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ABSTRACT
Cardiac Ablation is an effective treatment of arrhythmia in which

physicians terminate fast heart rate by transecting abnormal elec-

trical conduction pathways in the heart with RF energy. During the

procedure, physicians diagnose the condition of the heart and locate

ablation sites by analyzing electrical signals sensed by catheters in-

serted into the heart. Due to the limited observation of the patient’s

heart, there may exist multiple heart conditions that can explain

historical observations, causing ambiguities in the patient’s heart

condition. During the procedure, physicians have to visualize and

continuously update these suspected heart conditions in their mind,

causing heavy mental burden on the physicians. In this paper, car-

diac electrophysiology is formalized using a physiological model of

the heart, such that the diagnosis problem during cardiac ablation

can be formalized as parameter identification and state estimation

problems with the heart model. We then propose a model-based

clinical assist system which partially solves the diagnosis problem

during cardiac ablation. The system enumerates suspected heart

conditions by creating "digital twins" of the patient’s heart with

heart models. The heart models are used to represent and visu-

alize suspected heart conditions, and are systematically updated

and removed with new information during the ablation procedure.

The system provides more rigorous and intuitive interpretation

of current understanding of the patient’s heart, and improves the

accuracy and efficiency of cardiac ablation procedures by relieving

the physicians from demanding low-level reasoning.
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1 INTRODUCTION
Coordinated contractions of our heart are essential to our health,

and are governed by electrical activities within the heart. Electric

excitation can develop and circulate around structurally-defined

or undefined circuits, resulting in abnormally fast heart rate. This

mechanism is referred to as reentry, and is the dominant cause

of tachycardia [17]. Depending on the locations of the reentry

behavior, tachycardia can cause serious consequences like stroke

[4], and even death [15]. Clinical studies suggest rising prevalence

and incidence of tachycardia, with increases in overall burden and

mortality all over the world [5].

Cardiac ablation has been an effective treatment of tachycar-

dia. By inserting catheters through the veins into the heart (Fig.

1.(b)), physicians can observe electrical activities within the heart,

which are referred to as the Electrogram signals (EGMs) (Fig. 1.(c)).

Catheter locations within the heart can be obtained from fluro-
scopic images as well as more advanced Electro-Anatomic Mapping
(EAM) system[3]. Based on these spatial-temporal observations,

physicians infer the current heart condition of the patient, and then

identify and "kill" heart tissue with anomalies (i.e. reentry circuits)

using RF energy [13]. Cardiac ablation can effectively terminate

structural reentry tachycardia [12], and has demonstrated better

outcome than anti-arrhythmic drugs in non-structural tachycardia

like Atrial Fibrillation [16].

Typical cardiac ablation procedures range from 3-6 hours, with

majority of time spent on diagnosing the heart condition of the

patient [13]. Due to the minimally invasive nature of the cardiac

ablation procedure, the number of catheters inside the heart is

very limited. Patients with the same disease mechanism may also

exhibit different observable behaviors due to the large variability

among patients. Therefore, the patient’s heart can be viewed as

a partially-observable system with unknown parameters, which

means at a particular time, there exists multiple heart conditions

that can explain historical observations. In most of the clinical cases

that require cardiac ablation procedure, suspected heart conditions

cannot be distinguished via passive observations alone. Physicians

need to deliver electrical pacing sequences from catheters to the

heart, so that previously indistinguishable heart conditions will

exhibit different observations. This process is referred to as Electro-
Physiological (EP) Testing. During EP testing, physicians iteratively

perform the following tasks until an unambiguous diagnosis is

achieved:

(1) Identify all possible heart conditions that can explain histor-

ical EGM observations
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Figure 1: (a) Electrical conduction system of the heart; (b)
Common catheter configuration; (c) Example of EGMs ob-
served from corresponding channels [13].

(2) Eliminate heart conditions if information in these heart con-

ditions conflicts with information in new EGM observations

(3) Update remaining heart conditions with information ob-

tained from new observations

(4) Identify pacing sequences that can distinguish suspected

heart conditions

The amount of reasoning and calculations involved in these tasks

place heavy mental burden on physicians. Some of these reasoning

become subconscious as physicians gain experience, which requires

years of practice. As the result, the experience level of physicians

affects not only the time consumption, but also the chances of clin-

ical complications during the procedure [7]. A more experienced

physician takes less time and makes fewer mistakes than a less

experienced one. With increasing number of cardiac ablation proce-

dures performed every year [14], there is need to reduce physicians’

mental load, bridge the experience gap among physicians with dif-

ferent experience level, and improve the overall efficiency of the

ablation procedure.

As discussed above, the physician maintains "models" of the pa-

tient’s heart in their mind. The parameters and state of the "models"

are constantly updated with new information from observations

to reflect the actual heart condition of the patient. The process

aligns with the Digital Twin concept used in various industries

like manufacturing [8]. In this project, we propose a model-based

clinical assist system that can reduce physician workload during

cardiac ablation procedure. Digital twins of the patient’s heart are

created and updated based on observations to explicitly represent

and visualize the ambiguities of heart conditions during the pro-

cedure, which provide rigorous yet interpretable guidance to the

physicians. The overview diagram of the system is shown in Fig.

2. The system runs in parallel with the current cardiac ablation

procedure setup. The real-time inputs to the system include: 1)

sensed EGM signals; 2) pacing sequences delivered to the patient;

and 3) catheter locations sensed by the EAM system. The output of

the system includes: 1) suspected heart conditions and their inter-

pretable visualizations; and 2) suggestion on pacing sequences that

can distinguish suspected heart conditions.

In this paper, we focus on identifying suspected heart conditions

during cardiac ablation procedure, which is a prerequisite for pac-

ing sequence suggestion. In our clinical assist system, suspected

heart conditions of the patient are represented by digital twins of

the patient’s heart, which are physiological models of the heart. The

state and parameters of the heart models are incrementally updated

Figure 2: System Overview

to reflect the current understanding of the patient’s heart. The state

and parameters of the heart models are clinically-relevant, therefore

the digital twins can provide interpretable visualization of the pa-

tient’s heart condition during cardiac ablation. Ambiguities arisen

during the procedure are enumerated by separate digital twins, and

digital twins that have conflicts with information obtained from

new observations are eliminated.

At the beginning of a cardiac ablation procedure, a set of heart

models for different arrhythmia with unknown parameters are

provided as the input to our clinical assist system, which reflect

prior knowledge on the patient’s heart condition. The clinical as-

sist system performs the following tasks iteratively for every new

observation during cardiac ablation:

(1) Enumerate all possible heart models in terms of their state

and parameters, such that the simulation of the heart models

can explain historical observations.

(2) If information from the new observation conflict with infor-

mation in a heart model, the heart model is eliminated

(3) Update the state and parameters of the heart models based

on the new observation

These tasks align and complement with the physicians’ activities

during cardiac ablation, which can reduce physicians’ effort dur-

ing diagnosis. The digital twins rigorously represent uncertainties

during cardiac ablation procedures, which helps the physicians to

achieve correct diagnosis with higher efficiency and accuracy. The

system can significantly reduce the mental load of the physicians

during cardiac ablation procedures. It can also bridge the experi-

ence gap among physicians so that cardiac ablation procedure can

be more accessible.

The contributions of this paper is 3-folds: 1) We formalized the

diagnosis problem during cardiac ablation procedure as creating

digital twins of the patient’s heart, which involves identifying the

parameters and estimating the state of the patient’s heart; 2) We

proposed using interpretable heart models to represent uncertain-

ties and ambiguities in heart conditions during ablation procedure;

and 3) We developed a clinical assist system that can partially solve
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the diagnosis problem during cardiac ablation by enumerating,

eliminating and updating digital twins of the patient’s heart.

The rest of the paper is arranged as follows: In Section 2, we

provide background knowledge on cardiac ablation procedure, with

focus on the sources of uncertainties and the challenges of correct

diagnosis. In Section 3, we introduce the heart model structure

and formally define the diagnosis problem in terms of the heart

model during cardiac ablation procedure. In Section 4, we propose

a partial solution for the diagnosis problem based on clinical knowl-

edge. In Section 5, we use a clinical case study to demonstrate the

functionalities of our system. In Section 6, we discuss other clinical

and research efforts to improve efficiency and accuracy of cardiac

ablation procedures. We then end the paper with discussions and

future work.

2 CARDIAC ABLATION BASICS
In this section, we briefly introduce the domain knowledge required

to understand cardiac ablation. These knowledge will be encoded

into our clinical assist system in forms of heart models and physi-

ological rules, and will be used during identification of suspected

heart conditions during cardiac ablation.

2.1 Cardiac Electro-Physiology (EP)
The coordinated contractions of the heart are governed by electri-

cal activities inside the heart. Heart tissue can be depolarized by

electrical stimulus, which results in voltage change outside of the

tissue. The increased voltage caused by depolarization will then

depolarize nearby tissue, causing propagation of electrical signals

with delays.

Tissue with different timing parameters form the electrical con-

duction system of the heart, which is shown in Fig. 1.(a). In a healthy

heart, electrical depolarization starts from the SA node, which is

a structure that can depolarize itself. The signal then propagates

throughout both atria, causing atrial contraction and pump blood

into the ventricles. After some delay at the AV node, the signal then

propagates throughout the ventricles and pump blood to the whole

body. This healthy heart rhythm is referred to as the Normal Sinus
Rhythm (NSR).

The timing of these electrical activities ensures hemodeynmics

with efficient blood supply, and are essential to our health. Derange-

ments from NSR are referred to as arrhythmia, which can cause

serious health problems. Abnormally fast heart rate is referred to

as tachycardia. Anomalies that can cause arrhythmia include: 1)

additional pathways, which can form conduction circles within

the heart, causing dangerous reentry tachycardia; 2) degeneration

of heart tissue, which can affect its refractory period, conduction

delay or rate of self-depolarization; and 3) the combination of the

first two. Therefore, diagnosis of the heart condition includes iden-

tifying 1) the structure of the electrical conduction network, and 2)

the parameters of key heart tissue.

2.2 Electrophysiological (EP) Testing
EP testing is the early stage in cardiac ablation procedure in which

physicians gain understanding of the condition of the patient’s

heart and localize ablation sites. By inserting catheters with elec-

trodes into the heart from the vein in the groin area of the patient,

Figure 3: 1) Illustration of electrical conduction within the
heart over time; 2) Corresponding EGM signal from the His
catheter; 3) Another signal conduction pattern that can ex-
plain the same EGM observation

physicians can observe local electrical activities at various locations

of the heart.

Fig. 1.(b) shows a commonly used configuration for stationary

catheters. Besides the stationary catheters, moving catheters are

also used to monitor local electrical activities at locations of interest.

Electrical activities observed from these catheters are referred to as

electrograms (EGMs). Each "impulse" represents either a depolariza-

tion of local tissue (near-field) or electrical reflection from strong

electrical activities including pacing or heart chamber contractions

(far-field).

These catheters can only capture local and partial information

about the heart, which may cause ambiguities on the state of the

patient’s heart. These ambiguities and uncertainties reflect in the

EGMs as well, which makes it difficult to interpret and extract infor-

mation from. In EP related textbooks, annotations are provided on

EGMs to provide more intuitive interpretation. These annotations

include source and/or properties of electrical signals, as well as key

intervals between signals (Fig. 1.(c)). However, during the proce-

dure there are no real-time EGM annotations. Correct annotation

of EGM signals is an indication of correct diagnosis of current heart

condition.

Fig. 3 demonstrated a clinical case in which observable EGM

can be explained by multiple heart conditions. Row 2 shows the

His EGM of a patient, and the red dotted lines mark the impulses.

Row 1 demonstrates the conduction trajectory of electrical signals

within the patient’s heart, and the red stars mark the tissue that are

being observed by the His catheter. The black arrows illustrate how

impulses in His EGM correspond to observable tissue depolariza-

tions at different time. Row 3 shows another heart condition that

can also explain the same EGM sequence. The patterns of electrical

conduction are different in Row 1 and 3, but are not distinguish-

able given the His EGM in Row 2. During the ablation procedure,

physicians are required to consider all plausible heart conditions

that can explain historical observations, and update them with in-

formation gathered from new observations. As the complexity of
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the heart condition increases, the number of plausible heart condi-

tions increases rapidly, which makes tracking every heart condition

infeasible, causing inaccurate and inefficient diagnosis.

3 FORMALIZING THE DIAGNOSIS PHRASE
OF CARDIAC ABLATION PROCEDURE

The diagnosis problem of cardiac ablation procedure has been ex-

tensively discussed in clinical literature like [13]. However, these

knowledge are implicitly described in terms of case studies. In this

section, we formalize cardiac electrophysiology using physiological

model of the heart, the diagnosis problem during cardiac ablation

can therefore be formulated as parameter identification and state

estimation problem on the heart model.

3.1 Modeling Cardiac Electrophysiology
Physicians’ Conceptual Model of Cardiac Arrhythmia
In clinical cardiac electro-physiology, physicians have developed

a conceptual model ℎ𝐶 to describe electrical activities within the

heart (Fig. 4). As the electrical activities of most heart tissue are not

observable, physicians only take into account key anatomical and

functional structures of the heart during analysis. The remaining

heart tissue are abstracted as conduction pathways among these key

tissue. The heart is then viewed as an electrical conduction network

in which electrical signals are generated and traverse throughout.

As shown in Fig. 4, the reentry circuit formed around scar tissue in

the real heartℎ𝑅 is abstracted as a conduction loop in the conceptual

model ℎ𝐶 .

The conceptual model ℎ𝐶 represents domain knowledge needed

during cardiac ablation, and is essential for an interpretable clini-

cal assist system. However, the conceptual model is not formally

defined, and is mostly illustrated in clinical literature in terms of

case studies.

Formalizing the Conceptual Model ℎ𝐶

In [11], Jiang et.al proposed the Virtual Heart Model (VHM), which

is an EP heart model framework for implantable cardiac device

validation [10]. The structure of the conceptual model ℎ𝐶 , which

represents the electrical conduction network of the heart, is ab-

stracted as an undirected graph in VHM:

𝛾 = ⟨𝑉 , 𝐸⟩

Each 𝑣 ∈ 𝑉 is represented by a node automaton, which models the

tissue’s behaviors in generation and blocking of electrical signals.

Each edge 𝑒 ∈ 𝐸 is represented by a path automaton, which models

the conduction of electrical signals among heart tissue (Fig. 4). The

node and path automata are connected via synchronization events,

such that if there exists 𝑒1 = (𝑣1, 𝑣2) ∈ 𝐸, we have 𝑣1 .𝐴𝑐𝑡_𝑝𝑎𝑡ℎ ⇒
𝑒1 .𝐴𝑐𝑡_𝑝𝑎𝑡ℎ_1, 𝑣2 .𝐴𝑐𝑡_𝑝𝑎𝑡ℎ ⇒ 𝑒1 .𝐴𝑐𝑡_𝑝𝑎𝑡ℎ_2, 𝑒1 .𝐴𝑐𝑡_𝑛𝑜𝑑𝑒_1 ⇒
𝑣1 .𝐴𝑐𝑡_𝑛𝑜𝑑𝑒 , 𝑒1 .𝐴𝑐𝑡_𝑛𝑜𝑑𝑒_2 ⇒ 𝑣2 .𝐴𝑐𝑡_𝑛𝑜𝑑𝑒 , in which ⇒ is the

mapping of synchronization events.

Each node and path automaton is a timed automaton [1], which

is a tuple ⟨𝑄,𝑄0, Σ, 𝑋, 𝑖𝑛𝑣,→⟩ where:
• 𝑄 is a finite set of locations

• 𝑄0 ∈ 𝑄 is the set of initial locations

• Σ is the set of events

• 𝑋 is the set of clocks

Figure 4: The conceptual model ℎ𝐶 abstracts the observable
behaviors of the real heart ℎ𝑅 , and the heart model ℎ𝐴 for-
malizes ℎ𝐶 as a network of timed automata. Node automata
model generation and blocking of electrical signals, and
path automata model conduction delay between nodes.

• 𝑖𝑛𝑣 is the set of invariants for clock constraints at each loca-

tion

• → is the set of transitions, each ofwhich is a tuple ⟨𝑞, 𝜎, 𝑔, 𝜆, 𝑞′⟩
which consists of a source location 𝑞, an event 𝜎 ∈ Σ, guard
as clock constraints 𝑔, 𝜆 as a set of clocks to be reset and the

target location 𝑞′

Each heart model is a combined timed automaton which is the

product of all node and path automata ℎ𝐴 =
∏𝑁

𝑖=1 𝑣𝑖 ×
∏𝑀

𝑗=1 𝑒 𝑗 , in

which 𝑣𝑖 ∈ 𝑉 , 𝑒 𝑗 ∈ 𝐸. The parameters of a heart model include:

• Topology of the electrical conduction network 𝛾

• The amount of time that an automaton can stay in different

locations, the minimum and maximum of which are deter-

mined by the invariant 𝑖𝑛𝑣 of the location and the guard 𝑔

on the out-going edge from the location. Each node automa-

ton has three parameters {𝑇𝐸𝑅𝑃,𝑇𝑅𝑅𝑃,𝑇𝑅𝑒𝑠𝑡}, representing
the blocking periods and the generation period. Each path

automaton has one parameter {𝑇𝐶𝑜𝑛𝑑}, representing the

conduction delay between two nodes.

By adjusting the parameters of ℎ𝐴 , the heart model has demon-

strated its capability to model electrical behaviors of various heart

conditions [11], which makes it a validated abstraction and formal-

ization of the conceptual model ℎ𝐶 .

Interface of the Heart Model During Cardiac Ablation
During cardiac ablation, catheters inserted into the patient’s heart

can observe electrical activities of nearby tissue. Physicians can also

deliver external pacing through the catheters. In the heart model,

these tissue are represented by the node automata of a subset of the

vertices 𝑉𝑂 ⊂ 𝑉 (Green circles in ℎ𝐴 in Fig. 4). The 𝐴𝑐𝑡_𝑝𝑎𝑡ℎ ∈ Σ
events from𝑉𝑂

can be observed by the corresponding catheter, and

pacing signals can trigger 𝐴𝑐𝑡_𝑛𝑜𝑑𝑒 ∈ Σ events of corresponding

node automata. Within the heart model, some heart tissue 𝑉𝐴 ⊂ 𝑉
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Figure 5: Two traversal trees𝜓𝛾1
1.1

and𝜓𝛾1
1.2

on topology𝛾1 map
to a temporal trace 𝜔𝛾1

(Red circles in ℎ𝐴 in Fig. 4) can generate 𝐴𝑐𝑡_𝑝𝑎𝑡ℎ ∈ Σ events au-

tonomously, together with external pacing, 𝑉 𝑆 = 𝑉𝐴 ∪𝑉𝑂
are the

possible sources of electrical events within the heart.

3.2 From Mechanism to Observation
The simulation of heart model ℎ𝐴 can be used to explain how elec-

trical signals traverse the heart and generate EGM observations.

Electrical Propagation Within the Heart
Electrical activities of the heart originate from 𝑣𝑆 ∈ 𝑉 𝑆

and prop-

agate throughout the heart. Assume a sequence of𝑚 stimuli 𝑆 is

applied to a heart model with topology 𝛾 :

𝑆 = (𝑠 𝑗
𝑖
|𝑖 ∈ [1,𝑚], 𝑣𝑆𝑗 ∈ 𝑉

𝑆 )
This process can be represented by creating a set of graph traversal

on 𝛾 for each 𝑠
𝑗
𝑖
. Depending on the state of the heart, a stimuli

sequence 𝑆 can have different traversal patterns. We define the 𝑝th

set of traversal trees for the stimuli sequence 𝑆 on graph 𝛾 as:

Ψ
𝛾
𝑝 = (𝜓𝛾

𝑝.1
,𝜓

𝛾

𝑝.2
. . .𝜓

𝛾
𝑝.𝑚)

in which𝜓
𝛾
𝑝.𝑚 is the traversal tree initiated by the𝑚th stimulus 𝑠

𝑗
𝑚

with 𝑣𝑆
𝑗
as root:

𝜓
𝛾
𝑝.𝑚 = ⟨𝑉𝜓 , 𝐸𝜓 ,𝑇𝜓 ⟩

in which 𝑉𝜓 ⊆ 𝑉 are the reachable vertices from 𝑣𝑆
𝑗
, and 𝐸𝜓 ⊆ 𝐸

are the edges if both vertices connected by the edge are reachable

from 𝑣𝑆
𝑗
. 𝑇𝜓 contains the global time when each 𝑣𝜓 ∈ 𝑉𝜓

is ac-

tivated. If the graph is acyclic and connected, 𝜓
𝛾
𝑝.𝑚 has the same

structure as 𝛾 with 𝑣𝑆
𝑗
as root, and each vertex can be visited once.

However, if there exists loops in 𝛾 , vertices on the loops may be

visited multiple times in the traversal tree, which corresponds to

the reentry mechanism.

Temporal Trace of Electrical Propagation
With a set of traversal trees Ψ𝛾

, we define:

𝐶 (Ψ𝛾 ) = 𝜔𝛾

to extract temporal information from a spatial-temporal traversal

tree.𝜔𝛾 = (𝑣1, 𝑣2 . . . 𝑣𝑛), 𝑣𝑖 ∈ 𝑉 is a temporal trace in which vertices

visited in 𝛾 are listed in chronological order (𝑇𝜓 (𝑣 𝑗 ) <= 𝑇𝜓 (𝑣 𝑗+1)).
Fig. 5 demonstrates how a set of traversal tree Ψ

𝛾1
1

on heart

topology 𝛾1 maps to a temporal trace 𝜔
𝛾1
1
. Both𝜓

𝛾1
1.1

and𝜓
𝛾1
1.2

start

from external stimulus applied to 𝑣𝑆
1
. In𝜓

𝛾1
1.1

, the conduction delay

in (𝑣1, 𝑣2) + (𝑣2, 𝑣𝑂
2
) is shorter than the one in (𝑣1, 𝑣3) + (𝑣3, 𝑣𝑂

2
).

Therefore the signal conducted through (𝑣1, 𝑣2) + (𝑣2, 𝑣𝑂
2
) reached

𝑣𝑂
2
first and started conducting through the edge (𝑣𝑂

2
, 𝑣3). At the

same time, another signal is conducting through the same edge from

the opposite direction (𝑣3, 𝑣𝑂
2
), causing conflict and conduction

cancellation (marker x in Fig. 5).

𝜓
𝛾1
1.2

started shortly after 𝜓
𝛾1
1.1

before all heart tissue in 𝛾1 has

finished their refractory periods. Therefore the signal could only

conduct to 𝑣1 before blocked at 𝑣1. Tissue activations in both𝜓
𝛾1
1.1

and𝜓
𝛾1
1.2

are then mapped to 𝜔𝛾1
and lost their spatial information.

Mapping to Observable EGMs
During cardiac ablation, electrical activities of the patient’s heart

can be observed via EGM signals. These observation 𝑂 contains

signals from different channels:

𝑐 ∈ {𝐻𝑅𝐴,𝐶𝑆, 𝐻𝑖𝑠, 𝑅𝑉𝐴 . . . }
which correspond to different catheters inside the heart. Each chan-

nel observes a sequence of impulses over time

𝑂𝑐 = (𝜎𝑐
1
, 𝜎𝑐

2
. . . 𝜎𝑐𝑛), 𝑖 ∈ N

Each impulse represents depolarization of heart tissue 𝑉𝑂
in the

heart model. Each channel 𝑐 can observe a subset of 𝑉𝑂
𝑐 ⊂ 𝑉𝑂

. We

define mapping 𝐵𝑐 (𝜔) which extracts the vertices observable by

channel 𝑐 from a trace 𝜔𝛾
:

𝐵𝑐 (𝜔𝛾 ) = 𝛼𝑐

in which 𝛼𝑐 = (𝑣1, 𝑣2 . . . 𝑣𝑛), 𝑣𝑖 ∈ 𝑉𝑂
𝑐 ∪ 𝑉 𝑆

. The correspondence

between an impulse in EGMs and an observable heart tissue depo-

larization is referred to as annotation:

𝐴𝑐 (𝜎𝑐 ) = 𝑣, 𝑣 ∈ 𝑉𝑂
𝑐 ∪𝑉 𝑆

The annotation mapping can also be applied to observation traces:

𝐴𝑐 (𝑂𝑐 ) = 𝛼𝑐

Therefore 𝛼𝑐 is referred to as an annotation trace for channel 𝑐 .
Fig. 6 demonstrates how multiple traversal tree sets can explain

the same EGM observation. 𝑂𝐻𝑖𝑠
is the EGM signal observed from

the His catheter with seven observable impulses as well as two

external stimuli applied to the heart at tissue 𝑣𝑆
1
. There are two

suspected heart topologies 𝛾1 and 𝛾2. For 𝛾1 there are two plausible

traversal patterns represented by two sets of traversal trees Ψ
𝛾1
1

and Ψ
𝛾1
2
, which are shown in Fig. 6 (a) and (b). In 𝜓

𝛾1
1.2

of Ψ
𝛾1
1
, the

second stimulus triggered reentry behavior around the loop inside

𝛾1, while in Ψ
𝛾1
2
, the second stimulus triggered the same traversal

pattern as the first stimulus. As the result, the two traversal tree

sets have different number of traversal trees and annotations of

𝑂𝐻𝑖𝑠
. The other topology 𝛾2 also has a set of traversal tree Ψ

𝛾2
1

that can explain 𝑂𝐻𝑖𝑠
, which cannot be ruled out with existing

observations. The traversal trees are morphed along the topology

for better visualization.

3.3 Diagnosis During Cardiac Ablation
During the diagnosis process of cardiac ablation, physicians need

to acquire the following information regarding the patient’s heart

in order to achieve precise diagnosis: 1) Structure of the electrical

conduction network, 2) Physiological parameters of key heart tissue,

3) How electrical signals traversed through the conduction network.

The diagnosis process during cardiac ablation can be formulated

as creating Digital Twins of the patient’s heart with the heart model
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Figure 6: The same EGM observation can be explained by multiple traversal tree sets based on multiple heart topologies.

ℎ𝐴 , which include 1) identifying the parameters and 2) estimating

the state of ℎ𝐴 .

Parameter Identification
Two categories of parameters of the heart model are estimated

during cardiac ablation procedure:

(1) Topology 𝛾 : The topology of the electrical conduction net-

work illustrates whether there exists abnormal pathways

within the heart, which is a deciding factor for diagnosis. Be-

fore the procedure, physicians normally have a short list of

suspected topologies based on prior diagnosis of the patient.

(2) Parameter range 𝑐𝑝: Precise value of timing parameters of

the heart model can rarely be determined during the proce-

dure. However, linear constraints on the parameters can be

obtained from EGM observations, which help the physicians

to decide whether certain tissue is healthy.

State Estimation
Parameter identification only provides "static" information regard-

ing the patient’s heart, which is not enough for precise diagnosis.

The traversal tree set Ψ𝛾
, which represents how an electrical sig-

nals traversed through the heart topology 𝛾 , visualizes the state

sequence of ℎ𝐴 that can explain the observations, which can be

very helpful during diagnosis.

Representing Ambiguities with Digital Twins
As the patient’s heart is a partially-observable system with un-

known parameters, there exist multiple traversal tree sets Ψ𝛾
that

can explain historical observations during the procedure. Ambigui-

ties come from, but not limiting to the following sources:

• State of the heart that are neither observable nor diagnosable

• The reliability of sensor reading (false-positives, false-negatives,

overlapped events)

• The sources of electrical stimuli (internal, external)

• Limited sensor capability (events observed from the same

channel are not distinguishable)

In this project, we represent the ambiguities using heart conditions,

which are digital twins of the patient’s heart. Assume there exists 𝑁

suspected heart conditions that can explain the 𝑘 observed events

during the cardiac ablation procedure, we define heart conditions
as the parameters and states of the timed automata model ℎ𝐴:

ℎ𝑖 [𝑘] = ⟨𝛾, 𝑐𝑝,Ψ𝛾 [𝑘]⟩, 𝑖 ∈ 𝑁
The diagnosis of heart condition during cardiac ablation can

be formally defined as identifying the heart conditions that can

explain existing observations:

∀𝛾 ∈ Γ,∀𝑐 ∈ 𝐶,
𝐻𝛾 [𝑘] = {ℎ𝛾

𝑖
[𝑘] |𝐴−1𝑐 (𝐵𝑐 (𝐶 (ℎ

𝛾

𝑖
[𝑘] .Ψ𝛾

𝑖
[𝑘]))) = 𝑂𝑐 [1, 𝑘]

∧ℎ𝛾
𝑖
[𝑘] .𝑐𝑝 |= (ℎ𝛾

𝑖
[𝑘 − 1] .𝑐𝑝 ∪ 𝐷)}

(1)

Each heart condition ℎ
𝛾

𝑖
[𝑘] contains traversal tree set Ψ𝛾

𝑖
[𝑘] such

that the temporal sequence 𝜔𝑖 = 𝐶 (Ψ𝛾

𝑖
[𝑘]) contains annotation

trace 𝛼𝑖 = 𝐵(𝜔𝑖 ) that can map to the first 𝑘 impulses in the EGM

sequence 𝑂𝑐 [1, 𝑘] = 𝐴−1𝑐 (𝛼𝑖 ).
The parameters constraints of the heart conditionℎ

𝛾

𝑖
[𝑘] .𝑐𝑝 should

be consistent with parameter constraints before observing the 𝑘th

impulse ℎ
𝛾

𝑖
[𝑘 − 1] .𝑐𝑝 , as well as domain knowledge 𝐷 , which can

also be specified as linear constraints on heart model parameters.

In the following section, we discuss the proposed clinical assist

systemwhich enumerates and represents the ambiguities with heart
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conditions, while updating and eliminating heart conditions with

information obtained from new observations.

4 CLINICAL ASSIST SYSTEM FOR CARDIAC
ABLATION

In this section, we introduce our current implementation of the

proposed clinical assist system, which automatically analyse EGM

signals and visualize suspected heart conditions to the physicians

during cardiac ablation.

We make the following assumptions in this preliminary work:

A1) The patient has anatomy-based arrhythmia (the heart topolo-

gies are static);

A2) Catheters are not moving (the locations of 𝑉𝑂
and their

topological relationship with other vertices are fixed);

A3) External stimuli are the only sources of electrical signals;

A4) All impulses reflect actual tissue depolarization and there

are no missed impulses.

4.1 Overview of System Execution
The system is initialized with a set of suspected heart topologies

Γ, which are chosen by the physicians before the procedure based

on prior knowledge of the patient’s condition. The set of 𝑉 𝑆
and

𝑉𝑂
are identified in each 𝛾 based on the catheter configuration.

The system starts when the first impulse 𝜎𝑐
1
is observed in EGM

channel 𝑐 , which occurred after the first stimulus 𝑠
𝑗

1
∈ 𝑆 is applied to

𝑣𝑆
𝑗
∈ 𝑉 𝑆

. The system first traverses all Γ from their corresponding

𝑣𝑆
𝑗
, until the first 𝑣𝑂 ∈ 𝑉𝑂

𝑐 is reached on every traversal paths,

resulting in 𝑖 traversal trees 𝜓
𝛾

𝑖.1
[1] for 𝑖 heart conditions ℎ𝛾

𝑖
[1].

The set of 𝑣𝑂 corresponds to plausible annotations of 𝜎𝑐
1
. Each of

the 𝑖 traversal trees is created for each different 𝑣𝑂 that can be first

reached from 𝑠
𝑗

1
, in order to represent the ambiguities of 𝐴𝑐 (𝜎𝑐

1
).

Other sources of ambiguities are also represented by creating new

heart conditions for each ambiguous condition.

Heart conditions are updated upon every new observable im-

pulses. For instance, when new impulse 𝜎𝑐
2
is observed, the elec-

trical conduction initiated by 𝑠
𝑗

1
is still traversing 𝛾 . This behavior

is represented by extension of all traversal tree𝜓
𝛾

𝑗 .1
[1] to the next

reachable 𝑣𝑂 in 𝛾 . For topologies 𝛾 without loops, which is a tree,

the traversal terminates when all leaf vertices are reached.

New observations also provide information on heart model pa-

rameters in terms of linear constraints in 𝑐𝑝 . i.e. The sum of conduc-

tion delays of all edge 𝑒 on the path between 𝑠
𝑗

1
and𝐴𝑐 (𝜎𝑐

1
) is equal

to the interval between 𝑠
𝑗

1
and𝐴𝑐 (𝜎𝑐

1
) (∑ 𝑒.𝑇𝑐𝑜𝑛𝑑 = 𝑇 (𝜎𝑐

1
) −𝑇 (𝑠 𝑗

1
)).

The newly inferred information 𝑐𝑝𝑛 should be incorporated into

the updated heart model, which can be achieved by performing

linear programming algorithm on 𝑐𝑝𝑛 ∪ ℎ𝛾𝑖 [1] .𝑐𝑝 . If there exists
solutions, the constraints 𝑐𝑝 become "tighter", which reduces the

uncertainty of heart model parameters. If there is no solution, the

heart condition before update has faulty assumptions on the real

heart condition, therefore should be eliminated from further con-

sideration.

New stimulus 𝑠
𝑗

𝑘
initializes new traversal trees 𝜓

𝛾

𝑚.𝑘
in 𝛾 . For

an observation 𝜎𝑐
𝑖
occurred after 𝑠

𝑗

𝑘
, it is ambiguous whether 𝜎𝑐

𝑖

is triggered by 𝑠
𝑗

𝑘
or 𝑠

𝑗

𝑘−1. This ambiguity is also represented by

separate heart conditions with traversal tree sets corresponding to

the two scenarios. As discussed above, each heart condition ℎ
𝛾

𝑖
[𝑘]

creates one or more ℎ
𝛾

𝑗
[𝑘 + 1] after each observation. The system

maintains a set of uncertainty trees 𝑇𝛾 for each heart topology 𝛾 .

The 𝑘th level of 𝑇𝛾 contains heart models ℎ
𝛾

𝑖
[𝑘 − 1], and plausible

annotations 𝑎𝑛𝑛𝑜𝑡𝑖 for 𝜎𝑘−1.
Example
Fig. 7 illustrates the evolution of two heart conditions after ob-

serving 7 impulses in the His channel. Two topologies 𝛾1 and 𝛾2
are considered before the procedure. After receiving 𝑆1 at 𝐻𝑅𝐴𝐴

and observing 𝜎𝐻𝑖𝑠
1

in the 𝐻𝑖𝑠 channel, traversal trees𝜓
𝛾1
1.1
[1] and

𝜓
𝛾2
1.1
[1] are created for both topologies. With new observations 𝜎𝐻𝑖𝑠

2

and 𝜎𝐻𝑖𝑠
3

the traversal trees are extended to the next two possible

𝑣𝑂 . When 𝑆2 and 𝜎𝐻𝑖𝑠
4

are observed, new traversal trees 𝜓
𝛾1
1.2
[4]

and 𝜓
𝛾2
1.2
[4] are created. Since both 𝜓𝛾1

1.1
[3] and 𝜓𝛾2

1.1
[3] cannot be

traversed further, there is no ambiguity that 𝜎𝐻𝑖𝑠
4

is triggered by

𝑆2.

When 𝜎𝐻𝑖𝑠
5

is observed, 𝜓
𝛾2
1.2
[4] can only be extended to node

𝐻𝑖𝑠𝐻 . However, from𝜓
𝛾1
1.1
[2] and𝜓𝛾2

1.1
[2] we know the conduction

delay from 𝑣𝐻𝑖𝑠𝐴
to 𝑣𝐻𝑖𝑠𝐻

in both topologies is equal to the interval

between 𝜎𝐻𝑖𝑠
1

and 𝜎𝐻𝑖𝑠
2

. Interval between 𝜎𝐻𝑖𝑠
4

and 𝜎𝐻𝑖𝑠
5

is much

longer, which conflict with historical information in ℎ
𝛾2
1
[4]. There-

fore heart model ℎ
𝛾2
1
[4] with traversal tree 𝜓

𝛾2
1.1
[4] and 𝜓𝛾2

1.2
[4] is

removed from further consideration. In 𝛾1 there exists another path

from 𝑣𝐻𝑖𝑠𝐴
to 𝑣𝐻𝑖𝑠𝐻

so the longer delay can still be explained. There-

fore 𝜓
𝛾1
1.2
[4] is further traversed around the loop in 𝛾1 to explain

𝜎𝐻𝑖𝑠
5

𝜎𝐻𝑖𝑠
6

𝜎𝐻𝑖𝑠
7

, representing the reentry behavior. The uncertainty

tree 𝑇𝛾1 contains plausible heart conditions in each iteration. The

letter on each vertex represent plausible annotations for each ob-

servation. The annotation sequence from the root of 𝑇𝛾1 to a leaf

vertex represent a plausible annotation sequence 𝐴𝐻𝑖𝑠 (𝑂𝐻𝑖𝑠 ) for
the observation sequence 𝑂𝐻𝑖𝑠

.

The system is implemented by Algorithm 1-3, which are shown

in the Appendix. For each new impulse 𝜎 observed in EGM 𝑂 ,

Algorithm 1 AnalyzeEGM() is called to enumerate and update heart

conditions. AnalyzeEGM() calls Algorithm 2 TpTraverseIter(), which
is a modified Breath-First Search (BFS) algorithm, to construct

and update traversal trees in the heart conditions. Heart conditions

contains conflicting information are then removed by the Algorithm

3 cutTree() procedure.
The process can be logically divided into two steps: 1) enumer-

ate all possible (not necessary plausible) heart conditions for each

heart topology; and 2) eliminate heart conditions that violate phys-

iological constraints. In practice these two steps are interleaved for

optimization purpose. The rest of the section describes the algo-

rithms in more detailed.

4.2 Enumeration of Heart Conditions
The enumeration of heart conditions is achieved by Algorithm 1 and

Algorithm 2. Intuitively for each ambiguity encountered, create a

new heart condition for each ambiguous situation. There are several

sources of ambiguities:
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Figure 7: Traversal trees after each EGM observation. The drastically prolonged A-H interval caused elimination of 𝛾2 due to
violations of historical information. The green vertices represent traversed 𝑣𝑂 , the names of which are annotations for the 𝜎𝑖 .

4.2.1 Unknown Current State of the Heart Model. The patient’s

heart is a partially-observable system, which means that there may

exist multiple heart state sequences that can explain historical ob-

servations. The state of the heart affects how electrical signals

traverse the electrical conduction system. i.e. whether a timed au-

tomaton representing 𝑣𝑖 ∈ 𝑉 is in its 𝐸𝑅𝑃 location dictates whether

electrical signals are blocked at 𝑣𝑖 . To represent this uncertainty,

the system creates two new heart conditions for 1) 𝑣𝑖 is in 𝐸𝑅𝑃 , and

2) 𝑣𝑖 is not in 𝐸𝑅𝑃 . In the first case the tree traverse will stop at 𝑣𝑖 as

the tissue blocked conduction, and in the second case the traverse

will continue. This enumeration is achieved by adding new heart

conditions at Line 18 and 19 in Algorithm 2.

4.2.2 Combinations of Traversal Trees. Each stimulus applied to

the heart generates a traversal tree within the heart topology. De-

pending on the state of the heart, there can be multiple plausible

traversal trees for each stimulus. Theoretically the number of tra-

versal tree sets for the stimuli sequence 𝑆 = (𝑠1, 𝑠2 . . . 𝑠 𝑗 ) is equal
to the size of the Cartesian product of all traversal tree sets Ψ𝛾

𝑛.𝑠 for

each stimulus 𝑠 . In our system, all possible combinations of traver-

sal trees are considered and each of the combination is represented

by a heart condition. This enumeration is achieved at Line 9 in

Algorithm 1.

4.2.3 Origin of the Signals. As discussed in Section 3.2, traversal

trees in the same set may overlap in time. Therefore, ambiguity

may exist about which tree an observable impulse belongs to. A

heart condition is created for each of these ambiguous situations to

capture the uncertainty. This enumeration is achieved by the for

loop at Line 11 in Algorithm 1.

4.3 Elimination of Heart Conditions
Enumerated heart conditions that are 1) not be physiologically

plausible, or 2) conflict with information from the new observation

should be eliminated from consideration. There are physiological

constraints that the heart conditions have to satisfy. In the system,

we try to encode as few constraints as possible to maintain the

generality of our approach.

4.3.1 Head-to-head Conduction Cancellation. Due to the refractory
period of heart tissue, two electrical signals conducting towards

each other on the same path will eventually collide and cancel each

other. In our system, traversal on the same edge with opposite

direction is detected and the node is marked as conflict, which will

not be traversed further. This is achieved at Line 18 in Algorithm 2.

4.3.2 Consistency with Historical information. Each new observa-

tion may reveal new information regarding heart model parameters.

As shown in Algorithm 3, we extract linear constraints on heart

model parameters 𝑐𝑝𝑛 from new observations and combine them

with 𝑐𝑝 in each suspected heart model. By doing linear program-

ming, 𝑐𝑝 is either refined if there exists solutions, or the heart model

is removed due to conflict information.

4.3.3 Prior Knowledge on Model Parameters. There exists physi-
ological knowledge on parameter ranges related to certain heart

conditions. Physicians sometimes use these knowledge to rule out

suspected heart conditions. Similar to the physiological constraints,

we aim to keep the amount of prior knowledge minimum in order

to make less assumptions before the procedure. The physicians can

manually rule out heart conditions from the system base on their

experience.

4.4 Heart Model Parameter Identification
Identifying parameters for key tissue of the heart is essential dur-

ing cardiac ablation. In each heart model, 𝑋 represents the set of

parameters for vertices and edges. 𝑐𝑝 is in form of 𝐴𝑋 ≤ 𝐵, which

represents linear constraints extracted from observations as well as
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Figure 8: The VHMmodel for AVNRT by Jiang et.al[11]. The
left panel shows the heart model with reentry circuit and its
current state. The right panel shows synthetic EGM signals

prior knowledge. Linear programming is performed by the 𝑙𝑖𝑛𝑝𝑟𝑜𝑔

function in the MATLAB Optimization Toolbox in 𝑐𝑢𝑡𝑇𝑟𝑒𝑒 () on 𝑐𝑝
to update parameter ranges.

5 CASE STUDY
Reentry is the primary mechanism of Tachycardia and the most

common target for cardiac ablation procedures [13]. Diagnosis is

more challenging in reentry ablation due to the existence of circles

in the heart topology. In this section, we demonstrate the capability

of our clinical assist system to correctly diagnose Atrioventricular

Nodal Reentry Tachycardia (AVNRT).

Patients with AVNRT have an accessory conduction pathway

in the AV node, which forms a reentry circuit with the intrinsic

pathway. During cardiac ablation procedure, physicians use pro-

grammed pacing to induce the reentry behavior, so that AVNRT

can be confirmed and other arrhythmia with similar observations

can be ruled out.

5.1 Virtual Patient and Synthetic EGMs
In this case study we use a virtual patient with AVNRT to demon-

strate our system’s capability to successfully identify the heart

condition. Virtual patients are better suited in the early stage of

this research as more extensive tests can be performed on a model

compared to a patient, and we can obtain the ground truth of the

heart condition. In [11], Jiang et.al developed the Virtual Heart

Model (VHM) which can generate synthetic EGM signals for vari-

ous heart conditions. The VHM can also respond to programmed

pacing sequences applied by the physicians, which makes it a good

model for preliminary evaluation of our system. In this project,

we use VHM to represent the virtual patient with AVNRT (Fig. 8),

and use synthetic EGM signals generated by the VHM as input to

our clinical assist system. The parameters of the heart models are

obtained from or optimized according to [13].

5.2 AVNRT Induction
In our virtual study, two heart topologies 𝛾1 and 𝛾2 are provided to

the physicians before the procedure (Fig. 7), where 𝛾1 represents

AVNRT with a reentry circuit and 𝛾2 represent a healthy heart. 𝑉𝑂

for the His catheter 𝑣𝐻𝑖𝑠𝐴
, 𝑣𝐻𝑖𝑠𝐻

and 𝑣𝐻𝑖𝑠𝑉
, and 𝑉 𝑆

for the HRA

catheter 𝑣𝐻𝑅𝐴𝐴
are included in the heart topologies. During the

procedure, physician delivered stimuli sequences from 𝑣𝐻𝑅𝐴𝐴
so

that the heart exhibits different observable behaviors.

Fig. 7 shows the intermediate steps of heart condition update.

In Section 4.1 we discussed system operation without introducing

Figure 9: The interface for physicians. The left panel shows
annotated EGM signals and the right panel visualizes traver-
sal tree sets from suspected heart conditions.

the physiological context. The traversal tree set Ψ
𝛾1
1
[7] under heart

model ℎ
𝛾1
1
[7] matches the ground truth of how two stimuli conduct

throughout the patient’s heart. There are two conduction pathways

in the AVNRT topology 𝜎1. From the visualization of𝜓
𝛾1
1.1
[3] we can

see that the first stimulus 𝑆1 triggered conduction in both pathways.

The signal arrived the exit of the reentry circuit via (𝐹,𝐴𝑉 ). One
branch triggered 𝐻𝑖𝑠𝐻 and then 𝐻𝑖𝑠𝑉 , which correspond to 𝜎2 and

𝜎3, while the other branch conducted through (𝐴𝑉, 𝑆) collide with
conduction in the slower pathway (𝑆,𝐴𝑉 ) and cancelled. From

the visualization of𝜓
𝛾1
1.2
[7] we can see that the conduction of the

second stimulus 𝑆2 is blocked at vertex 𝑣𝐹 due to its long ERP. The

signal conducted through the slower pathway and then started

conduction within the reentry circuit, and AVNRT was induced.

5.3 Result Analysis
As shown in Fig. 7, our system was able to successfully identify

AVNRT. During the procedure, physicians have real-time display of

suspected heart conditions including heart topologies and traversal

trees for each stimulus. EGM signals are also annotated for each

heart condition (Fig. 9). As shown in Fig. 7, there are seven leaf

vertices for 𝑇𝛾1 [7], and ℎ𝛾1
1
[7] is one of the seven suspected heart

conditions. The other six heart conditions have identical traversal

trees with slightly different 𝑐𝑝 due to the limited observation so far.

Fig. 10 shows the number of heart conditions after updating the

uncertainty tree for each observed EGM impulse. Without imposing

physiological constraints, the amount of ambiguities during the

procedure increases exponentially. R1-R5 correspond to different

physiological knowledge encoded in our system, which was dis-

cussed in Section 4.2 and 4.3. With these physiological constraints

imposed, our system was able to rule out physiologically implausi-

ble heart conditions.

In clinical setting, the seven EGM impulses occur within two

seconds. In order to achieve real-time analysis, heart model update

for each impulse has to finish within 100ms. The system is currently
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implemented in MATLAB without any optimization. The average

time to update one heart condition is around 170ms, and the com-

putational time for updating heart conditions for each observed

impulse is affected by the amount of suspected heart conditions.

Efficiency can be improved by introducing parallelism during heart

condition update.

6 RELATEDWORK
Manufacturers of the cardiac ablation guidance systems have devel-

oped new algorithms to process the additional data by analysing

and visualizing the timing correlations among new EGMs. However,

the new algorithm still does not consider the ambiguities related

to multiple suspected heart conditions. Clinical experiments of

the new system only showed equivalent safety and effectiveness

compared to traditional systems, with no advantage in terms of

procedure time reduction [9].

There are also attempts to use heart model simulations for ab-

lation guidance. Researchers at Johns Hopkins University have

developed patient-specific heart models using MRI images of the

heart. The heart models can be used to identify possible electrical

conduction patterns with the presence of scar tissue, and propose

optimal ablation cites [6]. However, these heart models can only

be used for offline pre- and post-operation analysis, and can not

address the ambiguity challenge during the procedure.

7 DISCUSSION AND FUTUREWORK
State estimation of partially-observable discrete-event systems is

a challenging problem [2, 18]. With the system’s parameters par-

tially unknown as well, the problem is undecidable due to the large

amount of ambiguous states and parameters. In this paper, we for-

malized the diagnosis problem during cardiac ablation as parameter

identification and state estimation problems on timed automata

heart models, and proposed a partial solution based on analysis of

the heart model structure and domain knowledge. The proposed

clinical assist system enumerates all possible heart conditions that

can explain historical observations in terms of "digital twins" of the

patient’s heart. These digital twins are incrementally updated by

information from new observations, which provide the physicians

with interpretable visualization of the current understanding of the

patient’s heart.

Figure 10: Number of heart conditions increases exponen-
tially when all sources of ambiguity are considered. Ille-
gal heart conditions are removed by imposing physiological
constraints.

The next step of the project is to identify the optimal pacing

sequences that can distinguish the suspected heart conditions. With

suspected heart conditions explicitly enumerated, intuitively the

problem can be formulated as diagnosability of certain states in the

heart model. Diagnosability of discrete event system has been stud-

ied in the control community [19], which could provide inspirations

for our problem.

We also plan to relax the assumptions we made during our pre-

liminary evaluation. Ideally the system should be able to perform

as well as the physicians in complex clinical cases.
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APPENDIX

Algorithm 1 Analyze EGM

1: Input: Uncertainty tree 𝑇𝛾 [𝑘 − 1], sequence of paced stimuli

𝑆 = (𝑠 𝑗𝑝 |𝑝 ∈ N, 𝑣𝑆𝑗 ∈ 𝑉
𝑆 ), heart topology 𝛾

2: Output: updated 𝑇𝛾 [𝑘]
3: procedure 𝑇𝛾 [𝑘] = AnalyzeEGM(𝑆,𝑇𝛾 [𝑘 − 1])
4: for ℎ𝛾

𝑖
[𝑘 − 1] in leaves of 𝑇𝛾 [𝑘 − 1] do

5: ⊲ Find all possible heart models that can explain 𝜎𝑘
6: 𝑡𝑒𝑚𝑝𝑀𝑜𝑑𝑒𝑙𝑠 ← []
7: for 𝑠 = 1 to the number of 𝑆 do
8: ⊲ Enumerate all possible traversal tree sets

9: 𝑡𝑒𝑚𝑝𝑀𝑜𝑑𝑒𝑙𝑠 ←
𝑡𝑒𝑚𝑝𝑀𝑜𝑑𝑒𝑙𝑠 × TpTraverseIter(𝛾, 𝑣𝑆

𝑗
, ℎ

𝛾

𝑖
.𝜓
𝛾
𝑝.𝑠 [𝑘 − 1])

10: for 𝑞 ← 1 to the number of traversal tree sets in

𝑡𝑒𝑚𝑝𝑀𝑜𝑑𝑒𝑙𝑠 do
11: for 𝑠 ← 1 to the number of 𝑆 do
12: 𝑎𝑛𝑛𝑜𝑡𝑁𝑜𝑑𝑒𝑠← all 𝑣𝑂 in𝜓

𝛾
𝑞.𝑠 [𝑘] that can explain

the current observation 𝜎𝑘
13: 𝑎𝑛𝑛𝑜𝑡𝑠 ← The names of 𝑎𝑛𝑛𝑜𝑡𝑁𝑜𝑑𝑒𝑠

14: 𝑐𝑝 ← linear constraints on parameters of 𝛾

15: for m in 1 to length of 𝑎𝑛𝑛𝑜𝑡𝑠 do
16: ⊲ Create heart models for each annotation

17: Add new heart model ℎ
𝛾
𝑚 [𝑘] in 𝑇𝛾 [𝑘] with

edge (ℎ𝛾
𝑖
[𝑘 − 1], ℎ𝛾𝑚 [𝑘])

18: ℎ
𝛾
𝑚 [𝑘] .𝑎𝑛𝑛𝑜𝑡 ← 𝑎𝑛𝑛𝑜𝑡𝑠 [𝑚]

19: ℎ
𝛾
𝑚 [𝑘] .𝑐𝑝 ← ℎ

𝛾

𝑖
[𝑘 − 1] .𝑐𝑝 ∪ 𝑐𝑝 [𝑚]

20: mark 𝑎𝑛𝑛𝑜𝑡𝑁𝑜𝑑𝑒𝑠 [𝑚] in ℎ
𝛾
𝑚 [𝑘] .𝜓

𝛾
𝑚.𝑠 [𝑘] as

annotated

21: ℎ
𝛾
𝑚 [𝑘] .Ψ

𝛾

𝑘
[𝑘] ← Ψ

𝛾
𝑞 [𝑘]

Algorithm 2 Topology Traversal

1: Input: heart topology 𝛾 , the vertex that receives the 𝑠th stimu-

lus 𝑣𝑆 ∈ 𝑉 𝑆
, a traversal tree𝜓𝛾

2: Output: traversal trees for the 𝑠th stimulus Ψ
𝛾
𝑛.𝑠 =

(𝜓𝛾

1.𝑠
,𝜓

𝛾

2.𝑠
. . .𝜓

𝛾
𝑛.𝑠 )

3: procedure Ψ
𝛾
𝑛.𝑠 = TpTraverseIter(𝛾 ,𝑣𝑆 ,𝜓𝛾

)

4: if𝜓𝛾 = ∅,𝜓𝛾 ← 𝑣𝑆

5: 𝐸𝑥𝑝𝑎𝑛𝑑𝑎𝑏𝑙𝑒𝑁𝑜𝑑𝑒𝑠 ← [ ]
6: for 𝑣1 in leaves of𝜓𝛾 do
7: ⊲ Find expandable vertices

8: if (𝑣1 ∈ 𝑉 \𝑉𝑂 ) ∧ (𝑣1 not marked as ERP) ∧ (𝑣1 not
marked as conflict) ∨ (𝑣1 ∈ 𝑉𝑂 ∧ 𝑣1 is marked

as annotated) then
9: Add 𝑣1 to list 𝐸𝑥𝑝𝑎𝑛𝑑𝑎𝑏𝑙𝑒𝑁𝑜𝑑𝑒𝑠 .

10: Ψ
𝛾
𝑛.𝑠 ← 𝜓𝛾

11: if 𝐸𝑥𝑝𝑎𝑛𝑑𝑎𝑏𝑙𝑒𝑁𝑜𝑑𝑒𝑠 = ∅ then
12: return Ψ

𝛾
𝑛.𝑠

13: for 𝑣𝑖 in list 𝐸𝑥𝑝𝑎𝑛𝑑𝑎𝑏𝑙𝑒𝑁𝑜𝑑𝑒𝑠 do
14: ⊲ Expand trees for one step

15: Find vertices 𝑉𝑛 = {𝑣𝑛
𝑗
} with edge (𝑣𝑖 , 𝑣

𝑛
𝑗
) in 𝛾

16: for𝜓𝛾

𝑘
in Ψ

𝛾
𝑛.𝑠 do

17: Add vertices 𝑉𝑛
and edges (𝑣𝑖 , 𝑣𝑛𝑗 ) in𝜓

𝛾

𝑘

18: 𝜓
𝛾

𝐸𝑅𝑃
← 𝜓

𝛾

𝑘
, mark 𝑣𝑛

𝑗
as ERP in𝜓

𝛾

𝐸𝑅𝑃

19: Ψ
𝛾
𝑛.𝑠 ← Ψ

𝛾
𝑛.𝑠 ∪ 𝜓

𝛾

𝐸𝑅𝑃

20: if there exists both (𝑣𝑖 , 𝑣𝑛𝑗 ) and (𝑣
𝑛
𝑗
, 𝑣𝑖 ) in𝜓𝛾

𝑘
then

21: mark 𝑣𝑖 as conflict

22: 𝑡𝑒𝑚𝑝_𝑇𝑠𝑒𝑡 ← [ ]
23: for𝜓𝛾

𝑚 in Ψ
𝛾
𝑛.𝑠 do

24: 𝑡𝑒𝑚𝑝_𝑇𝑠𝑒𝑡 ← 𝑡𝑒𝑚𝑝_𝑇𝑠𝑒𝑡 ∪ TpTraverseIter(𝛾, 𝑣𝑆 ,𝜓𝛾
𝑚)

25: ⊲ Expand until no expandable vertices available

26: Ψ
𝛾
𝑛.𝑠 ← 𝑡𝑒𝑚𝑝_𝑇𝑠𝑒𝑡

Algorithm 3 Cut Uncertainty Tree

1: procedure cutTree(𝑇𝛾 )
2: for ℎ𝛾

𝑖
in leaves of 𝑇𝛾 do

3: Extract 𝑐𝑝𝑛 from EGMs regarding ℎ
𝛾

𝑖
.𝛾

4: Combine the linear constraints ℎ
𝛾

𝑖
.𝑐𝑝 ∪ 𝑐𝑝𝑛

5: if ℎ𝛾
𝑖
.𝑐𝑝 ∪ 𝑐𝑝𝑛 have no solution by linear programming

then
6: Remove ℎ

𝛾

𝑖
from 𝑇𝛾
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