
Engineering Secure Self-Adaptive Systems
with Bayesian Games

Nianyu Li1(�), Mingyue Zhang2, Eunsuk Kang3, and David Garlan4

1 Peking University, Beijing, China nianyu li@pku.edu.cn
2 Peking University, Beijing, China mingyuezhang@pku.edu.cn

3 Carnegie Mellon University, Pittsburgh, USA eunsukk@andrew.cmu.edu
4 Carnegie Mellon University, Pittsburgh, USA garlan@cs.cmu.edu

Abstract. Security attacks present unique challenges to self-adaptive
system design due to the adversarial nature of the environment. Game
theory approaches have been explored in security to model malicious
behaviors and design reliable defense for the system in a mathematically
grounded manner. However, modeling the system as a single player, as
done in prior works, is insufficient for the system under partial compromise
and for the design of fine-grained defensive strategies where the rest of the
system with autonomy can cooperate to mitigate the impact of attacks.
To deal with such issues, we propose a new self-adaptive framework incor-
porating Bayesian game theory and model the defender (i.e., the system)
at the granularity of components. Under security attacks, the architecture
model of the system is translated into a Bayesian multi-player game,
where each component is explicitly modeled as an independent player
while security attacks are encoded as variant types for the components.
The optimal defensive strategy for the system is dynamically computed
by solving the pure equilibrium (i.e., adaptation response) to achieve
the best possible system utility, improving the resiliency of the system
against security attacks. We illustrate our approach using an example
involving load balancing and a case study on inter-domain routing.

1 Introduction

A self-adaptive system is designed to be capable of modifying its structure and
behavior at run time in response to changes in its environment and the system
itself (e.g., variability in system performance, deployment cost, internal faults,
and system availability) [9,12]. One of the major challenges in self-adaptive
systems is managing uncertainty ; i.e., the system should be capable of making
appropriate planning decisions despite limited observations about its environment.
Achieving security in presence of uncertainty is particularly challenging due to
the adversarial nature of the environment [17,13]: (1) to avoid detection, a typical
attacker may attempt to remain hidden while carrying out its actions, and so
accurately estimating its objectives and capabilities can be difficult, and (2) the
attacker actively attempts to cause as much harm as possible to the system, and
so a typical “average case” analysis may not be appropriate for making optimal
defensive decisions [28].

© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 130–151, 2021.
https://doi.org/10.1007/978-3-030-71500-7 7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-71500-7_7

Engineering Secure Self-Adaptive Systems with Bayesian Games 131

Various game-theoretic approaches have been explored in the security com-
munity for modeling interactions between the system and attackers as a game
between a group of players (i.e., system and multiple attackers, each as one
player) and computing optimal strategies (i.e., Nash Equilibrium) for the system
to minimize the impact of possible attacks and improve its resiliency against
them [40,15,19,28]. These methods can be used to (1) model adversarial behaviors
by malicious attackers [19], and (2) design reliable defense for the system by using
underlying incentive mechanisms to balance perceived risks in a mathematically
grounded manner [15]. In particular, a type of game-theoretic method called
Bayesian games [25] is designed to explicitly encode and reason about uncertainty
in the information that players have (e.g., partial knowledge about each other’s
actions and objectives).

Prior works in security that leverage game theory [40,15,19,28] have treated
the system as an independent player (i.e., defender) in the game. However, such
a monolithic approach that involves abstracting the entire system as a single
player might be insufficient for capturing certain practical scenarios, where only
one part of the system is compromised while the remaining system components
may co-operate each other to mitigate the impact of an on-going attack.

In this paper, we argue that compared to a coarse one-player abstraction
of a system, modeling the defender under security attacks at the granularity of
components is more expressive, in that it allows the design of fine-grained defensive
strategies for the system under partial compromise. In particular, we advocate
a security modeling approach where an attack is modeled as the anomalous
behavior of a system component that deviates from its expected behavior, as an
alternative to a conventional approach where attackers themselves are modeled
as separate players.

To this end, we propose a novel approach to improving the resiliency of
self-adaptive systems against security attacks by leveraging game theory. In
particular, we propose a new self-adaptive framework that leverages multi-players
Bayesian games at the granularity of components at the system architecture
level. Specifically, in our approach, each major system component is modeled
separately as an independent player. Under an attack, one or more components
with vulnerabilities might be exploited by an attacker to deliberately perform
harmful actions (i.e., turning into a malicious type). Different types of attacks
that these components might be subject to are encoded as different types of game
players, encoding uncertainty in the attack being carried out. The rest of the
components are then modeled as forming a coalition to mitigate the impact of
the malicious actions by those compromised components.

To perform a security analysis, a model of the system architecture and
component attacks are translated into a mathematical Bayesian game structure.
Then, the adaptive defensive strategy for the system is dynamically computed
by solving a pure equilibrium, to achieve the best possible system utility under
all assignments of the components to their possible types (i.e., in the presence of
security attacks).

Our main contributions are summarized as follows:

132 N. Li et al.

– A self-adaptive framework that incorporates Bayesian game theory to improve
the resiliency of the system under potential security attacks;

– An approach to modeling the system under attacks as a multi-player game
with potentially uncooperative players at the granularity of components and
the use of equilibrium as an optimal adaptation response;

– A demonstration of the applicability of our approach through an example
with load-balancing scenarios and a case study involving a network routing
application with a proposed dynamic programming algorithm.

2 Background

2.1 Running Example

LoadBalancer

Server2

Server3

Server1

Fig. 1: Running Example.

As a running example, we adopt Znn.com, a
hypothetical news website that has been used
as a representative system for the application
of self-adaptive systems [10,11]. In a typical
workflow, given a request from a client, the
web server fetches appropriate content (in
form of text) from its back-end database and
generates a web page containing a visualiza-
tion of the text. Furthermore, the system also
provides an optional service with multimedia
content (e.g., images, videos). This service involves additional computation on the
server side, but also brings in more revenue compared to the requests with only
text. With RM and RT being the revenue, CM and CT being the computation
of one response to a user request with the media content and with only text
content, respectively, we assume that RM > RT > 0 and CM > CT > 0.

In order to support multiple servers, a LoadBalancer is added to distribute
the requests from the users to a pool of servers, as shown in Figure 1. The cost
of each server is proportional to its load due to, such as potential high response
time since companies such as Amazon, eBay, and Google claim that increased
user perceived response time results in revenue loss [33]. To be more specific,
the cost per server is denoted by (Si − T)2/K where Si is the current occupied
load for server i, depending on the request serving mode (i.e., Si = DiCT in text
only while Si = DiCM in multi-media mode where Di is the number of requests
distributed to server i); T is the threshold beyond which the response time would
be affected; K is a constant used to adjust the cost ratio.

The goal of the self-adaptive system is to maximize the difference between
revenue and cost.

U = RMxM +RTxT −
3∑

i=1

(Si ≤ T ? 0 : (Si − T)2/K) (1)

where xM and xT are the numbers of responses with media and text content,
respectively; the penalty is the sum of the cost for all three servers.

Suppose that some of the servers are vulnerable to various attacks such as
password guessing, SQL injection, command injection, etc [1]. The information

Engineering Secure Self-Adaptive Systems with Bayesian Games 133

collected from the web server, however, cannot fully demonstrate its compromise
due to, e.g., the deficiencies of scanning tools, but with uncertainty. As shown in
the Figure, Server2 could be potentially attacked with a 20% probability while
Server3 is with a higher probability of 50%. These two servers, if compromised in
reality, might perform harmful actions controlled by the attackers to achieve their
objectives, rendering the loss of system reward. Here we assume the malicious
strategies of simply discarding all the distributed user requests. The reward of
attacks is denoted by the system loss, i.e., subtracting the maximum reward the
system could achieve from the reward under attacks, leading to a zero-sum game.

2.2 Bayesian Game Theory

Game theory is the application of mathematical analysis of individual and coop-
erative behaviors between players that follow a certain strategy to satisfy their
self-interests [21,38]. A Bayesian game is a type of game in which players have
incomplete information about the other players [25]. For example, a player may
not know the exact type (e.g., malicious or good) associated with a unique payoff
function of the other players, but instead, have beliefs about these types. These
beliefs are represented by a probability distribution over the possible types. More
formally, Bayesian games or incomplete information games are defined as follows:

Definition 1. A Bayesian game is a tuple BG = 〈P,A,Θ,U, ρ〉
– A set of n players P ;
– A set of (joint) actions A = A1 × ...×An, where Ai denotes a finite set of
actions available to player Pi;

– A set of types for each player i : θi ∈ Θi;
– A payoff function for each player i : ui(a1, ..., an; θ1, ..., θn), determined by
the types of all players and actions they choose;

– A (joint) probability distribution ρ(θ1, ..., θn) over types.

Importantly, throughout the Bayesian games, we assume that the assignment
of types to players is private information, while the priori type probability
distribution, the action spaces and the payoff functions are assumed to be common
knowledge. A player’s strategy can be pure (i.e., take a deterministic action) or
mixed (i.e., randomly choose an action according to some probability distribution).
A strategy for player i is si : Θi × Ai → [0, 1], and ∀θ ∈ Θi,

∑
a∈Ai

si(a|θ) = 1.
The strategy is pure if it satisfies that ∀θ ∈ Θi, ∃a ∈ Ai, si(a|θ) = 1, also denoted
as si : Θi → Ai.

Definition 2. (Bayesian Nash Equilibrium Strategy) Given a joint strategy for
all players �s∗ = [s∗1, ..., s

∗
n], �s

∗ is the Bayesian Nash equilibrium strategy if for
any player i, it satisfies that:

s∗i = arg max
si∈S(θi)

∑
	θ−i

ρ(�θ−i|θi)E	a−i∼	s∗−i,ai∼si [ui(ai,�a−i; θi, �θ−i)]

where �a−i = [a1, ..., ai−1, ai+1, ..., an], �θ−i = [θ1, ..., θi−1, θi+1, ..., θn], �s∗−i =
[s∗1, ...s

∗
i−1, s

∗
i+1, ..., s

∗
n], S(θi) is the set of all possible strategies for agent i under

134 N. Li et al.

θi, and ρ(�θ−i|θi) is the conditional probability representing the player i’s belief
about other players’ types under type θi.
Bayesian Nash equilibrium is a set of strategies, one for each type of player. It is
the best strategy that maximizes his or her payoff to other players’ equilibrium
strategies. In a Nash equilibrium, there is no player who can improve his profit
by unilaterally modifying his strategy if the actions of the rest are fixed [25,21].

3 Self-Adaptive Framework Incorporating Bayesian
Game Theory

Environment Dynamics

Knowledge Base

Self-Adaptive Systems

Managed Subsystem

Managing Subsystem

Monitor

Sensors Actuators

Executor

Analyzer Planner

Bayesian Game

compromise
probability

Fig. 2: Self-Adaptive Framework.

Security attacks are usually asso-
ciated with a high degree of uncer-
tainty where the defender may know
little about the identity of the at-
tackers nor fully understand their
technical effect on the system. A
Bayesian game is a game in which
players have incomplete information
about the other players, appropriate
for modeling and dealing with the
attacks with uncertainty. In this sec-
tion, we propose a new type of self-
adaptive framework incorporating
Bayesian Game. Adaptation behav-
iors build on the Nash equilibrium
from unexpected attacks and are
achieved by elaborating the widely
adopted mechanism of the MAPE-
K (Monitoring, Analysis, Planning, Execution, Knowledge) loop [27,43], shown
in Figure 2.
Knowledge. Knowledge Base requires the system developers or domain experts
to specify (1) the component and connector model of the managed subsystem
and its action space for each component, (2) system objectives usually defined as
the quality attributes quantified by the utility, and (3) component vulnerabilities
with potential behavior deviations that can be exploited by the potential attacks.
Other necessary information such as the history information of system behaviors
and environment information are saved in Knowledge Base and can be updated
for the sake of self-adaptation.
Monitor. Events generated in the managed subsystem or environment indicating
the execution of system actions or natural changes in the environmental factors
are received. Monitor gathers and synthesizes the on-going attacks information
through sensors and saves information in the Knowledge Base. For our example,
events such as plenty of user request loss or command injection can indicate a
potential attack on the web server.
Analyzer. During speculative analysis, conditions of the environment/managed
subsystem representing violations or better satisfaction of goals that can arise

Engineering Secure Self-Adaptive Systems with Bayesian Games 135

based on the input from Monitor are identified. The Analyzer performs analysis
and further checks whether certain components are attacked with probabilities;
potential deviated malicious actions are identified; the rewards for the attack
are estimated, based on the knowledge about component vulnerabilities and
system objectives. Such attack probabilities can be analyzed with a statistical
combination of all feasible scenarios along with expert judgment [16,24]. A typical
example is that both Server2 and Server3 are analyzed to be compromised and
discarding user requests with a certain probability, reducing the system utility.
Planner. Planner generates a workflow of adaptation actions aiming to counteract
violations of system goals or better achieving goals. It consists of one or a set
of actions to be enacted by automatically solving the Multi-player Bayesian
Game transformed with the input of potential attacks from the Analyzer and
architectural model of the managed subsystem along with the system objectives,
which is elaborated in Section 4. For each security situation, it generates an
equilibrium if one exists as the adaptation to respond to unexpected attacks,
or prompts for a change in the design of the system if the violation cannot be
handled. Distributing more percentage of a user request to the normal server
while decreasing the percentage to those with a high probability of compromise
as well as adjusting the fidelity level for servers could be feasible actions for
Znn.com Website under security attacks.
Executor. During execution, the strategies from the adaptation equilibrium are
enacted on the managed subsystem through actuators. Typical examples could
be setting the distribution percentage of user percentage in LoadBalancer for
each server.

In the next part, we focus on planning activity with Bayesian game theory.
We assume adequate monitoring in place, sufficient analysis methods on potential
attacks with uncertainties based on observation and historical information, as
well as an execution environment through which selected adaptation strategies
are enacted.

4 Bayesian Game Through Model Transformation

In this section, we start by defining the system under attacks and transforming the
system architecture and on-going attacks into a component-based multi-player
Bayesian game. Solving the game with equilibrium is to find the adaptation
strategy. Then, we present the analysis results on our running example.

Component-based System. A system component is an independent and re-
placeable part of a system (e.g., a process, program) that fulfills a clear function
in the context of a well-defined architecture. Typical examples are the LoadBal-
ancer and servers in Figure 1. Components forming architectural structures affect
different quality attributes. For example, quality attributes of user satisfaction
(i.e., revenue) and the costs (i.e., penalty) identified in the Znn Website example
are influenced by the actions of all four components and characterized as utility
functions as shown in Eq.(1) mapping them to utility values.

Definition 3. A system can be formally defined as a tuple S = 〈C,A,Q〉.

136 N. Li et al.

– C is a set of components;
– A is a set of joint actions A = A1 × ...×An, where Ai denotes a finite set
of actions available to component i;

– Q is a set of quality attributes a system is interested in; for each Qx, a subset
of components SubCx ⊆ C could contribute to this quality attribute;

Each component is trying to make the right reaction to maximize the system
utility, essentially like a rational player in the game theory. Naturally, a system
under normal operation could be viewed as a cooperative game dealing with
how coalitions interact. Each component is denoted as an independent player
and these interacting components/players form a coalition. For instance, in the
running example, the LoadBalancer and three servers collaborate to achieve the
goals together, i.e., maximizing the system reward with revenue and penalty.
Specifically, the LoadBalancer should assign more user requests to those servers
with low computation usage, like the waiting queue in the bank, while the server
should adjust the fidelity level according to its current load. A high load may
lead to the text only content to decrease the cost while the server with low usage
can provide media content to promote the revenue.

Modeling Utility as Payoffs. The payoff among those players is allocated
by the utility from quality attributes. It is straightforward for developers to
design a system-level payoff function (e.g., the revenue and penalty in Section
2.1). However, due to the different roles of the components and the complex
relationship between them, it is complicated and sometimes untraceable to
manually design an appropriate component-level payoff function. To solve this
problem, we use the Shapley Value Method, a solution concept of fairly distributing
both gains and costs to several players working in coalition proportional to their
marginal contributions [37,36], to automatically decompose the system-level
utility into the component-level payoff. Shapley Value Method applies primarily
in situations when the contributions of each player are unequal, but each player
works in cooperation with each other to obtain the payoff. Given the component
set C, and a system-level utility function v, the payoff for a component i is:

φi(C, v) =
1

|C|!
∑

C′⊆C\{i}
|C ′|!(|C| − |C ′| − 1)![v(C ′ ∪ {i})− v(C ′)] (2)

where |C| is the number of components in the set; C\{i} is the set C excluding
component i; v(C ′) values the expected system-level utility when the system only
consists of the component set C ′.

The following is a typical example of system utility allocation with the
Shapley Value Method for the Znn website. To simplify the illustration, we
consider the situation where Server2 and Server3 are indeed compromised, the
LoadBalancer chooses the strategy equally distributing user requests to Server1
and Server2 (i.e., the requests distributed to Server1, Server2 and Server3 are
50, 50 and 0 respectively), and Server1 selects the text only mode. Besides,
the total unprocessed requests in the setting are 100, which is assumed to be
the full load of a server serving only text, with RM = 1.6, RT = 1,T = 50,
and K = 25 in Eq.(1). The computation capacity of a unit of text and media

Engineering Secure Self-Adaptive Systems with Bayesian Games 137

is 1 and 1.4 (i.e., CM and CT) respectively. Thus, the system utility in this
situation is Usystem = 50 (i.e., 50× 1− (50× 1− 50)2/25 with the remaining 50
requests discarded by malicious Server2). The cooperative player set consisting of
LoadBalancer and Server1 share this utility while Server2 and Server3 fight on
behalf of the attacks’ interests, thus not being considered in the coalition neither
allocated the payoff from the system utility.

Based on Eq.(2), we need the following two cases of coalitions for Shapley Value
calculation: (1) If there is only the LoadBalancer without Server1 in the coalition,
the utility of the system ULoadBalancer is 0 due to no requests process from Server1
neither from malicious Server2 ; (2) If there is only Server1 without LoadBalancer
distributing user requests, the requests are randomly passed among three servers,
i.e., the requests distributed to Server1, Server2 and Server3 are 34, 33 and 33
respectively, and the utility of the system for this coalition Userver1 is 34 (i.e., 34×
1−0). This is because malicious Server2 and Server3 do not return any feedback.
As a result, φLoadBalancer(C, v) = 1/2(Usystem −Userver1 +Uloadbalancer) = 8 and
φServer1 (C, v) = 1/2(Usystem − ULoadBalancer + Userver1) = 42. Therefore,the
payoff to player LoadBalancer and Server1 are 8 and 42 respectively. Meanwhile,
attacks’ utility, the difference between system utility and the highest utility the
system could achieve without attacks (i.e., equally distributing user requests to
three servers and each server choosing multi-media mode in this setting with
value 160 = 100× 1.6− 0) is equally divided for two malicious players. In other
words, both Server2 and Server3 is allocated payoff 55 = (160-50)/2. Following
the aforementioned allocation process, each player obtains a unique payoff under
different attack situations and strategies from the Shapley Value Method based
on their roles contributing to marginal system utility.

Component-based Attacks. A system under security attacks is also defined as a
tuple SAS = 〈C,A,Q,ATT 〉. Instead of modeling an attacker or several attackers
with possible complex behaviors over different parts of the system, we model the
on-going attacks ATT the system is enduring at the component level since the
vulnerabilities of the components as well as their potential behavior deviations
are comparatively easy to observe. ATT can be obtained by synthesizing the
information from Monitor and Analyzer as described in Section 3.

Definition 4. The security attacks on the system is formally defined as a tuple
ATT = 〈Catt, Aatt, Patt, Ratt〉.

– Catt is the set of components affected by the attacks;
– Aatt = Aatt1 × ...× Aattm where Aatti denotes the set of actions controlled
by attacks on compromised component i;

– Patt = {p1, ..., pm} is a set of probability where pi is the probability of compo-
nent i being successfully compromised;

– Ratt is the reward for attacks.

Translation into a Bayesian game With the definition of the system on the
component level and the definition of the attacks ATT , a system under security
attacks is converted into a non-cooperative Bayesian game by the following steps:

138 N. Li et al.

1. Each component in the system c ∈ C, such as LoadBalancer and three servers
in the running example, is separately modeled as an independent player;

2. The components potentially affected by attacks Catt ⊆ C is associated with
two types (e.g., Server2 and Server3 can be normal or malicious in the
simplified Znn website scenario) while the remaining components C − Catt,
i.e., LoadBalancer and Server1, are deterministic in normal type;

3. The probability distribution for a player i over two types is ρ(pi, 1− pi) as
defined in Patt. One typical example for Server2 is ρ(0.8, 0.2) and for Server3
ρ(0.5, 0.5);

4. The action space of player i under security attacks is the union of both
its normal actions and those malicious actions controlled by attacks (i.e.,
Ai ∪Aatti). Server2 can serve user requests either with text only or multi-
media content as a normal player, or maliciously discard them with the
intention of attacks;

5. The payoff for players in normal type is allocated with system utility by
the Shapley Value Method, while components in malicious type performing
harmful actions is assigned with utility the on-going attacks obtain by achiev-
ing their own goals. This assignment could be simple average distribution
or Shapley Value Method if the malicious players are treated as another
coalition;

6. The game constructed is put into a game solver, to find a Nash equilibrium,
which, in essence, is the best reaction for the system to potential attacks.

Note that this definition can be easily extended for the situation where a compo-
nent is simultaneously compromised by different attackers with multiple types.
Besides, the game solver we adopted in this work is Gambit [35], a collection of
tools for building game models, computing game equilibrium and analyzing game
results, to efficiently model the Bayesian game translated by the above steps and
automatically figure out the equilibrium strategy as the adaptation response.

4.1 Analysis Results for Znn.com Example

In this subsection, we demonstrate how our approach can produce adaptation
decisions under security attacks for Znn website to enhance the system utility. In
particular, we exploit the Bayesian game model by following the aforementioned
steps and generate the equilibrium. To explore different attack scenarios, we
statically analyze a discretized region of the state space, which is projected
over two dimensions that vary the malicious probability (i.e., probability S2 and
probability S3) of Server2 and Server3 respectively (with values in the range
[0, 1]). Each state of the discrete set requires a solution of the game with the
Nash Equilibrium that quantifies the best utility the system could obtain. The
experiment takes less than one minute to generate all the results, as shown in
Figure 3, and for each state, the solution generation time is negligible. To set
up the experiment, we assume there are 100 user requests - the maximum load
of a server in text only mode - with RM = 1.6, RT = 1, xM = 1.4, xT = 1,
T = 50, and X = 25 in Eq.(1). Additionally, we adopt the probabilistic model
checking method as the benchmark [11,7,32] and compare our Bayesian Game
theory method with it in terms of the system utility.

Engineering Secure Self-Adaptive Systems with Bayesian Games 139

Figure 3 (a) illustrates the percentage of user requests distributed to Server1
from the strategy for the LoadBalancer in equilibrium. As expected, the percent-
age of Server1 increases progressively with the increasing malicious probability
of Server2 and Server3 as more user requests are supposed to be processed
by a server under normal operation. In particular, we observed that the user
percentage is around one third when both Server2 and Server3 are functioning
normally (i.e., both probability S2 and probability S3 are 0), with LoadBalancer
equally delivering the user requests since none of the servers is compromised.
Moreover, the percentage for Server1 reaches around 84% when the other two
servers are fully compromised. In this situation, LoadBalancer does not deliver
all user requests to Server1 ; otherwise Server1 may be overloaded with the
increasing costs due to high response time which in turn outweigh its benefits of
request processing.

Fig. 3: Results for Znn Website: (a) percentage of user requests to Server1 ; (b)
percentage of user requests to Server2 ; (c) strategies for Server1 ; (d) system
utility with game theory approach; (e) delta utility between Bayesian game theory
approach and probabilistic model checking approach.

Figure 3 (b) describes the percentage of user request that LoadBalancer
delivers to Server2 in the equilibrium. We can also observe that user requests
to Server2 are negatively proportional to its malicious probability. Particularly,
user requests are 50 when probability probability S2 is 0 while Server3 is fully
malicious (i.e., probability S3=1) where LoadBalancer should equally distribute
the user request to both Server1 and Server2. Figure 3 (c) presents the strategy
in equilibrium for Server1. The states in which text content is provided are
indicated by red triangles, whereas the multimedia strategies for Server1 are
denoted by white rectangles. As we can see, red points are in the upper right
corner where malicious probabilities of Server2 and Server3 are greater than 50%,

140 N. Li et al.

which means that they are very likely compromised. Therefore, LoadBalancer
distributes as many user requests as possible to Server1, thus Server1 choosing
to provide text only content in avoid of overloading. Otherwise, Server1 can
provide multimedia content in less load condition to promote user satisfaction
with higher revenue.

Figure 3 (d) illustrates the maximum utility the system can achieve under
various attack situations. In particular, we observe that the utility reaches around
160 when all three servers are cooperative and is progressively decreased with
the increasing malicious probability of Server2 and Server3. This is consistent
with the fact that the system utility is deteriorated under security attack. To
compare the system utility in game theory with existing methods, we adopt
probabilistic model checking [29] as the comparison standard to formally model
the running example and synthesize the adaptation strategy maximizing its
expectation of the utility by reasoning about reward-based properties [11,7,32].
Figure 3 (e) presents the delta between two approaches (i.e., system utility with
game theory approach minus the utility with the probabilistic model checking
approach). Without security attacks, the adaptation decision generated by the
two approaches achieve the same utility. However, with the increasing malicious
probability of Server2 and Server3, game theory approach outperforms, providing
the better response to make up for the utility loss due to security attack, and
the average delta is 10.54, i.e., 15 percent outperforming with the average utility
80.39 achieved by game theory.

5 Evaluation – Routing Games
To evaluate our approach and assess its applicability for validation, we consider a
case study on an interdomain routing application. We first define the game (Sec-
tion 5.1) and propose a dynamic programming algorithm to solve the equilibrium
by decomposing the problem into smaller and tractable sub games (Section 5.2).
The results are present (Section 5.3) with a sensitivity analysis, illustrating how
the system can choose a robust strategy effective for a range of threat landscapes,
and a utility analysis by quantifying the defender’s utility with Bayesian game
compared to a greedy solution within the security context.

N1

N3 N4

N5

N2

Des:N5

N6 N7

Fig. 4: Routing Scenario.

A routing system is usually composed of
smaller networks called nodes as shown in Fig-
ure 4. Since not all nodes are directly connected,
packets often have to traverse several nodes and
the task of ensuring connectivity between nodes
is called interdomain routing [30,31]. Each node
could be owned by economic entities (Microsoft,
AT&T, etc.) and might be compromised by the
attacker at any time. Therefore, it is natural to
consider interdomain routing from a game-theoretic point of view. Specifically,
game players are source nodes located on a network, aiming to send a package
(i.e., starting at N1) to a unique destination node (i.e., N5). The interaction
between players is dynamic and complex – asynchronous, sequential, and based
on partial information - and the best strategy for each player as the adaptation
response is updated as needed.

Engineering Secure Self-Adaptive Systems with Bayesian Games 141

5.1 Game Definition for Interdomain Routing

The interdomain routing system is described below with the component-based
definition.

– The components set for the interdomain routing is C = {N1, N2, ..., N7};
– The action space for each node is to deliver the package at hand to its

neighboring nodes. Typical example is AN1 = {toN2, toN3};
– The only quality attribute this network needs to be concerned with is the

time delivering the package to its destination as we assume there is no case of
package loss. Specifically, we consider the delivery time is proportional to the
distance denoted by hops between nodes. Its utility function is encoded using
a formula that enables the quantification of the utility of a given state and
defined as Usystem = 10−#hops. Usually, the longer time, the lower utility
and the maximum utility system could achieve under normal operations for
this network is 8 with two hops 〈N1 N2 N5〉;
Currently, N2 and N4 are analyzed to be potentially attacked based on

the historical package delivery record, deliberately sending the package in the
opposite direction, extending the delivery time. The game definition with the
security attacks is summarized below.

– The player set for the game is C = {N1, N2, ..., N7}. The set of affected
components by the attack includes N2 and N4, i.e., Catt = {N2, N4};

– The action set for all players, including malicious ones controlled by attacks,
is delivering the package to its neighboring nodes.

– The set of types for potential attacked component node includes “normal” and
“malicious” (i.e., θN2 ∈ {normal, malicious}, θN4 ∈ {normal, malicious}).

– The payoff for all the normal players is allocated by the system utility with the
Shapley Value Method (i.e., Usystem ÷ |normal players|, equally allocated
in this case since all of the nodes in this network is not cut vertex with the
same importance). For example. each node is awarded 8/7 if none of them
is attacked. The utility for the ongoing attacks on two components is the
utility loss from the system’s best response without attack, rendering a case
of zero-sum game.

– The probability distribution for both component N2 and N4 could be, e.g.,
50%/50% split (i.e., ρN2,N4(normal, malicious) = (0.5, 0.5).

5.2 Dynamic Programming Algorithm
In practice, a network might be complex and each node could have hundreds
of neighboring nodes. It is impractical to directly build a game tree, in the
component level with a large number of players (each with a massive action set),
and solve such a network in a reasonable time. To deal with the complexity of
network nature, we propose an algorithm inspired by dynamic programming to
effectively solve the generated Bayesian game for this class of routing problems.

The algorithm 1 for routing game has as input a routing network N – consisting
of a starting point s of package delivery and a destination point d. To carry out

142 N. Li et al.

dynamic programming, the algorithm uses a set subG to store the set of nodes
which have been processed with their best reactive strategy. subG is initialized
as an empty set (line 1) and added with node d (line 2) since d does not need the
strategy to transmit the package. The algorithm starts by iterating all the nodes
in the distance disV alue (line 5), initialized by 1 (line 3). For example, N2, N4
and N7 are qualified in the first iteration. Each node is checked whether it is
potentially attacked (i.e., uncertain(n) in line 6). For those uncertain nodes (e.g.,
N2 and N4), they might affect the strategy of their prior nodes (line 7) (e.g.,
N1 and N3), which shall be added to todoS (line 8), to be processed to update
their strategy due to its neighboring uncertainty. A typical example is that node
N3 might trade off the delivery between N4 and N6 even though N4 is in the
shortest path from N3 to N5, however, could deliberately send the package back
controlled by the attack. If the node is not in todoS to be updated (line 11),
it is directly added to the setG (line 12) as the best strategy for such benign
node is passing the package down to its adjacent node along the shortest path.
In this routing scenario, N2, N4 and N7 is added to subG as their strategies in
equilibrium with normal type is easily determined.

After iterating all the nodes in disV alue 1, each node in todoS (line 15) is
checked whether it satisfies the condition (line 16) where all its neighboring
nodes (i.e., i ∈ adj(n)) closer to destination (i.e., dis(i, d) == dis(n)− 1) have
been solved with their best strategies (i.e., in subG), to build a sub-game. As
shown in the example, though both N1 and N3 are prior to an uncertain node,
their strategy update is postponed as N6 is not in subG yet, which affects the
sub-game generation for N3, in turn delaying the sub-game construction for N1.

na

na na

N3 N3 N3 N3

6/7 7/7 6/6 4/6

type(N2):
0.5

type(N2)
0.5

type(N4): type(N4) type(N4): type(N4):
0.5 0.5 0.5 0.5

)::::::::::::::::::

::::::::::::::::

:::::::::::::

))))))))))))))))))

))))))))) ::::::::::::::

To N6 To N4 To N4 To N4 To N4To N6 To N6 To N6

6/7

6/7

6/7

6/7

6/7

6/7

7/7

7/7

7/7

7/7

7/7

7/7

6/6

6/6

2/1

6/6

6/6

6/6

4/6

4/6

4/1

4/6

4/6

4/6

6/6

2/1

6/6

6/6

6/6

6/6

6/6

7/6

1/1

7/6

7/6

7/6

7/6

7/6

6/5

2/2

6/5

2/2

6/5

6/5

6/5

4/5

4/2

4/5

4/2

4/5

4/5

4/5

Fig. 5: Sub-Game for N3.

An exemplified subgame construction
(line 17) starting from N3 is illustrated
in Fig 5 when all conditions are satisfied.
The stochastic behavior of those poten-
tially compromised nodes can be modeled
by introducing a nature (or chance player),
who moves according to the probability dis-
tribution (e.g., 50%/50% split), randomly
determining whether attacks on N2 and
N4 are successful. Then, N3 can choose
an action passing to the one from the set
of its adjacent nodes, i.e., N6 or N4. Here,
N3 is a normal node aware of that the
package is transmitted from N1 and it is
not necessary to consider a rollback to N1.
The game is ended after N3’s action as we
can prune the following branches: 1) to N6, the remaining route sequence is N7
and N5 by default as their best strategy have been solved (i.e., N6 delivers the
package to N7, which in turn forwards to N5); 2) to N4, with N4 forwarding
to N5 if it is normal while backing to N3 in malicious type. When the game
terminates, each player gets a unique payoff following different branches. As

Engineering Secure Self-Adaptive Systems with Bayesian Games 143

Algorithm 1 Dynamic Programming Algorithm to Solve Routing Game.

1: setG ⇐ ∅
2: addNode(d, setG)
3: disV alue ⇐ 1
4: repeat
5: for all n ∈ N and dis(n, d) == disV alue do
6: if uncertain(n) == true then
7: for all np ∈ adj(n) and dis(np, d) == disV alue+ 1 do
8: addNode(np, todoS)
9: end for

10: end if
11: if n /∈ todoS then
12: addNode(n, setG)
13: end if
14: end for
15: for all n ∈ todoS do
16: if ∀i ∈ adj(n) and dis(i, d) == dis(n)− 1 and i ∈ sutG then
17: gambitTree ⇐ buildGame(n, d)
18: equilibria ← solve(gamebitTree)
19: removeNode(n, todoS)
20: addNode(n, setG)
21: end if
22: end for
23: disV alue ⇐ disV alue+ 1
24: until s ∈ subG

shown in the left most rectangle all the players (including N2 and N4 as they
are benign collaborating nodes) equally share the system utility value 6 with 3
hops from N3 to N5 plus the shortest path from N1 to N3. However, on the
rightmost branch, only five players ruling out N2 and N4 is allocated with the
system utility 4. The system utility is resulting from 6 hops if N3 decides to
deliver the package to N4 as the nature problematically chooses the malicious
type for N4, which sends the package back to N3 to maximize the attack’s utility.
Once N3 receives the package from N4, it redelivers the package to N6 because
N3 as a good player does not repeatedly send it back. To this end, N2 and N4 is
uniformly allocated the delta (i.e., 4) between the utility system obtained (i.e., 4)
and the maximum utility system could obtain (i.e., 8) as the payoff. The payoff
of the remaining branches can also be calculated accordingly.

After that, a pure Nash equilibrium is generated by solving this sub-game (line
18) with Gambit software tools [35], and the best strategy for the node is updated
according to the equilibrium. By solving the sub-game for N3, the strategy for
N3 in the equilibrium is to deliver the package to N6, as the potential detriment
on delayed delivery time to N4 due to attacks is greater than its comparative
advantage of the shortest path. Thus, this node with the solved strategy is
removed from todoS (line 19) and absorbed in setG (line 21). Once all the nodes
in the distance of disV alue from the destination have been iterated and all the

144 N. Li et al.

nodes in todoS satisfying conditions are computed for their best strategy, the
algorithm increment the value of disV alue one unit (line 23) and continue, until
the starting point s is in the set setG (line 24).

5.3 Experiment Setup & Results

We demonstrate how our Bayesian game approach combined with the proposed
dynamic programming algorithm can produce adaptation decisions about how to
forward packages for each node in the routing example. Similar to the experiment
results found on the Znn website, we statically analyzed a discretized region
of the state space which represented different attack scenarios (i.e., malicious
probability of N2 and N4). The entire experiment setup of the network structure
is exactly shown in Figure 4. In addition, we also adopted a greedy algorithm
for this routing application as the benchmark, and compared the system utility
between these two approaches to demonstrate the superiority of game theory
under security attacks. The experiment for the whole state space with Bayesian
approach takes less than one minute and the solution generation time for each
state is negligible.

Fig. 6: Results for interdomain route example: (a) Expected route in equilibrium;
(b) System utility with game theory approach; (c) Delta between system utility
from game theory approach and utility from greedy algorithm.

Figure 6 (a) presents the results of the strategy selection (i.e., expected package
sequence) over two dimensions that correspond to the malicious probability of
N2 and N4, respectively. Red triangle points denote that the strategy for N1 is
N2, extending the range of Probability N2 to around [0, 0.50]. This is because
when the chance of N2 coming under attack is less than 0.50, N1 should pass the
package to N2, since N2 is in the shortest path to the destination; otherwise, N1
delivers the package to N3. Similarly, when the malicious probability of N4 is less
than 0.35, the strategy for N3 reaching equilibrium is to deliver the package to
N4 (i.e., blue square points), since the benefits of a short delivery time outweigh
the potential detriment. For the remaining situations denoted by the black circle
points, N1 passes the package to N3, which in turn forwards it to N6.

Figure 6 (b) describes the utility the system could obtain for the attacked
components’ equilibrium strategies. As expected, when the Probability N2 is
greater than 50% and Probability N4 greater than 35% (i.e., black circle points
in Figure 6 (a)), the utility system can gain is 6 as there are 4 hops in the
expected sequence 〈N1 N3 N6 N7 N5〉). This plot also shows that the system

Engineering Secure Self-Adaptive Systems with Bayesian Games 145

utility increases progressively with decreasing probability of the compromised N2
and N4. When the probability N2 is 0, the expected utility increases to 8 (i.e.,
two hops in 〈N1 N2 N5〉). Similarly, the utility reaches 7 with probability N4 0
(i.e., three hops in 〈N1 N3 N4 N5〉).

Furthermore, we adopted a baseline that generates strategies for each node
in a non-repeating fashion, passing the package to the adjacent node along the
shortest path to the destination. The aim of this was to compare the utility
between two different approaches dealing with security attacks. For the network
as shown in Figure 4, the baseline firstly picks up the shortest path sequence
〈N1 N2 N5〉. If N2 is compromised and sends the package back, N1 redelivers
it to N3 instead of N2 since the package is received from N2. The system utility
for the greedy algorithm is the expected value, the weighted average of utility
for paths in different attack situations. Figure 6 (c) shows the delta between the
utility produced by our game theory method and the utility produced by the
baseline. During security attacks, we can see that the utility from the game theory
approach is always higher than the greedy approach under security attacks. The
delta is much more noticeable, especially in the situations where N2 and N4 are
highly likely to be compromised (i.e., Probability N2 and Probability N4 close
to 1). This is because game theory approaches can help the defenders to trade
off the gains and losses due to perceived risks.

In summary, based on the preliminary results of our experiment, our game
theory approach in the component level applies to self-adaptive applications. To
adopt our approach, attacks information, such as various types with probabilities
as well as its payoff, shall be provided from the Analyzer, to construct a Bayesian
game based on system architectural structures. The results have also shown
that game theory can enhance the performance of the system, especially when
a potential attack is more likely to happen. In these situations, game theory
approaches could help the defenders balance perceived risks by using underlying
incentive mechanisms, and figure out the best response as the adaptation to
be executed on the network using proven mathematics. Besides, our proposed
dynamic programming algorithm is specific to this kind of application to optimize
the game solving. Another potential application is the multi-agent finding (MAPF)
problem where a spatial position in a path can be viewed as a node in the
network [39,3]. Other optimization techniques might be adopted or customized
for different applications with complicated game structures.

6 Related Work
Self-adaptive systems under security attacks need to make adaptation decisions
as a response to a detected threat or to deviations from security goals and require-
ments [18]. Lorenzoli et al. [34] proposed a technique that could observe values at
relevant program points and identified the execution contexts leading to a soft-
ware failure so that mechanisms can be enabled for preventing future occurrences
of failures of the same type. Bailey et al. [4] generated Role Based Access Control
(RBAC) models to provide assurances for adaptations against insider threats.
RBAC technique was also applied to cloud computing environment to provide
appropriate security services according to the security level and dynamic changes

146 N. Li et al.

of the common resources [44]. Tsigkanos et al. [41] explored the use of Bigraphical
Reactive Systems to perform speculative threat analysis through model checking.
Burmester et al. [5] described a threat model to incorporate typical characteristics
of systems, such as survivability to abnormal behavior and possibility to recover
after critically vulnerable states are reached. Dimkov et al. [14] discussed insider
threats that span physical, cyber and social domains and present a framework
Portunes integrating all three security domains to describe attacks. Nashif et
al. [2] presented a multi-level intrusion detection system to detect network attacks
within three levels of granularities and proactively protected against them by
employing a fusion decision algorithm. Although, there are many different ways
of dealing with security attacks in self-adaptive systems, it is notable that the
application of game theory, with the characteristic of modeling the adversarial
nature of security attacks and designing reliable defense with proven mathematics,
has not gained the deserved attention.

Different sorts of games have been employed to study the actions of the
defender and attacker. Dijk et al. [42] presented a two-player game that reasons
about security scenarios where an attacker with uncertainty about its actions may
periodically gain full control of an asset, with each side trying to maintain control
as much as possible. An extension work by Farhang et al. [19] explicitly modeled
the information gains for the attackers as they control assets, improving attacker’s
capability. Based on these work, Kinneer et al. [28] additionally considered
multiple attacker types with different goals and capabilities by Bayesian Game.
Instead of modeling the attackers as independent players, our work models
the attacks on the component level, focusing on the defender modeling at the
architecture level and possible deviations of component behaviors. Cámara et
al. [6,8] adopted a game-theoretic perspective and model the system as turn-based
stochastic multi-player games between different players where players can either
cooperate to achieve the same goal or compete to achieve their own goals. In
addition, Glazier et al. [23] used game-based approach to automatically reason
and synthesize strategies for meta-manager by explicitly considering alternate
potential future state, thus improving the performance of a collection of autonomic
systems against a defined quality objective. Though, some of these existing works
concern about competitive behaviors in a system when some components cannot
be controlled and even behave according to conflicting goals with respect to other
components in the system. None of them, to the best of our knowledge, proposed
to model the Bayesian game in an architecture/component level and captured
multiple attacks as component’s variant types as well as the uncertainty due to
unsuccessful compromise.

Game theory is also increasingly applied to network security. Frigault et
al. [20] measured the network security in a dynamic environment with dynamic
Bayesian networks-based model to incorporate temporal factors. Charles et al. [26]
developed a packet forwarding game model under imperfect private monitoring.
Their equilibria rely on the probability of cooperation after observing a defection,
similar to our routing games in the evaluation. However, they looked at this
problem from the perspective of network nodes, without considering the situation

Engineering Secure Self-Adaptive Systems with Bayesian Games 147

of being attacked and how to allocate rewards from the system utility for multiple
components from the architecture perspective as illustrated in this work.

7 Conclusion and Future Work

In this paper, we have proposed a new framework for self-adaptive systems by
adopting Bayesian game theory and modeled the system under security attacks
as a multi-player game. An optimal adaptation strategy for responding to attacks
is generated by computing the equilibrium to the game. One limitation is that
we validate our approach on a simulated rather than an actual system, and we
plan to further evaluate the applicability and scalability of the approach using
case studies involving real systems. A second limitation is the simplification of
the amount of uncertainty, such as restricting the number of component types
under attacks and assuming the payoffs with zero-sum game, which might be
more complex in the real world security landscape. Rather, we attempted to
convey the idea of transforming the system architecture consisting of multiple
components under attacks into a Bayesian game. While the equilibrium is sensitive
to the probability distribution over types (i.e., malicious probability), sensitivity
analysis are useful when the probability cannot be determined by the analysis
with precision but lies within a known range. In addition, modeling attacks on
component level, though more monitorable and easy to handle, cannot depict
those attacks with highly motivated and capable adversaries willing to devote
significant time and continuous attack to facilitate their malicious goals, known
as advanced persistent threats (APTs) [28].

Moreover, we adopt pure equilibrium as the adaptation response. However, in
practice, there will likely be multiple equilibria and no guarantee of uniqueness.
While this is an area for future work, one possible way to overcome this is to
choose the equilibrium with highest utility for the system. Another limitation,
and a topic for future work, is that mixed equilibrium is another common solution
for game theory. Its interpretation on system behaviors could be various and
allows generation of different types of defense strategies for the system, which can
be explored for different applications. For example, if the mixed strategy for N1
in routing game is choosing N2 and N3 in 50%/50% split as shown in Figure 4,
we can consider that N1 may equally distribute its packages to N2 and N3 if
multiple packages exist, or deliver its packages to N3 for the current time and to
N2 next time. Also, the Bayesian games for these two examples were manually
created by following the framework into the input language of the Gambit tool,
to solve the equilibrium. In future, we are planning to construct the game in an
automated way by supporting an architecture description interchange language,
such as Acme [22].

Acknowledgements

The research is partially supported by the National Natural Science Foundation
of China under Grant Nos. 61620106007 and 61751210, award N00014172899 from
the Office of Naval Research and the NSA under Award No. H9823018D0008.

148 N. Li et al.

References

1. Web server and its types of attacks. https://www.greycampus.com/opencampus/
\ethical-hacking/web-server-and-its-types-of-attacks. Accessed: 2010-09-30.

2. Y. Al-Nashif, A. A. Kumar, S. Hariri, Y. Luo, F. Szidarovsky, and G. Qu. Multi-
level intrusion detection system (ml-ids). In 2008 International Conference on
Autonomic Computing, pages 131–140, 2008.

3. Ofra Amir, Guni Sharon, and Roni Stern. Multi-agent pathfinding as a combinatorial
auction. In The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI),
pages 2003–2009, 2015.

4. Christopher Bailey, Lionel Montrieux, Rogério de Lemos, Yijun Yu, and Michel
Wermelinger. Run-time generation, transformation, and verification of access control
models for self-protection. In 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2014, Proceedings, Hyderabad,
India, June 2-3, 2014, pages 135–144, 2014.

5. Mike Burmester, Emmanouil Magkos, and Vassilios Chrissikopoulos. Modeling
security in cyber-physical systems. Int. J. Crit. Infrastructure Prot., 5(3-4):118–126,
2012.

6. Javier Cámara, Gabriel A. Moreno, and David Garlan. Stochastic game analysis
and latency awareness for proactive self-adaptation. In 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014,
Proceedings, Hyderabad, India, June 2-3, 2014, pages 155–164, 2014.

7. Javier Cámara, Gabriel A. Moreno, and David Garlan. Reasoning about human
participation in self-adaptive systems. In 10th IEEE/ACM International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS, Florence,
Italy, May 18-19, 2015, pages 146–156, 2015.

8. Javier Cámara, Gabriel A. Moreno, David Garlan, and Bradley R. Schmerl. Ana-
lyzing latency-aware self-adaptation using stochastic games and simulations. ACM
Trans. Auton. Adapt. Syst., 10(4):23:1–23:28, 2016.

9. Betty H. C. Cheng and et al. Software engineering for self-adaptive systems: A
research roadmap. In Software Engineering for Self-Adaptive Systems [outcome of
a Dagstuhl Seminar], pages 1–26, 2009.

10. Shang-Wen Cheng, David Garlan, and Bradley R. Schmerl. Evaluating the effec-
tiveness of the rainbow self-adaptive system. In 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2009, Vancouver,
BC, Canada, May 18-19, 2009, pages 132–141, 2009.

11. J. Cámara, D. Garlan, G.A. Moreno, and B. Schmerl. Chapter 7 - evaluating
trade-offs of human involvement in self-adaptive systems. In Ivan Mistrik, Nour Ali,
Rick Kazman, John Grundy, and Bradley Schmerl, editors, Managing Trade-Offs
in Adaptable Software Architectures, pages 155 – 180. Morgan Kaufmann, Boston,
2017.

12. Rogério de Lemos and et al. Software engineering for self-adaptive systems: A
second research roadmap. In Software Engineering for Self-Adaptive Systems II -
International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised
Selected and Invited Papers, pages 1–32, 2010.

13. Premkumar T. Devanbu and Stuart G. Stubblebine. Software engineering for
security: a roadmap. In 22nd International Conference on on Software Engineering,
Future of Software Engineering Track, ICSE 2000, Limerick Ireland, June 4-11,
2000, pages 227–239, 2000.

https://www.greycampus.com/opencampus/\ethical-hacking/web-server-and-its-types-of-attacks
https://www.greycampus.com/opencampus/\ethical-hacking/web-server-and-its-types-of-attacks

Engineering Secure Self-Adaptive Systems with Bayesian Games 149

14. Trajce Dimkov, Wolter Pieters, and Pieter H. Hartel. Portunes: Representing attack
scenarios spanning through the physical, digital and social domain. In Automated
Reasoning for Security Protocol Analysis and Issues in the Theory of Security -
Joint Workshop, ARSPA-WITS 2010, Paphos, Cyprus, March 27-28, 2010. Revised
Selected Papers, pages 112–129, 2010.

15. Cuong T. Do, Nguyen H. Tran, Choong Seon Hong, Charles A. Kamhoua, Kevin A.
Kwiat, Erik Blasch, Shaolei Ren, Niki Pissinou, and Sundaraja Sitharama Iyengar.
Game theory for cyber security and privacy. ACM Comput. Surv., 50(2):30:1–30:37,
2017.

16. Dmitry Dudorov, David Stupples, and Martin Newby. Probability analysis of cyber
attack paths against business and commercial enterprise systems. In 2013 European
Intelligence and Security Informatics Conference, Uppsala, Sweden, August 12-14,
2013, pages 38–44, 2013.

17. Ahmed M. Elkhodary and Jon Whittle. A survey of approaches to adaptive
application security. In 2007 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2007, Minneapolis Minnesota, USA, May
20-26, 2007, page 16, 2007.

18. Mahsa Emami-Taba. A game-theoretic decision-making framework for engineering
self-protecting software systems. In Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 -
Companion Volume, pages 449–452, 2017.

19. Sadegh Farhang and Jens Grossklags. Flipleakage: A game-theoretic approach
to protect against stealthy attackers in the presence of information leakage. In
Decision and Game Theory for Security - 7th International Conference, GameSec
2016, New York, NY, USA, November 2-4, 2016, Proceedings, pages 195–214, 2016.

20. Marcel Frigault, Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring
network security using dynamic bayesian network. In Proceedings of the 4th ACM
Workshop on Quality of Protection, QoP 2008, Alexandria, VA, USA, October 27,
2008, pages 23–30, 2008.

21. Drew Fudenberg and Jean Tirole. Game Theory. MIT press, 1991.
22. David Garlan, Robert T. Monroe, and David Wile. Acme: an architecture descrip-

tion interchange language. In Proceedings of the 1997 conference of the Centre
for Advanced Studies on Collaborative Research, November 10-13, 1997, Toronto,
Ontario, Canada, page 7, 1997.

23. Thomas J. Glazier and David Garlan. An automated approach to management
of a collection of autonomic systems. In IEEE 4th International Workshops on
Foundations and Applications of Self* Systems, FAS*W@SASO/ICCAC 2019,
Umea, Sweden, June 16-20, 2019, pages 110–115, 2019.

24. M. Hajizadeh, T. V. Phan, and T. Bauschert. Probability analysis of successful
cyber attacks in sdn-based networks. In 2018 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), pages 1–6, 2018.

25. John C Harsanyi. Games with incomplete information played by bayesian players,
i-iii. Management Science, 50(12):1804–1817, 2004.

26. Charles A. Kamhoua, Niki Pissinou, Alan Busovaca, and Kia Makki. Belief-
free equilibrium of packet forwarding game in ad hoc networks under imperfect
monitoring. In 29th International Performance Computing and Communications
Conference, IPCCC 2010, 9-11 December 2010, Albuquerque, NM, USA, pages
315–324, 2010.

27. Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE
Computer, 36(1):41–50, 2003.

150 N. Li et al.

28. Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, and David Garlan. Model-
ing observability in adaptive systems to defend against advanced persistent threats.
In Proceedings of the 17th ACM-IEEE International Conference on Formal Methods
and Models for System Design, MEMOCODE 2019, La Jolla, CA, USA, October
9-11, 2019, pages 10:1–10:11, 2019.

29. Marta Kwiatkowska, Gethin Norman, and David Parker. Probabilistic Model Check-
ing: Advances and Applications, pages 73–121. Springer International Publishing,
Cham, 2018.

30. Hagay Levin, Michael Schapira, and Aviv Zohar. Interdomain routing and games.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008, pages 57–66, 2008.

31. Hagay Levin, Michael Schapira, and Aviv Zohar. Interdomain routing and games.
SIAM J. Comput., 40(6):1892–1912, 2011.

32. Nianyu Li, Sridhar Adepu, Eunsuk Kang, and David Garlan. Explanations for
human-on-the-loop: A probabilistic model checking approach. In Proceedings of
the 15th International Symposium on Software Engineering for Adaptive and Self-
managing Systems (SEAMS), 2020. To appear.

33. Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2013, Lombard, IL, USA, April 2-5, 2013, pages 313–328, 2013.

34. Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Towards self-protecting
enterprise applications. In ISSRE 2007, The 18th IEEE International Symposium
on Software Reliability, Trollhättan, Sweden, 5-9 November 2007, pages 39–48, 2007.

35. Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy. Gambit:
Software tools for game theory, version 16.0.1, 2018-02. http://www.gambit-project.
org.

36. Martin J. Osborne and Ariel Rubinstein. A course in game theory. MIT Press
Books, 1, 1994.

37. Lloyd S Shapley. A value for n-person games. In Contributions to the Theory of
Games, vol. 2, 1953.

38. Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

39. Roykrong Sukkerd, Reid Simmons, and David Garlan. Tradeoff-focused contrastive
explanation for mdp planning, 2020.

40. Milind Tambe. Security and Game Theory - Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press, 2012.

41. Christos Tsigkanos, Liliana Pasquale, Carlo Ghezzi, and Bashar Nuseibeh. On the
interplay between cyber and physical spaces for adaptive security. IEEE Trans.
Dependable Secur. Comput., 15(3):466–480, 2018.

42. Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Flipit: The game
of ”stealthy takeover”. J. Cryptology, 26(4):655–713, 2013.

43. Danny Weyns, M. Usman Iftikhar, and Joakim Söderlund. Do external feedback
loops improve the design of self-adaptive systems? a controlled experiment. In Pro-
ceedings of the 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2013, San Francisco, CA, USA, May 20-21,
2013, pages 3–12, 2013.

44. Youngmin Jung and Mokdong Chung. Adaptive security management model in
the cloud computing environment. In 2010 The 12th International Conference on
Advanced Communication Technology (ICACT), volume 2, pages 1664–1669, 2010.

http://www.gambit-project.org
http://www.gambit-project.org

Engineering Secure Self-Adaptive Systems with Bayesian Games 151

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Engineering Secure Self-Adaptive Systems with Bayesian Games
	1 Introduction
	2 Background
	2.1 Running Example
	2.2 Bayesian Game Theory

	3 Self-Adaptive Framework Incorporating Bayesian Game Theory
	4 Bayesian Game Through Model Transformation
	4.1 Analysis Results for Znn.com Example

	5 Evaluation – Routing Games
	5.1 Game Definition for Interdomain Routing
	5.2 Dynamic Programming Algorithm
	5.3 Experiment Setup & Results

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgements
	References

