
Requirements Engineering for Feedback Loops in
Software-Intensive Systems

Eunsuk Kang Rômulo Meira-Góes
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA USA

{eunsukk,rmeirago}@andrew.cmu.edu

Abstract—A feedback loop occurs when the output of a system
induces certain changes in the environment, which, in turn,
influences the system through its input. Certain self-reinforcing
feedback loops can inflict significant harm on the environment, by
amplifying the existing bias or other undesirable effects over time.
In this paper, we argue that such feedback loops are becoming
more prevalent in software-intensive systems, and propose a set
of requirements engineering activities and research problems for
understanding, modeling, and dealing with feedback loops.

I. INTRODUCTION

A feedback loop occurs when a system makes decisions that
induces certain changes on its environment, which, in turn,
influences the system through its input. A structure of a typical
feedback loop is shown in Figure 1. Feedback loops have been
studied extensively in systems engineering [7] and control
theory [6], [4], [1]. Although not a commonly discussed
concept in software engineering, feedback loops can be found
in a wide variety of software-intensive systems that closely
interact with the world, ranging from distributed applications
and social networks to financial and credit scoring systems.
Their prevalence is becoming more apparent through the rise
of systems that rely on machine learning (ML) for decision
making: These systems constantly evolve by retraining a
model using data that is collected from the world, which, in
turn, is influenced by the decisions made using the model.

Feedback loops are classified into two types: negative and
positive feedback loops [1]. A feedback loop is said to be
negative if the feedback induced by the output and the input
are of the opposite polarity; i.e., it negates or reduces the
magnitude of the input. On the other hand, a feedback loop is
positive (or self-reinforcing) if the feedback is in phase with
the input, in that it adds to the input. When left uninterrupted
over a long period of time, a positive feedback loop can result
in an amplification of an effect on the environment that is
difficult to contain or reverse (this phenomenon is also called
system instability [1]).

There are numerous well-documented examples of harm-
ful effects caused by positive feedback loops in software
systems [8]. For example, consider a system that automates
decisions about allocation of police patrol to different neigh-
borhoods in a city. These decisions (corresponding to the
machine output in Figure 1) are made by an ML model
that is trained on the historical data of prior arrests; the

Machine

Environment

Input Output

Fig. 1. Structure of a feedback loop. Incoming and outgoing arrows from
the input and output, respectively, point to parts of the world that are not
explicitly captured by the environment under consideration.

neighborhoods that have a historically high arrest rate are thus
allocated more patrol. An increase in police presence leads to
more arrests; this, in turn, skews new data being collected
by the system for retraining (i.e., input from the environment
in Figure 1), further biasing the model towards allocating
police in those neighborhoods. Over a long period of time, this
feedback loop could exacerbate the perceived level of crime
activity in the neighborhoods, to the detriment of the residents.

Although this example may be brushed aside as a problem
in policy making or social science, software engineers have
a responsibility to be aware of this kind of feedback loops
and design the software to minimize their harmful impact.
This can be, however, an extremely challenging task. The
impact of a positive feedback loop often does not become
apparent until after the system has been deployed for a long
period of time. Most of the existing testing and validation tools
available to developers assume a snapshot of the environment
at a particular point in time, and is inadequate for reasoning
about how the system interacts with the environment as the
latter evolves over time.

In this paper, we argue that software-intensive systems
should be designed explicitly with mechanisms for detecting
and intervening with harmful effects of feedback loops. We
also propose a set of requirements engineering activities that
are crucial for supporting the design of a such system, includ-
ing (1) understanding potential harms that can be incurred
on various stakeholders, (2) modeling and articulating the
structure of a feedback loop, and (3) runtime monitoring and
intervention to reduce the impact of an undesirable feedback
loop. We first begin by giving examples of positive feedback
loops, and then further elaborate on the above activities,
including research challenges and opportunities.



II. FEEDBACK LOOPS: EXAMPLES

Feedback loops are frequently observed in numerous differ-
ent domains, such as electronics, ecology, biology, economics,
sociology, and climatology. One type of positive feedback
loop commonly seen around us is the bandwagon effect. For
example, under a certain economic or political trigger, people
may begin to withdraw their money from a bank, spreading
panic and encouraging others to also rush to their local bank;
this, if sustained over time, may cause the bank to run out of
money and face bankruptcy.

Not all positive feedback loops are necessarily undesirable,
and some are deliberately built into a system. An example is
audio feedback at a live concert, where a signal picked up by a
microphone is passed through a loudspeaker, which produces
audio that is again picked up by the microphone, enabling
amplification of the sound. However, in this paper, we will
focus mostly on unintended positive feedback loops that have
undesirable or harmful effect on the environment.

A. Software systems

Given that software is increasingly being embedded into
our society, it is no surprise that it is becoming a primary
driver behind many of the positive feedback loops around us.
One well-known example is the flash crash that occurred on
May 6, 2010, which temporarily wiped out over one-trillion
dollars from the U.S. market. In essence, this crash was a
failure caused by a software-driven feedback loop: A sell
order initiated by a high-frequency trading company caused an
automated algorithm to increase the volume of stocks being
traded, which, in turn, triggered other market participants to
sell the stocks at a faster rate. Although this type of feedback
loop is possible without software, increased automation and
the lack of human oversight can make it much more likely.

Another area where a feedback loop can lead to an unpre-
dictable and often undesirable behavior is distributed systems.
In this domain, this type of behavior is sometimes called
a cascading failure [2]. It typically begins with the failure
of a single node or component within a distributed system;
this, in turn, spreads the workload across the remaining
nodes, increasing the likelihood of additional nodes failing.
Without intervention, this chain effect may quickly propagate
across the entire network, damaging system availability. In
2015, DynamoDB (a distributed database from Amazon AWS)
experienced this type of cascading failure, disrupting access to
popular services such as Netflix and Airbnb [10].

B. ML-based systems

ML-based systems share a common feedback loop structure:
They rely on one or more ML models to make decisions that
influence the environment, from which further data is collected
to retrain the models. The problem is that the initial model
may reflect undesirable properties of the environment (e.g.,
existing bias in a human decision making process) that is
captured in the initial training data; through this feedback loop,
these properties may be further reinforced and amplified over
time. Adding to this problem is that these models are typically

designed to optimize a certain metric (e.g., accuracy) that is
not necessarily aligned with the interests of the stakeholders.

There are numerous examples of harmful feedback loops in
ML-based systems deployed today [8]. Beside the policing
example mentioned earlier, another good example is algo-
rithmic hiring systems, which use various information about
a job candidate (e.g., prior experience, education, skills) to
predict how likely the person is to succeed in a position. In an
infamous public case, the automated hiring system by Amazon
was found to consistently rate female candidates lower than
their male counterparts with equal qualifications [3]. The
source of this problem was that the model used for prediction
was initially trained on resumes that had been rated manually
by human interviewers; unfortunately, the interviewers had a
bias against female candidates, which was reflected through
this data and ultimately, the ML model.

The harmful effect of this bias extends beyond unfair hiring
decisions and deep into parts of the environment that are not
directly interfacing with software. When an unfair system like
this one is deployed for a long period of time, it may lead
to a decrease in the number of female employees; this, in
turn, may give rise to a perception that a certain profession is
not welcoming for women, discouraging them from applying.
Over time, this self-reinforcing loop is likely to damage
diversity and overall quality of the profession.

Recently, researchers in ML have recognized harmful effects
of bias in ML and are actively working to address them.
However, relatively few techniques have been developed in
understanding the problem at the requirements level, before a
model is developed and deployed into the world.

III. RESEARCH CHALLENGES

Despite their increasing prevalence, feedback loops have
been studied relatively little by the software engineering
community. As with many other problems in software, we
believe that the most effective ways of dealing with feedback
loops will begin in the requirements stage. In this section,
we propose research problems to support requirements en-
gineering activities that are crucial for understanding how a
feedback loop can arise in software-intensive domains, and for
informing the design of a system that is capable of minimizing
its harmful effect.

A. Identifying Harmful Feedback

One of the very first (and perhaps most important) steps
is to identify relevant stakeholders and understand potential
harm that can be inflicted on them by the system. It is easy
to overlook this step, however, as organizations often have
objectives that do not necessarily align with minimizing harm
to the stakeholders. For instance, one of the major goals of
a social media company is to maximize the amount of user
engagement (and ultimately increase the revenues generated).
The company may implement various features on a mobile
app to achieve this goal, such as infinite scrolling, personal
recommendations, and push notifications (e.g., to encourage
disengaged users to return to the app). While these features



Police 
patrol

No. 
arrests 

No. 
businesses

Economic
activities

+

+
+ —

—

Fig. 2. A causal loop diagram for the policing system. A dotted edge
represents a causal relationship that is realized by a machine (i.e., software).

may be effective in achieving the goal, they have also been
found to cause a number of harmful side effects, such as
addiction to smartphones, teen mental health problems, and
the rise of echo chambers on the social media. For example,
when a user reacts positively to a politically biased article,
the app may suggest more of similar articles; over time, this
can result in an echo chamber where people with similar
beliefs congregate and insulate themselves from other views,
contributing to increased political division within a nation.

Instead of being treated as an afterthought, these harms must
be identified early in the requirements stage and explicitly
considered throughout the rest of the product life-cycle. Iden-
tifying these harms may require a change in a typical devel-
oper’s mindset: In addition to thinking about how stakeholders
could benefit from the software product being developed, one
must also understand how some of them could be negatively
affected by it. Requirements elicitation techniques such as
surveys, interviews, and prototyping are helpful but may not be
sufficient: Even the stakeholders themselves may not be able
to fully comprehend or predict harms that they could face over
time. In addition to these techniques, this process is likely to
require close collaboration with domain experts. For example,
understanding the mental health effect of a social media app
would be best carried out in collaboration with psychologists;
to understand the long-term effect of racial bias in recidivism,
one would consult sociologists and experts in policy design.

B. Modeling Feedback Loops

Understanding the impact of a feedback loop involves
predicting how the environment evolves and interacts with
the machine over a long period of time; this will require a
model of the environment that can be simulated or analyzed
for this purpose. Developing notations and analysis techniques
to support this activity is an important research direction.

a) Causal modeling: One type of modeling approach that
may be useful here is the causal loop diagram (CLD) [13].
Originally developed by the system dynamics community,
CLDs have been used to model, simulate, and reason about
feedback loops in systems from various domains, including
business, economics, sociology, and biology. A hypothetical
CLD for the algorithmic policing system introduced earlier in
the paper is shown in Figure 2. A CLD contains a set of system
variables and causal relationships between them, where each
relationship (depicted as an edge) is labeled as a positive
(+) or negative (-) relationship. A variable x has a positive

relationship with another variable y if an increase (decrease) in
x leads to an increase (decrease) in y. For example, in Figure 2,
an increase in the number of arrested made in a particular
neighborhood results in an increase in the amount of police
patrol that is assigned to that neighborhood. On the other
hand, when the neighborhood experiences an increased level
of perceived crime, it may discourage business owners from
continuing their activities; thus, the two variables—the number
of arrests and the number of businesses—have a negative
causal relationship.

A sequence of edges that form a cycle represents a feedback
loop. A CLD enables a quick test to determine whether a
feedback loop is positive (i.e., self-reinforcing) or negative: If
the number of negative causal links is even, then the loop is
positive. The CLD in Figure 2 contains two feedback loops
that are both positive. In particular, when the number of arrests
in a neighborhood increases, this may lead to a decrease
in the number of businesses and ultimately, the amount of
economic activities; the economic hardship experienced by the
population, in turn, may lead to an increased level of crime,
forming a self-perpetuating cycle. This example also shows
how multiple positive feedback loops may originate from the
decisions that are made by the software.

Of course, the difficult part in devising a useful CLD is
to identify the relevant set of system variables and causal
relationships for the problem. As with understanding harms,
this modeling task will require working with domain experts
(e.g., in the case of the policing system, sociologists or
economists) or building on existing causal models.

b) Integration into existing modeling methods: It may
also be possible to augment existing requirements modeling
approaches (such as i* [15], goal models [14], and problem
frames [5]) with the kinds of causal relationships present in
CLDs. For example, in the problem frames approach, environ-
mental domains and the machine are modeled as interacting
through a set of phenomena. If these phenomena are treated
like system variables in a CLD, then one could introduce
positive and negative causal relationships between phenomena,
enabling reasoning about feedback loops in problem frames.

C. Monitoring and Intervention

Once the structure of a feedback loop and its potential harms
have been identified, the next step is to design the system with
mechanisms for recognizing when an undesirable feedback
loop occurs, and performing appropriate intervention to limit
its harmful effect.

a) Control theory: Control theory is a long-established
field that is, at its core, about using feedback as a mechanism
for controlling the behavior of a dynamical system [6], [4],
[1]. Thus, we can look to this field for both examples of
feedback loops as well as methods that can be potentially
leveraged to reduce the impact of feedback loops in software
systems. In control, a positive feedback loop is typically
considered undesirable, as it can cause instability in the system
behavior over time. Given a model of the system (called the
plant in their terminology), typically specified as a set of



mathematical equations, the goal is to synthesize a controller
that manipulates the input to the plant such that its output
remains within some desired boundary (i.e., it becomes stable
over time). Conceptually, in Figure 1, the controller would be
placed before the machine and adjust the input that is received
from the environment, to ensure that the resulting feedback
loop is negative (i.e., stable).

Researchers have successfully applied control theory to cer-
tain types of software systems (e.g., to achieve a desired level
of performance and reliability in network applications) [4],
[12]. These approaches, although promising, rely on a quan-
titative model of the system, where input and outputs are
numerical variables, and the system behavior is captured using
linear or non-linear equations. Thus, it is not immediately
clear how control theory could be adapted to other classes
of software systems that we have discussed above, and further
research is warranted.

b) Self-adaptive systems: Self-adaptive systems is an
active area of research on systems that are capable of adjusting
to changes in their operating environment while achieving a
desired quality attribute [11]. Techniques and tools developed
by this community could be leveraged here, by monitoring
the system for an undesirable feedback loop and applying
different strategies (such as architectural reconfiguration) to
limit its effect. However, it should be noted that self-adaptive
systems can be a source of both solutions and problems for
positive feedback loops. A typical approach to developing
a self-adaptive system involves introducing some type of
feedback loop into an existing system (most common one
being the Monitor-Analyze-Plan-Execute, or MAPE-K, loop).
If this approach is applied in a myopic manner, focusing on
achieving a short-term objective (e.g., network throughput)
while ignoring the long-term impact of the adaptation decision
(e.g., system reliability), this itself could potentially introduce
an undesirable feedback loop. Methods that combines both
long-term and short-term planning (e.g., [9]) may be one
promising approach to dealing with a positive feedback loop
in a self-adaptive system.

c) Dealing with unanticipated feedback loops: There is
likely to be some harms that one cannot anticipate at the
requirements and design stage: As the environment evolves,
the relationship among the existing and new stakeholders may
change, giving rise to new types of harms or new ways in
which harm can be inflicted. For example, as much as we
may be tempted to blame the creators of early social media
platforms, it would be unreasonable to expect them to have
predicted all of the side effects that have emerged over the
years (although one may fault them for not responding to them
quickly enough to prevent the spread of the harm).

A more effective approach may assume that unanticipated
feedback loops are likely to emerge at some point during
the system deployment, and devise a plan for dealing with
them when they do so. Such a plan involves both monitoring
and intervention. For example, in the context of an ML-
based system, a runtime monitor may be used to compute
the distributions of system inputs and outputs, and look for an

unexplained deviation from the expected norm. This may, for
example, point to a shift in the environmental behavior that
is caused by a positive feedback loop (e.g., in a loan lending
system, an increasing proportion of applicants from a certain
ethnic background being denied a loan).

Once such a deviation is investigated and confirmed to be an
outcome of a feedback loop, different intervention strategies
should be applied to limit its effect. These may include, for
example, temporarily replacing an automated algorithm with
a semi-automated or manual alternative that involves human
oversight, re-training an existing ML model with a new dataset
where bias has been removed, or if necessary, shutting down
a service until the problem has been addressed.

IV. CONCLUSION

As software is increasingly being used to automate decisions
that influence our lives, the risk of harm caused by self-
reinforcing feedback loops is also likely to increase. To our
best knowledge, however, there seems to be little prior research
within the software engineering community on techniques and
tools for understanding and dealing with feedback loops. We
believe that requirements engineering will play a key role in
improving the status quo, by providing methods for identifying
and modeling feedback loops, and for detecting and mitigating
their harmful effects as the environment evolves over time.

REFERENCES

[1] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

[2] B. Beyer, C. Jones, J. Petoff, and N. Murphy. Site Reliability Engineer-
ing: How Google Runs Production Systems. O’Reilly Media, 2016.

[3] J. Dastin. Amazon scraps secret ai recruiting tool that showed bias
against women. In Ethics of Data and Analytics, pages 296–299.
Auerbach Publications, 2018.

[4] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Feedback Control of
Computing Systems. IEEE Press. Wiley, 2004.

[5] M. Jackson. Problem frames: analysing and structuring software
development problems. Addison-Wesley, 2001.

[6] D. Kirk. Optimal Control Theory: An Introduction. Dover Books on
Electrical Engineering Series. Dover Publications, 2004.

[7] D. Meadows and D. Wright. Thinking in Systems: A Primer. Chelsea
Green Pub., 2008.

[8] C. O’Neil. Weapons of math destruction: How big data increases
inequality and threatens democracy. Crown Publishing Group, 2016.

[9] A. Pandey, G. A. Moreno, J. Cámara, and D. Garlan. Hybrid planning for
decision making in self-adaptive systems. In International Conference
on Self-Adaptive and Self-Organizing Systems (SASO), pages 130–139.
IEEE Computer Society, 2016.

[10] C. Patra. The DynamoDB-Caused AWS Outage: What We Have
Learned. https://cloudacademy.com/blog/aws-outage-dynamodb, 2019.

[11] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges. TAAS, 4(2):14:1–14:42, 2009.

[12] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio. Control-
theoretical software adaptation: A systematic literature review. IEEE
Transactions on Software Engineering, 44(8):784–810, 2017.

[13] J. Sterman. Business Dynamics: Systems Thinking and Modeling for a
Complex World. Irwin/McGraw-Hill, 2000.

[14] A. Van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In International Symposium on Requirements Engineering, pages
249–262. IEEE, 2001.

[15] E. S. Yu. Towards modelling and reasoning support for early-phase
requirements engineering. In International Symposium on Requirements
Engineering, pages 226–235. IEEE, 1997.


