e.g., in a key-value schema like #CPU cores → 2–
4, or as model of the runtime architecture). This information
usually is uniform across the whole application and will be
used for all trade-offs.

E) Implementation Selector. The implementation selector
automatically chooses an implementation for a contract. To
select the implementation that best satisfies the trade-off,
the selector evaluates each implementation according to the
priorities of quality attributes and the context. The imple-

mentation selector uses, if possible, automated analysis, such
as performance metrics as carried out by TradeMaker [12]
and security metrics, or otherwise an assessment functions
q : context × qualityAttributes → R manually defined by
domain experts, of the implementations to determine which
best satisfies the requirements. The optional information of
the application context can be used to tailor the evaluation to
the execution environment of the software.

IV. USE CASE SCENARIOS

ToD mainly targets these scenarios: (A) implementing a
feature without being an expert in the domain, (B) adapting the
software according to changing quality attribute requirements,
and (C) updating to new advancements in the domain.

A) Implementation. Junior developer Alice needs a pipe
implementation for her distributed banking system. She
browses the design decision library for the pipe contract by
searching for the term “pipe” in the index. Because sensitive
data is transfered, she highly prioritizes data confidentiality,
data integrity, and reliability. She thinks availability deserves
medium priority, because it is more important to ensure that
the data is transfered correctly. Performance is assigned the
lowest priority, since delays are acceptable. So she creates a
utility function that weights these quality attributes according
to these priorities and passes it to the design decision library.
Since she knows the hardware properties and the network
capacity, she adds this information to the application context,
as recommended in the documentation of the pipe contract.

B) Changing Requirements. After some time of testing,
Alice recognizes that there happens some communication
between the two components that does not involve sensitive
data, which became a performance bottleneck because of the
encryption overhead. Since the quality attribute trade-off is
represented in the code as a first-class entity, she can directly
trace the location where this decision was made. So she
reduces the scope of data confidentiality to sensitive data
exchange only and increases the priority of performance at
the bottleneck. Internally, different implementations are used
for the corresponding types of communication and the system
is now tailored to the changed requirements.

C) Implementation Update. A security researcher just
published a new encryption algorithm that provides a higher
level of security while still being faster to compute than
existing algorithms. This attributes are determined by auto-
mated tests that are attached to the implementation and the
assessment of other domain experts that know all encryption
algorithms in the library. Alice does not know about this new
advancement, but since the implementation became part of the
design decision library, her application automatically selects
the improved version. After the next deployment, her banking
application runs faster and provides a higher level of security.
So Alice as a non-expert in security can reuse the high-quality
implementation created by a security researcher. In general
the design decision library is supposed to be developed and
maintained by a community of domain experts while the target
audience is mainly non-expert developers.



V. RESEARCH CHALLENGES

To make ToD usable in practice, some further research
questions have to be addressed:

How to deal with implementations that do not match the
interface of the contract? ToD is limited to implementations
that share a common interface, the contract. If an imple-
mentation requires other inputs, it is incompatible with the
general contract. A contract with the additional inputs can be
created that automatically includes the general contract using
a wrapping implementation. However, since this workaround
works for a limited amount of input sets only, it remains
to be explored how to deal with large varieties of input
sets. However, the general problem of adaptation to interface
mismatch is still an open problem [13].

How to evaluate quality attributes? ToD relies on an ob-
jective and comparable assessment of quality attributes of im-
plementations. In the optimal case, this is done automatically.
This is already possible for performance [12] and partially for
specific network security attacks [14], but hardly for quality
attributes such as reliability and availability. So future work
should research techniques to evaluate all quality attributes.

How to specify quality attribute trade-offs? In ToD quality
attribute trade-offs need to be specified using a precise, formal
notation to enable automatic implementation evaluation. Most
of the prior works on interface specification have focused on
functional requirements, although there are recent works on
specification of certain quality attributes such as reliability
(e.g.,[15]). However, further research is needed to devise
specification mechanisms to express a wide range of quality
attributes and their relations to each other.

How to optimize the quality attributes globally? In ToD
each decision point locally optimizes quality attribute trade-
offs. However, the overall goal of software architecture is to
optimize the quality attributes of the whole system. So when
applying ToD, one still needs an architect who maintains an
overview of the whole system and defines constraints for each
component. For example, to ensure that the overall system
does not consume more than x memory, the implementation
for this contract should not consume more than y memory,
where y depends on x. This directly results in the question
of how to globally optimize the decisions of the contracts.
Since this exploration space is potentially exponential, solve
this efficiently is a non-trivial task.

VI. DISCUSSION AND CONCLUSIONS

We propose ToD, a new concept to make quality attribute
trade-offs first class. We argue that thereby, requirements are
more easily traceable and changeable. Furthermore, devel-
opers will concentrate more on quality attributes. ToD has
the potential to change the way that software is developed
by facilitating rapid cycles of development, testing, and ad-
justing requirements. This in turn will enable developers to
deliberately control the quality attributes of each part of the
system separately. For example, performance optimizations
would be limited to bottlenecks and security optimizations
would be limited to sensitive parts of the system. Moreover,

newly developed solutions that more precisely satisfy the
trade-offs will automatically be integrated into the software
due to the decoupling of trade-off specifications from the
solutions. Thereby, advances in research and development of
new solutions might have more direct and immediate impact
on practice. Finally, since less expertise is needed to develop
high quality systems, this concept is one step towards the
goal of making software development more accessible to non-
experts.

ToD can be applied to, for example, architectural connec-
tors, resource management, persistence, computer graphics,
data structure, security, and other domains with unified con-
tracts and varieties of implementations. So ToD is mainly
intended for domains that yet well understood and thats
community has agreed on a common problem definitions and
common standard implementations.

ToD has the potential to dramatically change the way that
code is reused. Currently either a small, negligible portion
of software is reused, or a larger portion that includes many
decisions that might not fit the context of the reusing software
and, therefore, limits the applicability of the reused code.
ToD combines both advantages to delay all decisions that are
made in reused code to the client that uses it. So developers
would not decide to use a specific security library, but state
the decisions that are made during the development of the
security library. Thereby it is one steps towards the vision of
mass customized modules.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 3rd ed.

[2] F. Buschmann, R. Meunier, H. Rohnert, S. Peter, and M. Stal, Pattern-
oriented Software Architecture: A System of Patterns, vol. 1.

[3] D. Tofan, M. Galster, and P. Avgeriou, “Difficulty of architectural deci-
sions – a survey with professional architects,” in Software Architecture,
K. Drira, Ed., Springer Berlin Heidelberg, 2013.

[4] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping Through
Hoops: Why Do Java Developers Struggle with Cryptography APIs?”
In Proc. ICSE 2016.

[5] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in Proc. WICSA 2005.

[6] M. P. Robillard, “Sustainable Software Design,” in Proc. FSE 2016.
[7] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, and

Y. Cai, “A study on the role of software architecture in the evolution
and quality of software,” in Proc. MSR 2015.

[8] C. Prehofer, “Feature-oriented programming: A fresh look at objects,”
in Proc. ECOOP 1997, M. Akşit and S. Matsuoka, Eds.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proc.
ECOOP 1997.

[10] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software
design,” in Proc. MODELS 2013.

[11] D. Garlan, V. Dwivedi, I. Ruchkin, and B. Schmerl, “Foundations and
tools for end-user architecting,” in Large-Scale Complex IT Systems.
Development, Operation and Management, ser. LNCS 7539. 2012.

[12] H. Bagheri, C. Tang, and K. Sullivan, “TradeMaker: Automated
Dynamic Analysis of Synthesized Tradespaces,” in Proc. ICSE 2014.

[13] C. Canal, J. M. Murillo, and P. Poizat, “Software Adaptation,” L’Objet,
vol. 12, no. 1, 2006.

[14] A. Ramos, M. Lazar, R. H. Filho, and J. J. P. C. Rodrigues, “Model-
Based Quantitative Network Security Metrics: A Survey,” IEEE Com-
munications Surveys Tutorials, vol. 19, no. 4, 2017.

[15] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard,
“Chisel: Reliability- and accuracy-aware optimization of approximate
computational kernels,” SIGPLAN Not., vol. 49, no. 10, Oct. 2014.


