
The Role of Environmental Deviations in
Engineering Robust Systems

Eunsuk Kang
Institute for Software Research

Carnegie Mellon University

Pittsburgh, PA USA

eunsukk@andrew.cmu.edu

Abstract—Software systems are developed with various as-
sumptions about the environment. However, over time, the
environment may evolve and deviate from its expected behavior,
possibly undermining desired requirements of the system. In
this paper, we argue that identifying and treating environmental
deviations as a first-class concept throughout the development
cycle is a key to the successful engineering of robust software
systems. We describe some examples of environmental deviations
in different domains, discuss their implications on development
activities, and also put forward research challenges that we
believe the requirements engineering community is particularly
well-positioned to tackle.

I. INTRODUCTION

A fundamental activity in requirements engineering is es-

tablishing the following relationship between requirements,

domain assumptions, and specifications [5]:

S,E � R

That is, if the machine (e.g., software being developed) satis-

fies its specification (S) and certain domain assumptions (E)

hold, then the desired requirement (R) must follow.

Having established this relationship, one might ask: What if
one of the domain assumptions is violated? Such a violation

may occur, for example, due to a faulty or malfunctioning

entity in the environment (e.g., a faulty vehicle sensor that

provides inaccurate data about the world). In security-relevant

domains, a malicious agent in the environment may delib-

erately attempt to undermine an assumption that the system

relies on (e.g., that the user does not inadvertently divulge a

sensitive passcode). More generally, in many modern systems,

the environment constantly evolves over time, deviating from

expectations about its properties and behaviors that were

identified during the initial development.

The challenge of developing systems that are reliable even

under deviations in the environment is not new, and has

been studied extensively in traditional engineering disciplines.

For example, in civil engineering, structures are regularly

designed to withstand possible changes in weather conditions

or building loads [12]. Similarly, in aeronautics, the concept of

operational envelope is used to describe the boundary outside

the normal operating conditions under which the system is

capable of maintaining safe operation [13]. In software, similar

types of deviations have been studied within specific domains

(e.g., hardware faults in embedded systems or network failures

in distributed systems), but there appears to be a lack of sys-

tematic, general methodologies for identifying and managing

such deviations during a development process.

In this paper, we argue that environmental deviations must

be considered as an explicit, first-class concept in software

engineering. Conceptually, an environmental deviation (de-

noted Δ) is an observable unit of change to the behavior

or a property of the environment. For example, in the con-

text of a distributed application (S), a property of interest

may be the average latency of the underlying network (E);

during unexpected failures in the network, its latency might

increase by some k milliseconds above the expected value

(i.e., Δlatency = k ms), adversely affecting the system

throughput (R). As a different example, consider the design of

an infusion pump device (S) that relies on a human operator

(E) entering correct prescription data to ensure safe delivery

of medicine (R). Due to a distraction or stress, the operator

may inadvertently commit an error by omitting or performing

certain actions out-of-order (i.e., Δoperator = an erroneous

operator behavior), possibly undermining the safety of the

patient. In these cases, it would be ideal for the system to

continue to provide some level of performance or safety.

By making Δ explicit, we can precisely pose the problem

of developing systems that are robust against possible devia-

tions in the environment. To be more specific, let E′ be an

environment that results from the deviation of the original

environment E by Δ; i.e.,

Δ = E′ − E

Under this deviated environment, the system may no longer

satisfy a desired requirement R:

S,E � R S,E′
� R

The goal is then to develop a revised machine S′ that is capable

to satisfying the requirement even under these deviations:

S′, E′ � R

Achieving such S′ involves various activities throughout the

system lifecycle, including requirements (for identifying rele-

vant Δ in a given problem domain), architecture and design

(for devising mechanisms to handle Δ), testing and validation

(for checking that the implemented system is indeed capable

435

2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)

978-1-6654-1898-0/21/$31.00 ©2021 IEEE
DOI 10.1109/REW53955.2021.00078

20
21

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l R

eq
ui

re
m

en
ts

 E
ng

in
ee

rin
g

C
on

fe
re

nc
e

W
or

ks
ho

ps
 (R

EW
) |

 9
78

-1
-6

65
4-

18
98

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
R

EW
53

95
5.

20
21

.0
00

78

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 06,2021 at 19:39:57 UTC from IEEE Xplore. Restrictions apply.

of handling Δ), and operations (for detecting new types of

deviations outside of Δ).

In the rest of the paper, we further elaborate on these

activities and describe a set of open research problems that

the requirements engineering community is particularly well-

positioned to tackle. We first begin by describing, in the

following section, some examples of environmental deviations

that arise in software-intensive systems.

II. ENVIRONMENTAL DEVIATIONS: EXAMPLES

a) Human-machine interfaces: Safety-critical systems

such as medical devices, automobiles, aviation systems, and

industrial control systems provide some form of human opera-

tor interface. Such a system is typically designed with a set of

assumptions about the expected behavior of the operator. For

instance, in a radiation therapy system, the operator (e.g., a

therapist) would be expected to perform a sequence of actions

in a particular order (e.g., choose radiation settings, enter

patient information, and then press a confirmation button to

begin the treatment). These assumptions are often implicit

but sometimes encoded in system artifacts—for example, as

instructions in a user manual or training materials.

In practice, humans are not perfect, and will occasionally

deviate from the expected behavior [10]. The therapist under

stress or distraction may inadvertently commit an error, such

as skipping a critical action or performing actions out of

order. Ideally, a system that is robust would ensure that a

critical requirement is satisfied even under these erroneous

behaviors (e.g., prevent radiation overdose even if the therapist

makes a mistake). Unfortunately, there are numerous cases

of catastrophic safety accidents that are attributed to human

errors, including the infamous Therac-25 accidents [9] (where

the software failed to resolve race conditions that occurred

when the operator quickly changed the radiation settings,

ultimately resulting in fatal overdose).

If these types of environmental deviations—in form of

erroneous human behaviors—are anticipated and articulated

during the requirements stage, the system could be explicitly

designed to be robust against those deviations. For this, we can

turn to the wealth of research in the human factors community

on studying and classifying different types of human errors and

techniques for mitigating them [14], [7]. For instance, forcing
functions [10] are a design mechanism that can be used to

constraint the user behavior and reduce the likelihood of a

human error resulting in an undesirable outcome (e.g., ask the

therapist to confirm the selection of a particular action before

proceeding to the next step).

b) Security protocols: Security protocols play a vital role

in modern software systems by providing critical services such

as authorization and authentication. Like any piece of software,

a security protocol is also designed with certain assumptions

about the deployment environment (e.g., web browsers). These

assumptions include both (1) the expected behavior of the

protocol participants (e.g., the browser user) as well as (2)

the knowledge and capability of the attacker (e.g., information

about the system that the attacker has access to).

However, even well-established security protocols have been

broken due to violations of both types of assumptions. For

instance, many implementations of OAuth—a widely-used

protocol for third-party authorization—have been shown to

be vulnerable to attacks in part due to their reliance on

an assumption that the user’s browser shares a secret token

only with the trusted protocol participants. Unfortunately,

unless the protocol implementer takes an additional precau-

tion, this assumption can be violated by standard browser-

based attacks, such as cross-site request forgery (CSRF) [17].

Another common type of security failure occurs when a system

makes a brittle assumption about the attacker’s knowledge—

for example, assuming that the attacker does not know the

unique IDs that are assigned to users, even though they are

often easily enumerable.

We believe that requirements engineering has a significant

role to play in improving software security by helping the

developer articulate environmental assumptions, identify those

that are brittle and likely to be violated, and build in mitiga-

tions to ensure security even under those deviations.

c) Distributed systems: Modern distributed systems are

deployed in a large, complex network (e.g., a cloud) with

dynamic and unpredictable behaviors, such as node failures

or communication delays. Unlike the earlier examples in this

section, this is one domain where environmental deviations

are treated as a norm and systems are developed with the

goal of being robust against those deviations. For example,

most successful distributed applications employ fault-tolerant
coordination protocols, such as Paxos [8] and Raft [11].

d) ML-based systems: The increasing prevalence of

machine-learning (ML) components in software has attracted

a large amount of interest in validation and testing techniques

for ML. One type of property in ML that is being actively

studied is model robustness. While there are various notions

of robustness in ML, in one common definition, a classifier

is said to be robust if its output prediction remains the same

under small perturbations to an input (e.g., a computer vision

model that classifies a stop sign correctly even if the input

image contains slight modifications in pixels) [16]. Given the

importance of robustness in safety-critical applications such

as autonomous vehicles, there is currently a large amount of

research on this topic, such as verifying that a model is robust

against some given set of perturbations and training models to

be robust against adversarial perturbations.

While these are important research directions, we argue that

the narrow focus on ML models is insufficient for developing

ML-based systems that are truly robust against the dynamic,

evolving environment. Many ML components are embedded

deeply within the machine (i.e., software) and do not directly

interface with the environment. Perturbations to a model input

ultimately originate from certain types of deviations in the

environment. For example, pixel changes to an input image

may be caused by a physical disturbance to a camera, a severe

weather condition (such as snowfall), or a malicious actor who

deliberately tampers with the target object. Thus, to be able to

anticipate the possible range of perturbations to model inputs

436

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 06,2021 at 19:39:57 UTC from IEEE Xplore. Restrictions apply.

and decide which of them are relevant for the given system,

one would first need to articulate likely deviations in the

environment—foremost a requirements engineering activity.

III. IMPLICATIONS AND RESEARCH CHALLENGES

Our thesis is that identifying and treating environmental

deviations as a first-class concept throughout the development

cycle is crucial for engineering robust software systems. In this

section, we explore how this concept may play different roles

in different phases of the development and also discuss some

research challenges that can be tackled by the requirements

(and more broadly, software engineering) community.

A. Requirements

a) Elicitation: The first (and perhaps most critical) step

in designing robust systems is the elicitation of deviations

along with requirements from various stakeholders of the

system. This will typically involve working with stakeholders

to identify the set of relevant environmental entities and

properties, and analyzing ways in which they may deviate

from the stakeholders’ expectations. In well-established do-

mains (such as aviation systems), domain experts may already

possess knowledge about common types of deviations (e.g.,

pilot errors, engine failures caused by a bird strike, etc.,). In

newer domains, such knowledge might not readily come by,

and some type of systematic elicitation method may be needed.

One community that we can turn to for potential elicitation

methods is safety engineering. It may be possible to adopt risk

analysis techniques such as failure mode and effects analysis
(FMEA) and hazard and operability study (HAZOP) to guide

stakeholders in systematically identifying relevant deviations.

HAZOP, in particular, uses a set of guide words to explore how

a particular process or entity may deviate from its expected

behavior. For example, given a statement that “the network

will deliver a message with an average latency of 50ms”,

the guide word MORE (for quantitative increase) could be

used to generate deviations where the network experiences an

increased latency, or NOT (for negation) to generate deviations

where the network fails to deliver a message.

b) Prioritization and triaging: Not all deviations are

equal, and one important activity that should be carried out

with stakeholders is to distinguish those that are critical and

should be explicitly addressed by the system design from

the ones that are less important or less likely to occur in

practice. For instance, an autonomous vehicle system should

be designed to be robust against possible failures in sensors

or extreme weather conditions, but it would be unrealistic to

expect the system to be able to deal with another vehicle that

deliberately attempts to crash into the ego vehicle. Each design

mechanism that is intended to improve robustness (e.g., redun-

dancy, failure handling, monitoring) also introduces additional

cost and complexity into the system. No practical system will

be robust against all possible deviations and thus, this type of

prioritization and triaging is important for achieving a trade-off

between robustness and overall development costs.

c) Codification and representation: Within a particular

domain, systems may share similar types of deviations that

can be codified into reusable patterns. For instance, the human

factors community has over time established various cate-

gories of human errors, such as GEMS [14] and phenotypical

categorization of errors [7]. Similarly, the computer security

community has developed databases of common types of

security vulnerabilities and attacks, some of the most notable

ones being the Common Weakness Enumeration (CWE) and

Common Vulnerabilities and Exposures (CVE). These pat-

terns do not guarantee completeness and may not always

be applicable to a particular system under development, but

could nevertheless aid the elicitation and identification of

environmental deviations.

One aspect to consider along with codification of deviations

is their representation. As it is often the case with requirements

in practice, deviations may be documented using an informal

natural language. However, more structured and (semi-)formal

representations of deviations may provide additional benefits,

such as mechanized analysis and traceability throughout the

development. For instance, in the phenotypical categorization

of human errors [7], each type of error can be represented as

a pair of regular expressions (s, s′) where s is a string (i.e.,

a sequence of user actions) that describes an expected user

behavior and s′ a particular deviation from it. For example,

the omission error type may be captured as (s1as2, s1s2),

where s1 and s2 are strings and a is a particular action that

the user may inadvertently skip; similarly, the repetition error

can be captured as (s1as2, s1aas2). Building on this formal

representation of human errors, researchers have constructed

model-based tools for analyzing a computer interface and

identifying errors that may lead to a violation of a safety

requirement (e.g., [3]).

B. Architecture and Design

a) Robustness analysis: Having developed an initial de-

sign of the system, a type of analysis that one may wish to

perform is to check whether the system (S) can establish a

desired requirement (R) even under a possibly deviating envi-

ronment (E′, where E′ = E +Δ for normative environment

E and some deviation Δ); i.e., check that S,E′ � R. This

type of activity, which we call here robustness analysis, is

routinely carried out in traditional engineering disciplines. For

instance, in civil engineering, structural analysis involves using

simulation or mathematical analysis to evaluate how well a

building under design is capable of withstanding additional

loads beyond the expected norm. Within software domains,

robustness analysis appears to be less common, and opportu-

nities abound for developing techniques and tools for helping

developers carry out this activity.

In systems where the environment and the system can be

modeled formally (e.g., as finite state machines), it may be

possible to automate robustness analysis. In our own prior

work [18], we introduced a formal, trace-theoretic notion of

robustness, where a deviation is represented as a trace—a

sequence of environmental actions—that exists outside of the

437

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 06,2021 at 19:39:57 UTC from IEEE Xplore. Restrictions apply.

behavior of the normative environment. Based on this notion,

we developed an analysis tool that automatically computes

the set of all possible deviations (Δ) under which the system

can satisfy a desired requirement (R) and demonstrated its

applications on safety-critical interfaces and network proto-

cols. However, our analysis was limited to discrete, state-

based models of the environment, and further research is

needed to extend this type of analysis into other types of

environmental models (e.g., those that are stochastic in nature,

such as Markov decision processes).

b) Design methods for robustness: Robustness analysis

may reveal that a given design of the system is not robust

enough to tolerate certain kinds of deviations (i.e., S,E′
� R).

In this case, a natural next step is to consider a redesign

of the system (S′) to achieve a desired level of robustness

(i.e., S′, E′ � R). Systematic methods and tools for helping

developers carry out this type of redesign are currently scarce

and could strongly benefit from further research. An exam-

ple of such a method could be an architectural refactoring

technique that leverages a repository of design patterns to im-

prove robustness (e.g., fault tolerance mechanisms to improve

robustness against node failures in a distributed system [6]).

In addition, if the environment and the system are formally

modeled, this redesign activity could be formulated as a type

of model transformation problem and (semi-)automated.

C. Testing and Validation

Techniques such as fuzz testing (e.g., [4]), model-based test-

ing [2], and chaos testing [1] are used to test the robustness of

a system against unexpected inputs or environmental failures.

These techniques could be augmented with information about

deviations to guide the test generation process and evaluate the

system against those specific deviations. For example, instead

of generating test cases in a random manner (e.g., random

input action sequences to test a user interface), one could

generate a specific set of tests to cover the relevant deviations

(e.g., input sequences where certain critical actions are omitted

or repeated). This deviation-driven approach to testing could

potentially achieve a higher level of behavioral coverage using

a smaller number of tests and provide improved traceability

between requirements and tests.

D. Deployment and Monitoring

Environmental deviations continue to play an important

role past the validation stage and well into deployment and

maintenance. In most systems, a model of the environment

considered during the requirements stage is likely to be a rough

approximation, and associated deviations may also turn out to

be inaccurate. One way to overcome this challenge is to deploy

a runtime monitor that has knowledge of the deviations (Δ)

that were elicitated during the requirements stage. The monitor

would then continuously observe the environment and look for

an environmental trace t that corresponds to:

1) One of the elicitated deviations (t ∈ Δ; e.g., an antici-

pated network failure in a distributed system), in which

case the monitor would trigger a mechanism that is

designed to handle that particular type of deviation (e.g.,

activation of standby nodes to serve client requests), or

2) An unexpected or unhandled deviation (t /∈ Δ; e.g., a

complete network failure), in which case the monitor

may trigger a special fail-safe mechanism that performs

a more drastic action (e.g., graceful system shutdown).

Techniques and tools developed by the self-adaptive sys-
tems [15] community could also be leveraged here. For

example, a MAPE-K loop could be deployed to monitor

the environment for unanticipated deviations and perform

appropriate adaptation strategies to provide an acceptable level

of performance or safety even under those deviations.

IV. CONCLUSION

In this paper, we have proposed a notion of environmental
deviations and argued that they must be explicitly identified

and taken into account as a first-class artifact throughout

the development cycle. We believe that the deviation-related

activities described in this paper will become more relevant

as software is increasingly deployed into highly dynamic,

constantly evolving environments, and that requirements is the

most critical and effective place to start tackling the challenges

of engineering robust software systems.

REFERENCES

[1] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal. Chaos engineering. IEEE Software,
33(3):35–41, May 2016.

[2] F. Belli, A. Hollmann, and W. E. Wong. Towards scalable robustness
testing. In 2010 Fourth International Conference on Secure Software
Integration and Reliability Improvement, pages 208–216. IEEE, 2010.

[3] M. L. Bolton and E. J. Bass. Generating erroneous human behavior from
strategic knowledge in task models and evaluating its impact on system
safety with model checking. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 43(6):1314–1327, 2013.

[4] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. Automated whitebox
fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[5] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave. A reference model
for requirements and specifications. IEEE Software, 17(3):37–43, 2000.

[6] R. S. Hanmer. Patterns for fault tolerant software. J. Wiley and Sons,
2007.

[7] E. Hollnagel. The phenotype of erroneous actions. International Journal
of Man-Machine Studies, 39(1):1 – 32, 1993.

[8] L. Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

[9] N. G. Leveson and C. S. Turner. Investigation of the therac-25 accidents.
IEEE Computer, 26(7):18–41, 1993.

[10] D. A. Norman. The Design of Everyday Things. Basic Books, Inc.,
USA, 2002.

[11] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In USENIX Annual Technical Conference, pages 305–319,
2014.

[12] H. Petroski. To engineer is human: The role of failure in successful
design. St Martins Press, 1985.

[13] J. Rasmussen. Risk management in a dynamic society: a modelling
problem. Safety Science, 27(2):183 – 213, 1997.

[14] J. Reason. Human Error. Cambridge University Press, New York, 1990.
[15] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and

research challenges. TAAS, 4(2):14:1–14:42, 2009.
[16] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus. Intriguing properties of neural networks, 2014.
[17] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich. Ex-

plicating sdks: Uncovering assumptions underlying secure authentication
and authorization. In USENIX Security, pages 399–314, 2013.

[18] C. Zhang, D. Garlan, and E. Kang. A Behavioral Notion of Robustness
for Software Systems. In ESEC/FSE, 2020.

438

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 06,2021 at 19:39:57 UTC from IEEE Xplore. Restrictions apply.

