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ABSTRACT

Software systems are designed and implemented with assumptions

about the environment. However, once the system is deployed,

the actual environment may deviate from its expected behavior,

possibly undermining desired properties of the system. To enable

systematic design of systems that are robust against potential envi-

ronmental deviations, we propose a rigorous notion of robustness

for software systems. In particular, the robustness of a system is de-

fined as the largest set of deviating environmental behaviors under

which the system is capable of guaranteeing a desired property. We

describe a new set of design analysis problems based on our notion

of robustness, and a technique for automatically computing robust-

ness of a system given its behavior description. We demonstrate

potential applications of our robustness notion on two case studies

involving network protocols and safety-critical interfaces.
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1 INTRODUCTION

Software systems are designed, implemented, and validated with

certain assumptions about the environment in which they are de-

ployed. These assumptions include, for example, the expected be-

havior of a human user, the reliability of the underlying communi-

cation network, or the capability of an attacker that may attempt

to compromise the security of the system.
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Once the system is deployed, however, the actual environment

may deviate from its expected behavior, either deliberately or erro-

neously due to a change in the operating conditions or a fault in

one of its parts. For instance, a user interacting with a computer

interface may inadvertently perform a sequence of actions in an

incorrect order; a network may experience a disruption and fail

to deliver a message in time; or an attacker may evolve over time

and obtain a wider range of exploits to compromise the system.

In these cases, the system may no longer be able to satisfy those

requirements that relied on the original assumptions.

In well-established engineering disciplines such as aerospace,

civil, and manufacturing, deviations of the environment from the

norm are routinely and explicitly analyzed, and systems are de-

signed to be robust against these potential deviations [35]. In soft-

ware engineering, however, a standard notion of robustness seems

to be missing, although a similar concept has been studied in cer-

tain domains. For example, in distributed systems and networks,

the notion of fault tolerance has been long studied (e.g., [18, 30]),

but does not generalize to other types of software systems where

environmental deviations are not limited to network failures or

delays. In control engineering, a system is said to be robust if small

deviations on an input result only in small deviations on an out-

put [43]. This notion of robustness, however, is intended for systems

whose behaviors are modeled using continuous dynamics, and not

particularly suitable for discrete behaviors observed in software.

In this paper, we propose an approach for designing robust sys-

tems based on a mathematically rigorous notion of robustness for

software. In particular, we say that a system is robust with respect

to a property and a particular set of environmental deviations if the

system continues to satisfy the property even if the environment

exhibits those deviations. Furthermore, we define the robustness of

a software system as the set of all deviations under which a system

continues to satisfy that property. Based on these definitions, we

propose an analysis technique for automatically computing the

robustness of a system given its behavioral description.

We argue that robustness itself is a type of software quality that

can be rigorously analyzed and designed for. The goal of a typical

verification method is to check the following: Given system 𝑀 , en-

vironment 𝐸, and property 𝑃 , does the system satisfy the property

under this environment (i.e.,𝑀 ∥𝐸 |= 𝑃 )? Our notion of robustness

enables formulation of new types of analyses beyond this. For in-

stance, we could ask whether a system is robust against a particular

set of environmental deviations; given two alternative system de-

signs (both satisfying 𝑃 ), we could rigorously compare them by

generating deviations against which one design is robust but the

other is not, and; given multiple system properties (some of them

more critical than others), we could compare the environmental

deviations under which the system can guarantee them.
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We envision that our notion of robustness can be used to support

design activities across various domains. In this paper, we demon-

strate the application of our approach in two different domains:

(1) human-machine interactions, where we adopt the well-studied

models of human errors from the industrial engineering and hu-

man factors research [7, 38] and show how our method can be used

to rigorously evaluate the robustness of safety-critical interfaces

against such errors, and (2) computer networks, where our method

is used to rigorously compare the robustness of network protocols

against different types of failures in the underlying network.

The contributions of the paper are as follows:

• A systematic approach to designing systems that are robust

against potential environmental deviations (Section 2),

• A formal notion of robustness for software systems (Sec-

tion 3) and a set of analysis problems that evaluate system

designs with respect to their robustness (Section 4),

• Algorithmic techniques for automatically computing the ro-

bustness of a system and generating succinct representations

of robustness (Section 5), and,

• A prototype implementation of the robustness analysis and

demonstrate our approach on two case studies involving

human-machine interfaces and network protocols (Section 7).

2 MOTIVATING EXAMPLE

This section illustrates how our proposed notion of robustness

may be used to support a new type of design analysis and aid a

systematic development of systems that are robust against failures

or changes in the environment.

(1) Analysis under the normative environment. As a motivat-

ing example, consider the design of a radiation therapy system

similar to the well-known Therac-25 machine [32]. State machines

in Figure 1 describe three components in the system, including the

treatment interface (𝑀𝐼 ), which allows the operator to control the

device by performing interface actions (e.g., X for setting the beam

mode to X-ray), the beam setter (𝑀𝐵 ), which determines the current

mode of radiation therapy (electron beam and X-ray, which delivers

roughly 100 times higher level of current than the former), and

spreader (𝑀𝑆 ), which is put in place during the X-ray mode in order

to attenuate the effect of the high-power X-ray beam and limit

possible overdose. The overall behavior of the therapy system, as

modeled here, is captured by the composition of the state machines,

𝑀 = (𝑀𝐼 ∥𝑀𝐵 ∥𝑀𝑆 ).
The radiation therapy system is associated with a number of

safety requirements, one of which states that the spreader can be

removed only when the beam is delivered in the electron mode.

This requirement may formally be stated as the following property

in linear-temporal logic (LTL) [36]:

G(BeamDelivered ∧ OutOfPlace ⇒ EbeamMode)

where BeamDelivered is a proposition that holds when𝑀𝐼 enters

the state with the same name (and similarly for other propositions).

During a normal treatment process, a therapist is expected to

perform the following tasks: Select the correct therapy mode for

the current patient by pressing either X or E, confirm the treatment

data by pressing Enter and then finally initiate the beam delivery to

the patient by pressing B. This normative behavior of the operator

is modeled as state machine 𝐸 in Figure 1.

Suppose the designer of the machine wishes to check whether

the therapy system satisfies its safety requirements, assuming that

an operator carries out the tasks as expected. More generally, this

can be formulated as the following common type of analysis task:

Does the system, under the environment that behaves

as expected, satisfy a desired property?

To perform this task, one may apply a verification technique such

as model checking [14] to check whether the composition of the

machine and the environment satisfies a desired property (however,

other analysis techniques may be just applicable as long as they can

be used to check𝑀 ∥𝐸 |= 𝑃 ). Performing this analysis confirms that

the system indeed satisfies the safety property that the spreader is

always in-place during the X-ray mode.

(2) Analysis of undesirable environmental deviations. In com-

plex systems, the environment may not always behave as expected,

and possibly undermine assumptions that the system relies on to

fulfill its requirements. For instance, in interactive systems, human

operators are far from perfect, and inadvertently make mistakes

from time to time while performing a task (e.g., perform a sequence

of actions in a wrong order) [38]. In the context of a safety-critical

system such as medical devices, some of these operator errors, if

permitted by the interface, may result in a safety violation.

To discover these potential environmental deviations, the de-

signer decides to perform the following analysis task:

What are possible ways in which the environment

may deviate from its expected behavior and cause a

violation of the property?

Given the therapy system models (𝑀 and 𝐸) and property 𝑃 , the

designer can use an existing analysis tool (e.g., LTSA [33]) to check

whether𝑀 |= 𝑃 . The analyzer may return a counterexample trace

that demonstrates how the operator could deviate from its norma-

tive behavior (as captured by 𝐸) and cause a violation of 𝑃 .

Suppose that one such trace contains the following sequence of

operator actions: ⟨X,Up, E, Enter,B⟩. This trace depicts a scenario
in which the operator accidentally selects the X-ray mode, corrects

the mistake by pressing up and selecting the electron beam mode,

and then carrying on the rest of the treatment as intended (by con-

firming the mode and firing the beam). This sequence of operator

actions, however, may lead to a violation of the safety property

𝑃 in the following way: When the operator presses B, the beam

setter may still be in the process of mode switch (i.e., state Switch-

ToBeam), causing the beam to be delivered in the X-ray mode while

the spreader is out of place. This scenario corresponds to one type

of failure that caused fatal overdoses in the Therac-25 system [32].

(3) Robustness analysis. Having discovered how the operator’s

mistake could lead to a safety violation, the designer modifies the

treatment interface to improve its robustness against the possible

error. In this redesign, shown in Figure 1(e), the operator can press

B to fire the beam only after the mode switch has been carried out

by the beam setter. As the next step, the designer wishes to ensure

that the system, as re-designed, is robust against the operator’s

mistake (i.e, it continues to satisfy the safety property even under

the misbehaving operator).

2



A Behavioral Notion of Robustness for Software Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

InPlace
OutOf
Place

E

X

Editing

Confirm
Xray

Confirm
Ebeam

Fire
Xray

Fire
Ebeam

Beam
Delivered

BB

EnterEnter

EX

UpUp

UpUp

Enter

NotSet

Xray
Mode

Ebeam
Mode

SwitchTo
Ebeam

SwitchTo
Xray

X E

SetSet

(b) Beam Setter (MB)

(a) Treatment Interface (MI) (c) Spreader (MS)

Select
Mode

Confirm
Mode

FireBeam

Task
Complete

X E

Enter

B

(d) Operator Task (E)

XE

X E

X E

Editing

Confirm
Xray

Confirm
Ebeam

Fire
Xray

Fire
Ebeam

Beam
Ready

SetSet

EnterEnter

EX

UpUp

UpUp

B

(e) Redesigned Interface (M'I)

Beam
Delivered

Enter

B B

Figure 1: Labelled transition systems for a radiation therapy system.

The designer could check 𝑀 ′ |= 𝑃 where 𝑀 ′ is the redesign, if

no errors returned, it means that𝑀 ′ is robust against the mistake

and also 𝑀 ′ can work under any environment. However, it’s not

always the case. More likely, the analyzer may return another trace

representing a new mistake, and it does not necessarily mean that

the system is robust against the old one.

Instead, the designer can use our tool to perform the following

robustness analysis task:

What are possible environmental deviations under

which the new design satisfies the property but the

old design does not?

Given the original system model 𝑀 , modified system model 𝑀 ′,

normative environment 𝐸, and property 𝑃 , our analysis returns a

set of traces (expressed over environmental actions), each trace

describes a scenario where system 𝑀 ′ satisfies the property but 𝑀

does not. For example, one of the traces is the sequence of oper-

ator actions discussed above: ⟨X,Up, E, Enter,B⟩, confirming that

the redesign has correctly addressed the risk of a possible safety

violation due to this particular type of mistake by the operator.

The analysis steps (2) and (3) may be repeated to identify poten-

tial safety violations due to other types of operator mistakes and

further improve the robustness of the system.

3 ROBUSTNESS NOTION

This section describes the underlying formalism used to model

systems and environments (namely, labelled transition systems).

We then formally define the notion of robustness and introduce a

new set of analysis problems that leverage this notion to reason

about the robustness of systems.

3.1 Preliminaries

In this work, we use labelled transition systems to model the be-

haviors of machines and environment.

3.1.1 Labelled Transition System. A labelled transition system 𝑇 is

a tuple ⟨𝑆, 𝛼𝑇 , 𝑅, 𝑠0⟩ where 𝑆 is a set of states, 𝛼𝑇 is a set of actions

called the alphabet of 𝑇 , 𝑅 ⊆ 𝑆 × 𝛼𝑇 ∪ {𝜏} × 𝑆 defines the state

transitions (where 𝜏 is a designated action that is unobservable to

the system’s environment), and 𝑠0 ∈ 𝑆 is the initial state. An LTS is

non-deterministic if ∃(𝑠, 𝑎, 𝑠 ′), (𝑠, 𝑎, 𝑠 ′′) ∈ 𝑅 : 𝑠 ′ ≠ 𝑠 ′′; otherwise, it

is deterministic.

A trace 𝜎 ∈ 𝛼𝑇 ∗ of an LTS 𝑇 is a sequence of observable actions

from the initial state. Then, the behavior of 𝑇 is the set of all the

traces generated by 𝑇 , denoted 𝑏𝑒ℎ(𝑇 ).

3.1.2 Operators. For an LTS𝑇 = ⟨𝑆, 𝛼𝑇 , 𝑅, 𝑠0⟩, the projection opera-
tor ↾ is used to expose only some subset of the alphabet of𝑇 . Given

𝑇 ↾𝐴 = ⟨𝑆, 𝛼𝑇 ∩𝐴, 𝑅′, 𝑠0⟩ where for any (𝑠, 𝑎, 𝑠 ′) ∈ 𝑅, if 𝑎 ∉ 𝐴, then

(𝑠, 𝜏, 𝑠 ′) ∈ 𝑅′, i.e., 𝑎 will be hidden by 𝜏 ; otherwise, (𝑠, 𝑎, 𝑠 ′) ∈ 𝑅′.

The ↾ operator can also be applied to traces. We use 𝜎 ↾𝐴 to

denote the trace that results from removing all the occurrences of

actions 𝑎 ∉ 𝐴 from 𝜎 .

The parallel composition | | is a commutative and associative

operator which combines two LTSs by synchronizing their com-

mon actions and interleaving the remaining actions. Let 𝑇1 =

⟨𝑆1, 𝛼𝑇 1, 𝑅1, 𝑠1
0
⟩ and 𝑇2 = ⟨𝑆2, 𝛼𝑇 2, 𝑅2, 𝑠2

0
⟩, 𝑇1 | |𝑇2 is an LTS 𝑇 =

⟨𝑆, 𝛼𝑇 , 𝑅, 𝑠0⟩ where 𝑆 = 𝑆1 × 𝑆2, 𝛼𝑇 = 𝛼𝑇 1 ∪ 𝛼𝑇 2, 𝑠0 = (𝑠1
0
, 𝑠2
0
),

and 𝑅 is defined as: For any (𝑠1, 𝑎, 𝑠1
′
) ∈ 𝑅1 and 𝑎 ∉ 𝛼𝑇 2, we have

((𝑠1, 𝑠2), 𝑎, (𝑠1
′
, 𝑠2)) ∈ 𝑅; for any (𝑠2, 𝑎, 𝑠2

′
) ∈ 𝑅2 and 𝑎 ∉ 𝛼𝑇 1,

we have ((𝑠1, 𝑠2), 𝑎, (𝑠1, 𝑠2
′
)) ∈ 𝑅; and for (𝑠1, 𝑎, 𝑠1

′
) ∈ 𝑅1 and

(𝑠2, 𝑎, 𝑠2
′
) ∈ 𝑅2, we have ((𝑠1, 𝑠2), 𝑎, (𝑠1

′
, 𝑠2

′
)) ∈ 𝑅.

3.1.3 Properties. In this work, we consider a class of properties

called safety properties [29]. In particular, a safety property 𝑃 can

be represented as a deterministic LTS that contains no 𝜏 transitions.

It defines the acceptable behaviors of a system 𝑇 over 𝛼𝑃 , and

we say that an LTS 𝑇 satisfies 𝑃 (denoted 𝑇 |= 𝑃 ) if and only if

𝑏𝑒ℎ(𝑇 ↾𝛼𝑃) ⊆ 𝑏𝑒ℎ(𝑃).
We check whether an LTS 𝑇 satisfies a safety property 𝑃 =

⟨𝑆, 𝛼𝑃, 𝑅, 𝑠0⟩ by automatically deriving an error LTS 𝑃𝑒𝑟𝑟 = ⟨𝑆 ∪
{𝜋}, 𝛼𝑃, 𝑅𝑒𝑟𝑟 , 𝑠0⟩ where 𝜋 denotes the error state, and 𝑅𝑒𝑟𝑟 = 𝑅 ∪
{(𝑠, 𝑎, 𝜋) |𝑎 ∈ 𝛼𝑃 ∧ �𝑠 ′ ∈ 𝑆 : (𝑠, 𝑎, 𝑠 ′) ∈ 𝑅}. With this 𝑃𝑒𝑟𝑟 LTS, we

test whether the error state 𝜋 is reachable in 𝑇 | |𝑃𝑒𝑟𝑟 . If 𝜋 is not

reachable, then we can conclude that 𝑇 |= 𝑃 .

3.2 Robustness Definition

Let𝑀 be the LTS of a machine, 𝐸 the LTS of the environment, and

𝛼𝐸𝑀 = 𝛼𝑀 ∩ 𝛼𝐸 the common actions between the machine and

the environment. Then, we say 𝑀 ↾𝛼𝐸𝑀 represents the set of all

environmental behaviors that are permitted by machine𝑀 .
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Machine𝑀 is said to be robust against a set of traces 𝛿 ⊆ 𝑏𝑒ℎ(𝑀 ↾
𝐸𝑀 ) if and only if the system satisfies a desired property under a

new environment (𝐸 ′) that is capable of additional behaviors in 𝛿

compared to the original environment (𝐸):

Definition 3.1. Machine𝑀 is robust against a set of traces 𝛿 with

respect to environment 𝐸 and property 𝑃 if and only if 𝛿 ⊆ 𝑏𝑒ℎ(𝑀 ↾
𝛼𝐸𝑀 ), 𝛿 ∩ 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀 ) = ∅, and for every 𝐸 ′ such that 𝑏𝑒ℎ(𝐸 ′ ↾
𝛼𝐸𝑀 ) = 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀 ) ∪ 𝛿 ,𝑀 | |𝐸 ′ |= 𝑃 .

The set of traces in 𝛿 are also called deviations of 𝐸 ′ from 𝐸 over

𝛼𝐸𝑀 . Then, the robustness of a machine is defined as the largest set

of environmental deviations under which the system continues to

satisfy a desired property:

Definition 3.2. The robustness of machine𝑀 with respect to envi-

ronment 𝐸 and property 𝑃 , denoted Δ(𝑀, 𝐸, 𝑃), is the set of traces
𝛿 such that𝑀 is robust against 𝛿 with respect to 𝐸 and 𝑃 , and there

exists no 𝛿 ′ such that 𝛿 ⊂ 𝛿 ′ and𝑀 is also robust against 𝛿 ′.

beh(E ! αEM )
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Figure 2: Behavioral relationships between possible environ-

ments.

Figure 2 illustrates the relationships between the behaviors of

possible environments that interact with a machine through shared

actions 𝛼𝐸 ∩ 𝛼𝑀 . The outermost circle represents the set of all

environmental behaviors that are permitted by the machine; the

innermost circle represents the normative behaviors of the envi-

ronment. The deviations of the environment could be classified

into two sets: those under which the machine still maintains a de-

sired property 𝑃 (i.e., its robustness), and the others that lead to its

violation (the area shaded red in Figure 2).

4 ANALYSIS PROBLEMS

This section defines a set of analysis problems for evaluating system

designs with respect to their robustness.

Problem 4.1 (Robustness analysis). Given machine 𝑀 , environ-

ment 𝐸, and property 𝑃 , compute Δ(𝑀, 𝐸, 𝑃).

Given a method for computing the robustness of a machine

(described in Section 5), we can also perform the following analyses:

Problem 4.2 (Design comparison). Given machines 𝑀1 and 𝑀2,

environment 𝐸, and property 𝑃 such that 𝛼𝑀1 ∩ 𝛼𝐸 = 𝛼𝑀2 ∩ 𝛼𝐸,

compute set 𝑋 = Δ(𝑀2, 𝐸, 𝑃) − Δ(𝑀1, 𝐸, 𝑃).

This analysis allows us to compare a pair of machines (repre-

senting alternative designs of a system) on their robustness against

the given environment and property.𝑀2, for example, may be an

evolution of𝑀1; the result of the analysis would describe precisely

the environmental deviations under which 𝑀2 is more robust than

𝑀1. Note that𝑀1 and𝑀2 may overlap, not necessarily subsume, in

terms of their robustness.

Another type of analysis can be used to reason about how the

robustness of a machine changes depending on the property that it

attempts to establish:

Problem 4.3 (Property comparison). Given machines𝑀 , environ-

ment 𝐸, and properties 𝑃1 and 𝑃2, compute set 𝑋 = Δ(𝑀, 𝐸, 𝑃2) −
Δ(𝑀, 𝐸, 𝑃1).

For instance, suppose that 𝑃1 says that “the radiation therapy

system should always deliver the correct amount of dose to each

patient”, while 𝑃2 states that “the system never overdoses patients

by delivering X-ray while the spreader is out of place” (similar to

property 𝑃 from Section 2). The result of this analysis could tell us,

for example, that the system is capable of guaranteeing 𝑃2 (weaker

and arguably more critical of the two) even under certain operator

errors, while 𝑃1 may be violated under similar deviations.

In general, since improving robustness might introduce addi-

tional complexity into the system, it may be a cost-effective strategy

to design the system to be robust for most critical of the system

requirements [27]; our analysis could be used to support this ap-

proach to design.

5 ROBUSTNESS COMPUTATION

This section describes a method for automatically computing the

robustness of the machine with respect to a given environment and

a desired property (Problem 4.1 in Section 4).

5.1 Overview

Figure 3 shows the overall process of our approach to compute

the robustness of a machine 𝑀 with respect to environment 𝐸 and

property 𝑃 . The input of our tool is the LTS of 𝑀 , 𝐸, and 𝑃 . We

first generate the weakest assumption of𝑀 (Section 5.2) to compute

Δ(𝑀, 𝐸, 𝑃). Since Δ may be infinite, we then generate a succinct

representation of it. We compute the representative model of Δ (Sec-

tion 5.3.1), group the traces into equivalence classes, and generate

a finite set of representative traces (Section 5.3.2). Finally, we take

an external deviation model as input to generate explanations for

those representative traces (Section 5.4). The final output is a set of

pairs of a representative trace and its explanation.

5.2 Weakest Assumption

In assume-guarantee style of reasoning [28], a machine is consid-

ered capable of establishing a property under some assumption

about the behavior of the environment. In our modeling approach,

an assumption is represented as some subset of all permitted envi-

ronmental behaviors; the largest such subset is called the weakest

assumption (the second largest circle in Figure 2). More formally:

Definition 5.1. The weakest assumption𝑊𝑀,𝐸,𝑃 of a machine 𝑀

with respect to environment 𝐸 and property 𝑃 is an LTS which

defines the largest subset of the permitted environment behaviors

4
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Figure 3: Overview of the process for robustness computation. The input is the LTS of machine 𝑀 , environment 𝐸, and prop-

erty 𝑃 . Section 5.2 describes weakest assumption generation for computing Δ. Section 5.3 describes generating robustness

representation (i.e., a set of representative traces). Finally, Section 5.4 describes explanation generation for the representative

traces.

of𝑀 which satisfy property 𝑃 , i.e.,

𝑏𝑒ℎ(𝑊𝑀,𝐸,𝑃 ) ⊆𝑏𝑒ℎ(𝑀 ↾𝛼𝐸𝑀 ) ∧ 𝑀 | |𝑊𝑀,𝐸,𝑃 |= 𝑃 ∧

∀𝐸 ′ : 𝑀 | |𝐸 ′ |= 𝑃 ↔ 𝐸 ′ |=𝑊𝑀,𝐸,𝑃

If stated otherwise, we will simply write𝑊 to mean𝑊𝑀,𝐸,𝑃 for

the rest of the paper.

Then, the robustness of a machine is equivalent to its weakest

assumption minus the behaviors of the original environment. More

formally, we can compute the robustness of machine𝑀 with respect

to environment 𝐸 and property 𝑃 by constructing the following set:

Δ(𝑀, 𝐸, 𝑃) = {𝜎 ∈ 𝑏𝑒ℎ(𝑊 ) | 𝜎 ∉ 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀 )} (1)

We use the approach by Giannakopoulou et al. [20] to generate

the weakest assumption of a system to satisfy a certain safety

property. We briefly describe the approach: Given the system LTS

𝑀 , the environment LTS 𝐸, and the safety property 𝑃 ,

(1) Compose system 𝑀 with the error LTS of property 𝑃 (as

defined in Section 3.1.3) and project its alphabet to the com-

mon actions between𝑀 and 𝐸, i.e., let 𝛼𝐸𝑀 = 𝛼𝑀 ∩ 𝛼𝐸, we

compute (𝑀 | |𝑃𝑒𝑟𝑟 ) ↾𝛼𝐸𝑀 .

(2) Perform backward propagation of the error state over 𝜏 tran-

sitions in the LTS obtained from Step 1. We prune all states

that are backward reachable from the error state via one or

more 𝜏 steps. The rationale is that if the system is in a state

which can enter the error state with some internal actions,

then no environment can prevent the property violation.

(3) Determinize the LTS obtained from step 2 by applying 𝜏

elimination and subset construction [25].

(4) Remove the error state and all of its incoming transitions to

obtain the LTS that corresponds to the weakest assumption.

5.3 Representation of Robustness

In general, the set of environmental traces that represent robust-

ness in Equation (1) may be infinite. Since simply enumerating

this set may not be an effective way to present this information

to the system designer, we propose a succinct, finite representa-

tion of the robustness. The key idea behind our approach is that

many of the traces in Δ(𝑀, 𝐸, 𝑃) capture a similar type of deviation

(e.g., a human operator erroneously skipping an action) and can be

grouped into the same equivalence class with a single representative

trace that describes the deviation. Based on this idea, we describe a

method for automatically converting Δ into a finite number of such

equivalence classes (and thus, a finite set of representative traces).

5.3.1 Representative Model of Robustness. Recall from Equation (1)

that Δ contains traces that are in the weakest assumption𝑊 but not

in the original normative environment 𝐸. To construct an LTS that

represents Δ, we take advantage of the method to check safety prop-

erties (described at the end of Section 3.1.3). In particular, we treat

the original environment 𝐸 projected over 𝛼𝐸𝑀 as a safety property,

and compute traces in𝑊 that lead to a violation of this property;

any such trace represents a prefix of the traces in Δ(𝑀, 𝐸, 𝑃).

(a) E

0 1 2

a b

b

ac
c

0 1 2

a b

b

c

0 1 2
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b

c

?
ac

(b) W (c) W || Eerr

Figure 4: LTS’s for a simple example illustrating the con-

struction of robustness.

To illustrate our approach, consider a simple example in Figure 4,

where𝑊 is the weakest assumption generated from some machine

𝑀 and 𝐸 is the original environment. To compute the representation

of Δ(𝑀, 𝐸, 𝑃), we first test whether 𝑊 |= (𝐸 ↾ 𝛼𝐸𝑀 ), which is

equivalent to testing whether the error state is reachable in𝑊 | | (𝐸 ↾
𝛼𝐸𝑀 )𝑒𝑟𝑟 , as shown in Figure 4(c). We say𝑊 | | (𝐸 ↾𝛼𝐸𝑀 )𝑒𝑟𝑟 is the

representative model of Δ(𝑀, 𝐸, 𝑃), and let Π(𝑊, 𝐸) be the set of all
the error traces in it. Then,

Δ(𝑀, 𝐸, 𝑃) = {𝜎 ∈ 𝑏𝑒ℎ(𝑊 ) | ∃𝜎 ′ ∈ Π(𝑊, 𝐸) : 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎 ′, 𝜎)} (2)

where 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎1, 𝜎2) means 𝜎1 is the prefix of 𝜎2. Thus, a trace in

Π(𝑊, 𝐸) can represent a set of traces in Δ(𝑀, 𝐸, 𝑃) that share this
prefix. For our example, trace ⟨𝑎, 𝑐⟩ in Π(𝑊, 𝐸) can represent, e.g.,

⟨𝑎, 𝑐, 𝑎, 𝑏, . . .⟩ and ⟨𝑎, 𝑐, 𝑎, 𝑐, . . .⟩ in Δ(𝑀, 𝐸, 𝑃).

5.3.2 Representative Traces of Robustness. Nevertheless, Π(𝑊, 𝐸)
may also be infinite due to possible cycles. For example, in Figure

4(c), ⟨𝑎, 𝑏, 𝑏, . . . , 𝑎⟩ would result in infinite number of error traces.

Therefore, we further divide the traces into equivalence classes:

5
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Let 𝑇𝑊,𝐸 = ⟨𝑆𝑊,𝐸 , 𝛼𝐸𝑀 , 𝑅𝑊,𝐸 , 𝑠0⟩ be the composition𝑊 ∥(𝐸 ↾
𝛼𝐸𝑀 )𝑒𝑟𝑟 . Then,

Π(𝑊, 𝐸) =
⋃

𝑠∈𝑆𝑊,𝐸

𝑎∈𝛼𝐸𝑀

Π𝑠,𝑎 (𝑊, 𝐸) where (𝑠, 𝑎, 𝜋) ∈ 𝑅𝑊,𝐸

i.e., Π𝑠,𝑎 (𝑊, 𝐸) denotes a subset of traces in Π(𝑊, 𝐸) that all end
with transition (𝑠, 𝑎, 𝜋). Then, we have

Δ(𝑀, 𝐸, 𝑃) = {𝜎 ∈ 𝑏𝑒ℎ(𝑊 ) | ∃Π𝑠,𝑎 (𝑊, 𝐸), ∃𝜎 ′ ∈ Π𝑠,𝑎 (𝑊, 𝐸) :

𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎 ′, 𝜎)}
(3)

We say that Π𝑠,𝑎 (𝑊, 𝐸) is an equivalence class of Π(𝑊, 𝐸). In
our example, we have two equivalence classes: Π1,𝑐 (𝑊, 𝐸) and
Π2,𝑎 (𝑊, 𝐸). Traces like ⟨𝑎, 𝑐⟩ and ⟨𝑎, 𝑏, 𝑐, 𝑎, 𝑐⟩ all belong to class

Π1,𝑐 (𝑊, 𝐸); and traces like ⟨𝑎, 𝑏, 𝑎⟩ and ⟨𝑎, 𝑏, 𝑏, 𝑏, 𝑎⟩ all belong to

class Π2,𝑎 (𝑊, 𝐸).
The rationale is that: 𝑠 is the last state by following the normative

behaviors of the original environment, and 𝑎 is the first deviated

action. Thus, Π𝑠,𝑎 (𝑊, 𝐸) describes a class of traces that deviate

from the original environment from the same normative state 𝑠 and

by the same action 𝑎.

Since 𝑆𝑊,𝐸 and 𝛼𝐸𝑀 are finite, so we have a finite number of

equivalence classes. We can simply generate them by enumerating

all the transitions leading to the error state. Then, we can pick

one of the traces in each equivalence class to represent Δ(𝑀, 𝐸, 𝑃).
Because we may not be interested in how the environment reaches

the last normative state, here we simply choose the shortest one.

Finally, we define:

Definition 5.2. The representation of Δ(𝑀, 𝐸, 𝑃), denoted by Δ𝑟𝑒𝑝 (
𝑀, 𝐸, 𝑃), is a finite set of traces such that each trace in it is the

shortest trace of one of the equivalence classes of Π(𝑊𝑀,𝐸,𝑃 , 𝐸).

Therefore, for our conceptual example, Δ(𝑀, 𝐸, 𝑃) can be repre-

sented by: Π1,𝑐 (𝑊, 𝐸) : ⟨𝑎, 𝑐⟩, and Π2,𝑎 (𝑊, 𝐸) : ⟨𝑎, 𝑏, 𝑎⟩.

5.4 Explanation of Representative Traces

By definition, a representative trace in Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃) contains only
actions from 𝛼𝐸𝑀 . While this trace describes how the environment

deviates from its expected behavior as observed by the machine,

it does not capture how the internal behavior of the environment

could have caused this deviation. To provide such an explanation for

an environmental deviation, we propose a method for augmenting

the representative traces with additional domain-specific informa-

tion (called faulty events) about the underlying root cause behind

the deviation. In this approach, the normative model is augmented

with additional transitions on these faulty events (which are in-

ternal to the environment) and an automated method is used to

extract a minimal explanation for a particular representative trace.

5.4.1 Explanations from a Deviation Model. In order to build expla-

nations for representative traces, our tool takes a deviation model

as input, which contains normative and deviated behaviors, and

maps each representative trace to a trace in the deviation model.

Definition 5.3. A deviation model 𝐷 of environment 𝐸 is an LTS

𝑇 = ⟨𝑆, 𝛼𝐷, 𝑅, 𝑠0⟩ where 𝛼𝐷 = 𝛼𝐸 ∪ {𝑓1, 𝑓2, . . . , 𝑓𝑛}, 𝑓𝑖 is a fault

in the environment, 𝑏𝑒ℎ(𝐸) ⊆ 𝑏𝑒ℎ(𝐷 ↾ 𝛼𝐸), and 𝑏𝑒ℎ(𝐷 ↾ 𝛼𝐸𝑀 ) ∩
Δ(𝑀, 𝐸, 𝑃) ≠ ∅.

Our tool makes no assumptions on how to generate such a devia-

tionmodel. It can be built manually (e.g., Section 7.2 uses a manually

defined deviation model); or it can be derived from existing fault

models in other fields (e.g., Section 7.3 derives the deviation model

from an existing human error behavior model). The model may not

necessarily cover all the traces in Δ(𝑀, 𝐸, 𝑃); however, we say a

deviation model is complete with respect to Δ(𝑀, 𝐸, 𝑃) if and only

if Δ(𝑀, 𝐸, 𝑃) ⊆ 𝑏𝑒ℎ(𝐷 ↾𝛼𝐸𝑀 ).
Then, an explanation of a representative trace is a trace in the

deviation model:

Definition 5.4. For any trace 𝜎 ∈ Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃) and 𝜎 ′ ∈ 𝑏𝑒ℎ(𝐷),
if 𝜎 ′↾𝛼𝐸𝑀 = 𝜎 , then we say 𝜎 ′ is an explanation of 𝜎 .

(a) Original Environment E

0 1 2

a b

b

c

(b) Deviation Model D

0 1 2

a b

b
c

3

f1
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4

f2

a
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Figure 5: Deviation model for the simple example.

Consider a deviation model for our simple example in Figure 5,

then: for the representative trace ⟨𝑎, 𝑐⟩, we can build explanations

⟨𝑎, 𝑓1, 𝑐⟩ and ⟨𝑎, 𝑓3, 𝑓4, 𝑐⟩; and for the representative trace ⟨𝑎, 𝑏, 𝑎⟩,
we can build an explanation ⟨𝑎, 𝑏, 𝑓2, 𝑎⟩.

5.4.2 The Minimal Explanation. In general, there could be infinite

number of explanations for a representative trace. However, similar

to software testing where we are often interested in the smallest

test cases against certain errors, here we are also only interested in

the explanation of 𝜎 which contains the minimal number of faults.

Definition 5.5. Theminimal explanation for𝜎 = ⟨𝑎0, . . . , 𝑎𝑛−1, 𝑎𝑛⟩
in Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃) under deviation model 𝐷 is the shortest trace 𝜎 ′ ∈
𝑏𝑒ℎ(𝐷) where 𝜎 ′↾𝛼𝐸𝑀 = 𝜎 and faulty actions only exist between

𝑎𝑛−1 and 𝑎𝑛 .

A minimal explanation describes: 1) how the environment can

reach the last normative state without any faults; 2) and what

minimal sequence of faults have caused the environment to deviate

from the normative behavior.

To compute the minimal explanation for 𝜎 ∈ Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃), let
𝑇𝜎 = ⟨𝑆, 𝛼𝐸𝑀 , 𝑅, 𝑠0⟩ be the LTS where 𝜎 and its prefixes are the

only traces in it. Besides, we make the last action in 𝜎 lead to 𝜋 to

denote the end state, i.e., (𝑠, 𝑎𝑛, 𝜋) ∈ 𝑅. Then, we use BFS to search

the minimal explanation in 𝐷 | |𝑇𝜎 , as shown in Algorithm 1.

Line 1-3 define an empty queue to store the remaining search

states and an empty set to store the visited states, and add the

initial state to the queue. The algorithm loops until the queue is

empty (Line 4). If the current visiting state is 𝜋 , then it returns the

current trace as the explanation (Line7-8); otherwise, it adds the

next states to the queue. Specifically, if the current trace does not

match the prefix of 𝜎 , i.e., ⟨𝑎0, . . . , 𝑎𝑛−1⟩, then it only adds states

with a non-faulty transition (Line 12-13). Since BFS returns on the

first result, it is guaranteed to find the minimal explanation. For

6
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Algorithm 1: Minimal explanation search

Data: A trace 𝜎 ∈ Δ𝑟𝑒𝑝 (𝑀, 𝐸, 𝑃) and the LTS of 𝐷 | |𝑇𝜎
Result: The minimal explanation 𝜎 ′ ∈ 𝑏𝑒ℎ(𝐷)

1 𝑞 := empty queue ; // remaining search states

2 𝑣 := empty set of states ; // visited states

3 enqueue(𝑞, (𝑠0, ⟨⟩));

4 while ¬isEmpty(q) do

5 𝑠, 𝑡 := dequeue(q); // 𝑠 the current state, 𝑡 the

current trace

6 if 𝑠 ∉ 𝑣 then

7 if 𝑠 = 𝜋 then

8 return t;

9 else

10 𝑣 := 𝑣 ∪ {𝑠};

11 for (𝑠, 𝑎, 𝑠 ′) ∈ 𝑅 do

12 if 𝑡 ↾𝛼𝐸𝑀 = 𝑠𝑢𝑏𝑇𝑟𝑎𝑐𝑒 (𝜎, 0, 𝑛 − 1) then

enqueue(𝑞, (𝑠 ′, 𝑡 ⌢ 𝑎)) ;

/* 𝑡 does not match ⟨𝑎0, . . . , 𝑎𝑛−1⟩. */

13 else if 𝑎 is not a fault then

enqueue(𝑞, (𝑠 ′, 𝑡 ⌢ 𝑎)) ;

14 end

15 end

16 end

17 end

example, our algorithm returns ⟨𝑎, 𝑓1, 𝑐⟩ as the minimal explanation

for ⟨𝑎, 𝑐⟩ instead of ⟨𝑎, 𝑓3, 𝑓4, 𝑐⟩ in the deviation model (Figure 5(b)).

6 ROBUSTNESS COMPARISON

This section describes a method to compare robustness between a

pair of machines (Problem 4.2), or a machine against a pair of prop-

erties (Problem 4.3). According to Equation (1), to solve Problem

4.2, we have

𝑋 = Δ(𝑀2, 𝐸, 𝑃) − Δ(𝑀1, 𝐸, 𝑃)

= {𝜎 ∈ 𝑏𝑒ℎ(𝑊𝑀2
) | 𝜎 ∉ 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀 ) ∧ 𝜎 ∉ 𝑏𝑒ℎ(𝑊𝑀1

)}

By assuming 𝑏𝑒ℎ(𝐸 ↾ 𝛼𝐸𝑀 ) ⊆ 𝑏𝑒ℎ(𝑊𝑀1
), we can simplify the

equation to:

𝑋 = Δ(𝑀2, 𝐸, 𝑃) − Δ(𝑀1, 𝐸, 𝑃) = {𝜎 ∈ 𝑏𝑒ℎ(𝑊𝑀2
) | 𝜎 ∉ 𝑏𝑒ℎ(𝑊𝑀1

)}

Then, we can use the same method described in Section 5.3 to

generate its representation. By computing𝑊𝑀2
| | (𝑊𝑀1

)𝑒𝑟𝑟 , we have
Π(𝑊𝑀2

,𝑊𝑀1
) representing all the prefixes of𝑋 . Similarly, we divide

it into equivalence classes, i.e., Π𝑠,𝑎 (𝑊𝑀2
,𝑊𝑀1

) where (𝑠, 𝑎) leads
to the error state. Then, we have

𝑋 = Δ(𝑀2, 𝐸, 𝑃) − Δ(𝑀1, 𝐸, 𝑃)

= {𝜎 ∈ 𝑏𝑒ℎ(𝑊𝑀2
) | ∃Π𝑠,𝑎 (𝑊𝑀2

,𝑊𝑀1
),

∃𝜎 ′ ∈ Π𝑠,𝑎 (𝑊𝑀2
,𝑊𝑀1

) : 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎 ′, 𝜎)}

(4)

Finally, the representation of𝑋 = Δ(𝑀2, 𝐸, 𝑃)−Δ(𝑀1, 𝐸, 𝑃) is a finite
set of shortest traces of Π𝑠,𝑎 (𝑊𝑀2

,𝑊𝑀1
).

We apply the same process to 𝑋 = Δ(𝑀, 𝐸, 𝑃2) − Δ(𝑀, 𝐸, 𝑃1). By
assuming that 𝑏𝑒ℎ(𝐸 ↾𝛼𝐸𝑀 ) ⊆ 𝑏𝑒ℎ(𝑊𝑃1 ) and computing Π(𝑊𝑃2 ,

𝑊𝑃1 ) and its equivalence classes, we have

𝑋 = Δ(𝑀, 𝐸, 𝑃2) − Δ(𝑀, 𝐸, 𝑃1)

= {𝜎 ∈ 𝑏𝑒ℎ(𝑊𝑃2 ) | ∃Π𝑠,𝑎 (𝑊𝑃2 ,𝑊𝑃1 ),

∃𝜎 ′ ∈ Π𝑠,𝑎 (𝑊𝑃2 ,𝑊𝑃1 ) : 𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝜎
′, 𝜎)}

(5)

Then, the representation of 𝑋 = Δ(𝑀, 𝐸, 𝑃2) − Δ(𝑀, 𝐸, 𝑃1) is a finite
set of shortest traces of Π𝑠,𝑎 (𝑊𝑃2 ,𝑊𝑃1 ).

7 CASE STUDIES

This section reports on our experience applying our proposed

method to evaluate the robustness of software designs. In par-

ticular, our goal was to answer the following research questions:

(1) Does our proposed notion of robustness capture the types of

environmental deviations that occur in practice? (2) Is our notion

of robustness applicable across multiple domains? To answer (2),

we demonstrate the application of our method to two different

types of systems: namely, network protocols and safety-critical

interfaces. For (1), we show that the robustness computed by our

method indeed corresponds to environmental deviations that have

been studied in the respective domains.

7.1 Implementation

We created our robustness analyzer on top of LTSA [33, 34], a

modeling tool that supports automated reachability-based anal-

ysis of labelled transition systems. In our tool, the LTS’s corre-

sponding to the input system, environment, and property are spec-

ified using FSP, the input modeling language of LTSA. We im-

plement the functions including weakest assumption generation,

representation generation, and explanation generation in a Kotlin

program (a JVM-based language). In particular, we take advan-

tage of the built-in tool support of LTSA for composition, projec-

tion, and property checking over LTS. Our evaluation was done

on a Windows machine with 3.6GHz CPU and 32GB memory.

The source code of the implementation can be found on GitHub,

https://github.com/SteveZhangBit/LTSA-Robust.

7.2 Network Protocol Design

This section describes a case study on rigorously evaluating the

robustness of network protocol designs. In particular, we focus on

two protocols: A naive protocol that assumes a perfectly reliable

communication channel, and the Alternate Bit Protocol (ABP) [42],

which is specifically designed to guarantee integrity of messages

over a potentially unreliable communication channel. By computing

and comparing the robustness of the two, we formally show that

the ABP is indeed more robust than the naive protocol against

possible failures in the channel. As far as we know, our method is

the first automated technique for formally evaluating the robustness

of network protocols.

7.2.1 Models. Figure 6 shows the LTS’s for the environment and

machines (i.e., network protocols). Here, the environment 𝐸 corre-

sponds to a communication channel over which messages are trans-

mitted (with 𝛼𝐸 = {𝑠𝑒𝑛𝑑 [0..1], 𝑟𝑒𝑐 [0..1], 𝑎𝑐𝑘 [0..1], 𝑔𝑒𝑡𝑎𝑐𝑘 [0..1]}1).
Under normal circumstances, we expect that the channel reliably

delivers messages to the intended receiver (i.e., it does not lose,

1𝑠𝑒𝑛𝑑 [0..1] refers to a set of actions {𝑠𝑒𝑛𝑑 [0], 𝑠𝑒𝑛𝑑 [1] }.
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Figure 6: (a) The perfect channel: the transmission channel transmits messages with parameter 0 or 1 from the sender to the

receiver; and the acknowledge channel transmits acknowledgements from the receiver back to the sender. (b) The naive pro-

tocol: The sender sends user input data with either 0 or 1, and waits on the acknowledgement; the receiver waits on messages,

output the data, and acknowledges with either 0 or 1. (c) The ABP protocol [19]: The sender first sends a message with 0, and

it continues sending the message until it receives an acknowledgement with 0. Then, it alternates the bit to send a message

with 1. The receiver first waits on a message with 0, and it continues sending acknowledgements with 0 until it receives a new

message with 1. Then, it acknowledges with 1 and waits for a new message with 0.

duplicate, or corrupt messages); this model of the normative envi-

ronment is captured as the perfect channel in Figure 6(a).

A machine in this case study corresponds to a network protocol

whose goal is to reliably deliver each message from the sender to its

intended receiver. In particular, we compare two protocols: A naive

protocol𝑀𝑁 , which simply sends and receives messages assuming

the channel is reliable, and the Alternate Bit Protocol (ABP)𝑀𝐴𝐵𝑃 ,

which is designed to ensure reliable delivery even in presence of

potential faults in the underlying channel. Figure 6(b) and 6(c) show

their specifications respectively.

7.2.2 Computing Robustness and Explanations. We defined prop-

erty 𝑃 as “the input and output should alternate”; in FSP:

property P = (input -> output -> P).

This property ensures that the sender sends a new message only

after it receives the receiver’s acknowledgement that the previously

sent message was successfully delivered.

We used our tool to compute the robustness of the two protocols,

i.e., Δ(𝑀𝑁 , 𝐸, 𝑃) and Δ(𝑀𝐴𝐵𝑃 , 𝐸, 𝑃). Specifically, 𝐸 contains 9 states

and 24 transitions, 𝑀𝑁 contains 20 states and 67 transitions, and

our tool spent 130ms to generate Δ𝑟𝑒𝑝 (𝑀𝑁 , 𝐸, 𝑃) and build their

explanations. Δ𝑟𝑒𝑝 (𝑀𝑁 , 𝐸, 𝑃) contains 4 traces corresponding to 4

equivalence classes. 𝑀𝐴𝐵𝑃 contains 30 states and 104 transitions,

and our tool spent 1s317ms to generate Δ𝑟𝑒𝑝 (𝑀𝐴𝐵𝑃 , 𝐸, 𝑃) and their
explanations. Δ𝑟𝑒𝑝 (𝑀𝐴𝐵𝑃 , 𝐸, 𝑃) contains 107 traces corresponding
to 107 equivalence classes.

7.2.3 Analysis. We built a deviation model 𝐷 which contains mes-

sage loss, duplication, and corruption of bits (only the bit parameter

0 and 1, but not the message content) to provide explanations for

these representative traces. Figure 7 shows its specification.

All the 4 traces in Δ𝑟𝑒𝑝 (𝑀𝑁 , 𝐸, 𝑃) correspond to the bit corrup-

tion error. For example, the explanation for ⟨𝑠𝑒𝑛𝑑 [0], 𝑟𝑒𝑐 [1]⟩ is
⟨𝑖𝑛𝑝𝑢𝑡, 𝑠𝑒𝑛𝑑 [0], 𝑐𝑜𝑟𝑟𝑢𝑝𝑡, 𝑟𝑒𝑐 [1]⟩. We were surprised to find that

the naive protocol is robust against such errors (our expectation

Send Lost

send[x]

lose

Receive

send[x]

rec[x]

Duplicated
rec[x]

duplicate

Corrupted

corruptrec[1-x]

Figure 7: Deviationmodel that describes the faulty transmis-

sion channel. The faulty acknowledge channel is similarly

structured and omitted here.

was that the naive protocol would be not robust against any kind

of environmental deviations at all). This is because property 𝑃

is somewhat under-specified: It requires only that the input and

output actions alternate, and does not say anything about the bit

parameters in the sent and corresponding received messages.

For the 107 traces in Δ𝑟𝑒𝑝 (𝑀𝐴𝐵𝑃 , 𝐸, 𝑃), our tool finds the mini-

mal explanations for 99 of them. For example, the explanation for

⟨𝑠𝑒𝑛𝑑 [0], 𝑠𝑒𝑛𝑑 [0]⟩ is ⟨𝑖𝑛𝑝𝑢𝑡, 𝑠𝑒𝑛𝑑 [0], 𝑙𝑜𝑠𝑒, 𝑠𝑒𝑛𝑑 [0]⟩ corresponding
to message loss during transmission; the explanation for ⟨𝑠𝑒𝑛𝑑 [0],
𝑟𝑒𝑐 [0], 𝑟𝑒𝑐 [0]⟩ is ⟨𝑖𝑛𝑝𝑢𝑡, 𝑠𝑒𝑛𝑑 [0], 𝑟𝑒𝑐 [0], 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒, 𝑟𝑒𝑐 [0]⟩
corresponding to message duplication during transmission; and

the explanation for ⟨𝑠𝑒𝑛𝑑 [0], 𝑟𝑒𝑐 [0], 𝑎𝑐𝑘 [0], 𝑔𝑒𝑡𝑎𝑐𝑘 [1]⟩ is ⟨𝑖𝑛𝑝𝑢𝑡,
𝑠𝑒𝑛𝑑 [0], 𝑟𝑒𝑐 [0], 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑎𝑐𝑘 [0], 𝑐𝑜𝑟𝑟𝑢𝑝𝑡, 𝑔𝑒𝑡𝑎𝑐𝑘 [1]⟩ corresponding
to the bit corruption error during acknowledgement.

We further grouped the representative traces by the type of fault

in their explanations, as shown in Table 1. For example, trans.{ dupli-

cate, corrupt} represents a set of deviations in which the transmitted

message is duplicated and then corrupted (e.g., ⟨..𝑟𝑒𝑐 [0], 𝑟𝑒𝑐 [1]⟩).
There may be multiple representative traces of the same fault type,

since the fault may occur at different points during an expected

sequence of environmental actions.
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Table 1: Summary of Δ𝑟𝑒𝑝 for ABP. “trans” refers to errors

during transmission, and “ack” refers to errors during ac-

knowledgements.

Fault types #Traces Fault types #Traces

trans.lose 23 ack.duplicate 14

trans.duplicate 18 trans.{duplicate,corrupt} 4

trans.corrupt 8 ack.{duplicate,corrupt} 2

ack.lose 22 unexplained 8

ack.corrupt 8 Total 107

Our analysis shows that the ABP protocol is more robust than

the naive protocol in being able to handle message loss and dupli-

cation, as intended by the protocol design [42]. In addition, the 8

unexplained traces also gave us an insight into a type of error that

ABP was previously unknown to be robust against; namely, that

the sender may receive acknowledgments even when the receiver

does not send them. This type of deviation may occur, for example,

when a malicious channel generates a dubious acknowledgement to

deceive the sender into believing that a message has been delivered.

7.3 Radiation Therapy System

The second case study focuses on the radiation therapy system

introduced in Section 2. Specifically, we compare the robustness

of the two designs (i.e., the original design and the redesign in-

volving an additional check to ensure the completion of the mode

switch before beam delivery) and show that the redesign is in-

deed more robust against potential human errors. In particular, to

model normative and erroneous human behavior, we adopt the En-

hanced Operator Function Model (EOFM) [8], a formal notation for

modeling tasks performed over human-machine interfaces. Human

behavior modeling has been studied by researchers in human fac-

tors and cognitive science [24, 38], and we reuse their results in this

case study to demonstrate that our approach can be combined with

existing behavior models in fields other than network protocols.

7.3.1 EOFM. The Enhanced Operator Function Model (EOFM) [8]

is a formal description language for human task analysis, a well-

established sub-field of human factors that focuses on the design

of human operator tasks and related factors (e.g., training, working

conditions, and error prevention) [2]. An EOFM describes the task

to be performed by an operator over a machine interface as a hierar-

chical set of activities. Each activity includes a set of conditions that

describe (1) when the activity can be undertaken (pre-conditions)

and (2) when it is considered complete (completion conditions). Each

activity is decomposed into lower-level sub-activities and, finally,

into atomic interface actions. Decomposition operators are used

to specify the temporal relationships between the sub-activities or

actions. The EOFM language is based XML, and it also supports a

tree-like visual notation.

Figure 8 shows a fragment of the EOFM model of the operator’s

tasks for the radiation therapy system (from [10]). It defines the

Beam Selection Task, which can be performed only if the interface is

in the Editing state; the operator can select either X-ray or electron

beam by pressing X or E, respectively; and the activity is completed

only if the interface leaves the editing state.

InterfaceState = Editing

aSelectXorE

aSelectXray aSelect
EBeam

X E

xor

ord ord

InterfaceState != Editing

Figure 8: The EOFM model of the Beam Selection Task. A

rounded box defines an activity, a rectangular box defines

an atomic action, and a rounded box in gray includes all the

sub-activities/actions of a parent activity. The labels on the

directed arrows are decomposition operators. The triangle

in yellow defines the pre-conditions of an activity, and the

triangle in red defines the completion conditions.

7.3.2 Models. The LTS’s used for this case study (shown in Fig-

ure 1) were adopted from a prior work on formal safety analysis of

radiation therapy system under potential human errors [10], where

the system is modeled as a finite state machine and the human

operator task is specified using an EOFM. Adopting their system

model into our LTS was straightforward. To translate the EOFM to

a corresponding LTS, we implemented an automatic EOFM-to-LTS

translator using a technique proposed in [11]; due to limited space,

we omit the details about our translation process.

7.3.3 Deviation Model. To generate explanations for Δ that involve

human errors, we adopted a method for automatically augmenting

a model of a normative operator task (specified in EOFM) with

additional behaviors that correspond to human errors [9]. In par-

ticular, this approach leverages a catalog of human errors called

genotypes [38]. For example, one type of genotype errors named

commission describes errors where the operator accidentally per-

forms an activity under a wrong condition. Other genotype errors

include omission (skipping an activity) and repetition.

Select 
Mode

Confirm 
Mode FireBeam Task 

Complete

GoBack

X

E

Enter B

commissionUp

Figure 9: A partial deviation model of the operator task.

Figure 9 shows a simplified version of the deviation model that

was automatically generated from the EOFM model of the ther-

apist task. This model captures the operator making a potential

commission error; i.e., deviating from the expected task by press-

ing Up. For simplicity, we only show one faulty transition here;

9
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the complete deviation model is considerably more complex, since

commission, omission, or repetition errors can occur at any state

in the normative operator model.

7.3.4 Comparing Robustness of𝑀 and𝑀𝑅 . We compared the ro-

bustness of the two designs by computing 𝑋 = Δ(𝑀𝑅, 𝐸, 𝑃) −
Δ(𝑀, 𝐸, 𝑃) (using Equation (4)) and generated representative traces

that illustrate differences in their robustness. Specifically,𝑀 con-

tains 19 states and 40 transitions, 𝑀𝑅 contains 19 states and 42

transitions. Our tool spent 958ms to compute the representation of

𝑋 , which contains 3 representative traces (i.e., implying that 𝑀𝑅

is more robust than𝑀 against three types of operator deviations).

One of the traces represents the error that was discussed in Sec-

tion 2: ⟨X,Up, E, Enter,B⟩. This shows that the redesign is indeed

robust against the operator error involving the switch from X-ray

to EBeam. Moreover, we used the deviation model to generate the

following minimal explanation for this trace: ⟨X, commission,Up, E,

Enter,B⟩, corresponding to the operator making a commission error

by unexpectedly pressing Up during the task.

In addition, computingΔ(𝑀, 𝐸, 𝑃)−Δ(𝑀𝑅, 𝐸, 𝑃) yielded an empty

set, demonstrating that the redesign of the system is strictly more

robust than the original design.

7.3.5 Comparing Robustness Under Two Properties. Recall that

property 𝑃 states that the system should not fire X-ray when the

spreader is out of place. It may also be desirable to ensure that

the system does not fire electron beam when the spreader is in

place (for example, resulting in under-dose, which, while not as

life-threatening as overdose, is still considered a critical error.) Let

𝑃 ′ be a property stating that the system must prevent both over-

dose as well as under-dose by ensuring the right mode of beam

depending on the configuration of the spreader. Intuitively, 𝑃 ′ is a

stronger property than 𝑃 .

To compare the robustness of the system against these two prop-

erties, we computed𝑋 = Δ(𝑀, 𝐸, 𝑃)−Δ(𝑀, 𝐸, 𝑃 ′) by using Equation
(5). Our tool spent 2s98ms and returned one representative trace, i.e.,

⟨E,Up, X, Enter,B⟩. Since this behavior is allowed in Δ(𝑀, 𝐸, 𝑃) but
not in Δ(𝑀, 𝐸, 𝑃 ′), we can conclude from the the analysis that the

the system (as expected) is less robust in establishing the stronger

property 𝑃 ′ under potential operator errors.

8 RELATEDWORK

Most of the prior works on robustness within the software engi-

neering community have focused on testing [39]. Techniques such

as fuzz testing (e.g., [21]), model-based testing (particularly those

that use a fault model [4, 17]) and chaos testing [3] are designed to

evaluate the robustness of systems against unexpected inputs or en-

vironmental failures. However, the primary goal of these techniques

is to identify undesirable system behaviors (e.g., crashes or security

violations) rather than to compute robustness as an intrinsic charac-

teristic of the software. In addition, we believe that our robustness

metric can potentially be used to complement and further system-

atize robustness testing; for instance, traces in Δ could be used to

guide the generation of test cases that are designed to evaluate the

system against specific types of environmental deviations.

Various formal definitions of robustness for discrete systems

have been investigated [5, 22, 23, 40]. One common characteris-

tics of these prior definitions is that they are all quantitative in

nature. For instance, Bloem et al. propose a notion of robustness

that relates the number of incorrect environment inputs and system

outputs (e.g., the ratio of incorrect outputs over inputs should be

small) [5]. Tabuada et al. propose a different notion of robustness

that assigns costs to certain input and output traces (e.g., a high

cost may be assigned to an input trace that deviates significantly

from the expected behavior) and stipulates that an input with a

small cost should only result in an output with a proportionally

small cost [40]. Henzinger et al. adopt the notion of Lipschitz con-

tinuity from the control theory to discrete transition systems and

use the distance between a pair of expected and actual input traces

to quantify the amount of environmental deviations [22, 23].

In comparison, our notion of robustness is qualitative in that

it captures the (possibly infinite) set of environmental deviations

under which the system guarantees a desired property. These two

types of metrics are complementary in nature and have their own

potential uses. While a quantitative metric may directly enable

ordering of design alternatives, our robustness contains additional

information about the environmental behaviors (e.g., specific types

of deviations) that can be used to improve the system robustness.

Tabuada and Neider propose an extension of linear temporal

logic called robust linear temporal logic (rLTL), which allows spec-

ifications stipulating that a “small” violation of the environment

assumption must cause only a “small” violation of the guarantee

by the system [41]. In particular, they use a multi-valued semantics

to capture different levels of property satisfaction by the environ-

ment (e.g., given an expected property of form G𝜑 , being able to

satisfy only a weaker property F(G𝜑) would be considered a “small”

violation) [40]. Although the focus of our paper is on computing ro-

bustness rather than specifying it, rLTL could potentially be used to

characterize certain types of deviations that are temporal in nature.

Our notion of robustness can be regarded as one way of charac-

terizing uncertainty about the environment under which the system

is capable guaranteeing a certain property. Researchers have devel-

oped various notations and analysis techniques for specifying and

reasoning about uncertainty [12, 16, 26, 31]. For example, modal

transition systems (MTS) allow one to express uncertainty about

behavior by assigning a modality to transitions (e.g., a transition

that can possibly but not necessarily occur is assigned modality

may) [31]. More recently, partial models have been developed as a

general modeling framework for specifying and reasoning about

uncertainty on structural or behavioral aspects of a system [16].

Although the approach in this paper uses a purely trace-based en-

coding of robustness, these existing notations could potentially be

used to provide a more high-level representation of robustness.

In safety engineering and risk management, operating envelope

(or sometimes safety envelope) has been used to refer to the bound-

ary of environmental conditions under which the system is capable

of maintaining safety [37]. This concept has been adopted in a num-

ber of domains such as aviation, robotics, and manufacturing, but

as far as we know, has not been rigorously defined in the context

of software. Our notion of robustness can be considered as one

possible definition of the operating envelope for software systems.

10



A Behavioral Notion of Robustness for Software Systems ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

9 DISCUSSIONS

Role of robustness in software development. We envision a

number of development scenarios in which our notion of robustness

may prove useful. In a typical workflow, the developer may begin

by constructing a candidate design that satisfies a desired property

under a normative environment (i.e., one without any erroneous

behaviors). Then, the robustness computed over this initial design

may reveal that the system is not capable of tolerating certain

deviations that the developer has inmind. Based on this information,

the system may be re-designed with an error handling mechanism

and analyzed again to compute its new robustness. This processmay

be repeated to incrementally achieve a desired level of robustness.

Our analysis may also be used to reveal that a design is over-

engineered, in that it is robust against deviations that are unlikely

to occur (this situation may arise, for example, when a system is

deployed in a more constrained environment than originally antici-

pated). Over-engineering has its cost, often in form of additional

complexity, and thus, the developer may wish to simplify the de-

sign to reduce its robustness to a desired level (e.g., by removing

unnecessary failure handling mechanisms).

Our approach also supports development of mixed-criticality

systems [13], where some of the system requirements are consid-

ered more critical than others (e.g., in certain distributed systems,

preventing network message corruption may be more important

than ensuring timely delivery). Such a system should be designed to

satisfy its critical properties even under a faulty environment, while

it might be considered acceptable for other, non-critical properties

to be violated under the same situation. By applying the property

comparison analysis as stated in Problem 4.3, the developer can rig-

orously check whether a given design achieves appropriate levels

of robustness for properties with different levels of criticality.

Strengths of our robustness definition. Our robustness notion

provides information about: (1) what additional environmental be-

haviors the system can handle compared to the ideal environment or

an alternative design, and (2) what errors in the environment these

additional behaviors represent. For (1), we compute the differences

between the weakest assumption of a system and the normative

environment to denote its robustness; and we compare the robust-

ness of two designs by computing the differences in their weakest

assumptions. Since robustness, in general, is an infinite trace set,

our approach provides a technique for categorizing robustness in

terms of a finite number of representative traces (Section 5.3).

For (2), a deviation model is used to generate an explanation that

describes a deviation in terms of designated faulty events (Section

5.4). As we demonstrated on the radiation therapy system, these

models can be constructed automatically from domain knowledge

that captures a set of common deviations in an application domain

(e.g., human errors). In general, a deviation model might not contain

enough faulty events to produce an explanation for a particular

representative trace, identified as an unexplained deviation. How-

ever, we believe that this can also be considered a strength of our

approach, since these unexplained traces reveal the unexpected

side-effects (may or may bot be good) of a design decision and can

provide domain experts with insights about previously unknown

types of deviations (e.g., ABP being robust against an injection of a

dubious acknowledgement, as described at the end of Section 7.2).

10 LIMITATIONS AND FUTURE WORK

Properties. One limitation of the proposed approach is that our

current notion of robustness is specifically designed for safety prop-

erties. As a next step, to enable reasoning about liveness proper-

ties [1], we plan to investigate an extended notion of robustness

where the environment deviates from its expectation not only by

performing additional behaviors, but also by failing to perform

expected behaviors (thus possibly resulting in a liveness violation).

Scalability. The scalability of our tool highly depends on the weak-

est assumption generation algorithm; the generation of the repre-

sentative traces and explanations involves only LTS composition

and BFS search. As part of future work, we plan to improve our

tool by leveraging techniques for efficient generation of weakest as-

sumptions (e.g., those that use L* learning [15] or a counterexample-

guided method [6]).

Classifying deviations. Another limitation is that our current

method of defining equivalence classes for Δ may sometimes result

in a classification that is too fine-grained. For example, for the ABP

protocol, our tool generated 107 different classes of environmental

deviations (see Section 7.2). Intuitively, traces ⟨𝑠𝑒𝑛𝑑 [0], 𝑠𝑒𝑛𝑑 [0]⟩
and ⟨. . . , 𝑠𝑒𝑛𝑑 [1], 𝑠𝑒𝑛𝑑 [1]⟩ refer to the same type of fault (i.e., mes-

sage loss during sending) and could be grouped into the same class.

In future work, we plan to explore different strategies for gen-

erating representative traces, leveraging abstraction-based meth-

ods to produce higher-level representations of deviations (e.g.,

⟨. . . , 𝑠𝑒𝑛𝑑 [𝑥], 𝑠𝑒𝑛𝑑 [𝑥]⟩ for some event parameter 𝑥 ).

Redesigning for robustness. One potential future direction is to

develop an approach for systematically redesigning a system to

improve its robustness: Given machine𝑀 and some environmental

deviations 𝛿 under which the system fails to satisfy property 𝑃 , how

do we redesign the system to be robust against such deviations (i.e.,

𝛿 ⊆ Δ(𝑀 ′, 𝐸, 𝑃) for redesigned machine𝑀 ′)? In particular, we plan

to formulate this problem as a type of model transformation (from

𝑀 to𝑀 ′), and explore algorithmic methods for (semi-)automatically

synthesizing the robust redesign.
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