
Components, Platforms and Possibilities:
Towards Generic Automation for MDA

Ethan K. Jackson
Microsoft Research, USA

ejackson@microsoft.com

Eunsuk Kang
Massachusetts Institute of

Technology, USA
eskang@csail.mit.edu

Markus Dahlweid
Microsoft Research, Germany
mdahlwei@microsoft.com

Dirk Seifert
Microsoft Research, Germany
dseifert@microsoft.com

Thomas Santen
Microsoft Research, Germany
tsanten@microsoft.com

ABSTRACT
Model-driven architecture (MDA) is a model-based approach
for engineering complex software systems. MDA is partic-
ularly attractive for designing embedded systems because
models can be easily evolved as hardware and software re-
quirements evolve. However, efforts to apply MDA in in-
dustrial settings expose several open problems surrounding
tooling: Engineers need automated techniques that are scal-
able, general, and extensible. In this paper we describe the
formula framework as a novel approach towards general
automation for MDA. We develop a running example and
benchmarks to compare our tools with other state-of-the-
art approaches.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Software Architectures

General Terms
Algorithms, Design

1. INTRODUCTION
Model-driven architecture (MDA) is a model-based ap-

proach for engineering complex software systems [22]. It
has the advantage of decoupling the software architecture
from the computing platform, while allowing both to be
co-designed. MDA is particularly attractive for designing
embedded systems because models can be easily evolved as
hardware and software requirements evolve. Consequently,
there exist long-running industrial efforts to apply MDA to
embedded systems, and there exist significant tooling efforts
for MDA [6].

However, efforts to apply MDA in industrial settings ex-
pose several open problems surrounding tooling:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-904-6/10/10 ...$10.00.

• Scalability - In MDA, design complexity appears in
the form of constraints over the interfaces of software
components and constraints on the legal deployments
of components to computing elements [22]. Without
tool support to aid in model construction, the archi-
tect must manually solve global and difficult constraint
problems to arrive at a legal design. Thus, scalability
depends on automated techniques, yet there exist few
results from the tool community showing scalable tech-
niques for MDA.

• Generalized Synthesis - Often, tools are crafted to solve
a specific part of the modeling task. For example, there
are tools that synthesize schedulable deployments given
timing constraints on software components [3]. How-
ever, this synthesis is often uni-directional. If the mod-
eler requires assistance writing timing constraints, then
the same tools cannot offer assistance. General au-
tomation should be able to synthesize any part of the
model.

• Extensibility - Industrial case studies have shown that
the modeling process must be extensible: Software
components will be extended with new abstractions,
e.g. security abstractions [4], and the legal deploy-
ments will be impacted by such extensions. It is an
important open problem to provide an effective tool
architecture in the face open-ended constraints and ab-
stractions [15].

In this paper we present our formula framework [18] as
a tool towards generic automation for MDA. formula ad-
dresses the problems surrounding MDA tooling through a
combination of innovations: formula (1) provides a unique
formal specification language for encoding general MDA ab-
stractions, (2) exposes formal composition operators for ex-
tending specifications and reasoning over extensions, (3) uti-
lizes symbolic execution of logic programs and reduction to a
satisfiability modulo theories (SMT) solver to provide state-
of-the-art formal methods for model synthesis.

We illustrate our approach with a running example de-
rived from the AUTOSAR project [13], which is a large in-
dustrial effort to apply MDA to automotive embedded sys-
tems. Our example shows how tool support becomes prob-
lematic and how formula handles these issues. Next, we
propose several benchmarks to compare formula to exist-
ing tools. Finally, we provide scalability comparisons be-

TurnSignalSwitch

SwitchState

EmergencyButton

ButtonState

LightState

LightController

Switch

Button

EBLight

HLight
HeadLightController

SwitchState

EmergencyButtonState

HeadLightState

EmergencyLightController

ButtonState

EmergencyLightState

Figure 1: Example of componentized software archi-
tecture.

tween the Alloy Analyzer, which uses relational algebra as
its foundations, and SModels, which computes stable models
for answer-set programming.

This paper is divided into the following sections. Section
2 introduces MDA in the context of AUTOSAR and Section
3 formalizes a running example and benchmark based on
AUTOSAR. Section 4 shows how formula can be used to
encode this running example. Section 5 provides tool com-
parisons and Section 6 discusses some related work. Finally,
we conclude in Section 7.

2. AUTOSAR
The AUTomotive Open System ARchitecture (AUTOSAR)

Initiative is an approach to engineering automotive systems
that decouples the software architecture from the computing
platform [13]. Its core members include BMW, Toyota, Gen-
eral Motors, Ford, Volkswagen, Daimler, and Bosch. AU-
TOSAR is described in a rich set of standards; these are
now in their fourth revision. The AUTOSAR initiative is in
its seventh year.

The goals of AUTOSAR align with MDA. As a result, the
standards are phrased in the language of MDA: There is an
AUTOSAR metamodel describing a schema for models of
automotive systems. The metamodel is supplemented with
guidelines for semantics of models. These supplements are
intentionally partial to allow various tool vendors and soft-
ware manufacturers to instantiate AUTOSAR in different
ways. Opened-ended extensibility is a fundamental quality
of the approach. Finally, the standards also describe a run-
time environment (RTE) to support software components.

The tool ecosystem surrounding AUTOSAR is complex,
but can be roughly broken into three parts: (1) Modeling
tools for constructing models, (2) Code generators for pro-
ducing implementation and platform configuration from sys-
tem models, and (3) Implementations of the RTE. In this
paper we focus on the modeling tools, as downstream tools
assume or verify that good models have been constructed.

2.1 The Metamodel
At the core of AUTOSAR is a metamodel providing a

common schema for models. The metamodel can be further
subdivided into schemas for modeling software architectures,
platforms, and assignments of components onto computing
elements (called electronic control units or ECUs). Tool ven-
dors and manufacturers must utilize this schema. However,

the AUTOSAR metamodel is not closed; it can be extended
to enrich models with new abstractions [15].

2.1.1 Components
Figure 1 shows a simplified model of an AUTOSAR soft-

ware architecture (example adapted from [19]). It consists of
a hierarchy of software components interconnected through
ports. The software component is the basic unit of function-
ality, and AUTOSAR provides a rich vocabulary for compo-
nents. An atomic component cannot be subdivided and en-
capsulates implementation in the form of runnable entities.
For example, the HeadLightController and EmergencyLight-
Controller are atomic components. The former controls the
four main lights on a vehicle and the latter controls the light
on the emergency button, which is pressed to cause all head
lights to flash. Sensors and actuators are modeled with sen-
sor\actuator components: The TurnSignalSwitch and Emer-
gencyButton components are examples, as indicated by the
small gauge icon. Finally, components can be aggregated
using composition components. The LightController aggre-
gates the HeadLightController and EmergencyLightController
components. Composition components are treated as purely
structural and do not have implementation footprints.

2.1.2 Communication
Components communicate through ports connected by con-

nectors. Again, there is a spectrum of port types to express
different communication styles: Sender-receiver, client-server,
and event-triggered ports are available. For the sake of
discussion, the ports in Figure 1 can be viewed as sender-
receiver ports. (Our port notation differs from AUTOSAR
notation. We use unfilled ports to indicate interfaces on
composition components.)

2.1.3 Platform and Mapping Constraints
A platform is comprised of ECU instances connected by

physical channels as well as specifications of ECU message
formats. The physical channels model the bus topology and
the metamodel provides specialized constructs for common
bus types including CAN, FlexRay, LIN, and Ethernet. A
full discussion of these concepts is outside the scope of this
paper.

A complete AUTOSAR model consists of the software
architecture, platform model, and the software component
mapping assigning atomic components onto ECUs. The
mapping is not arbitrary and is subject to mapping con-
straints. Some constraints are implicitly present, e.g. if
two software components communicate then they must be
mapped to ECUs that communicate. The metamodel also
predefines two types of constraints that can be manually
added: component clustering and component separation con-
straints. A component clustering constraint requires com-
ponents to be placed on the same ECU, while a component
separation constraint requires two components to be placed
on different ECUs. Extensions of AUTOSAR may further
constrain the legal mappings.

2.2 Modeling is Hard
This brief introduction is enough to illustrate that con-

structing legal models is an NP-hard problem. Determining
a legal mapping in the face of component separation con-
straints is a graph coloring problem, where the number of
colors is equal to the number of available ECUs. Model

construction becomes problematic when the ratio of compo-
nents to ECUs is large and there are many constraints. In
practice these separation constraints may be solved manu-
ally. However, as more realistic constraints come into play,
e.g. scheduling constraints, then manual model construction
also becomes infeasible in practice.

3. EXAMPLE AND BENCHMARK
In this section we develop a running example based on AU-

TOSAR. We use this example to show how abstractions are
specified and extended with formula. We also use this ex-
ample as a benchmark to evaluate other tools that could offer
generalized automation for MDA. With this in mind, our ex-
ample is intentionally simple while retaining those qualities
from AUTOSAR that should challenge existing formal meth-
ods. To our knowledge there are few published benchmarks
for evaluating the effectiveness of generalized automation in
MDA.

3.1 Basic Abstraction

Definition 1. Software - Let S = 〈C, idC , EC〉 be a
structure where C is a finite set, idC : C → N is an injection,
and EC ⊆ C × C is a relation.

A software model consists of a finite set of components C.
Each c ∈ C has a unique ID given by idC(c). The reason
for explicit IDs shall be explained shortly. The relation EC

gives the communication topology between components; the
details of ports are ignored. An element (c1, c2) ∈ EC indi-
cates a directed communication path where c1 sends data to
c2.

Definition 2. Platform - Let P = 〈N,F, idF , EN 〉 be
a structure where N, F are finite sets, idF : F → N is an
injection, and EN ⊆ N ×N is a relation.

A platform model consists of a finite set of computing nodes
N (e.g. ECUs) and a finite set of functionalities F (e.g.
runnable entities). The injection idF assigns a unique ID to
functionalities. Similarly, EN gives the directed communi-
cation topology between nodes. Nodes can always commu-
nicate with themselves and all other bus details are ignored.

Definition 3. Mapping - Let M = 〈S, P,map〉 be a
structure where S is a software model, P is a platform model,
and map : C → N is a function from components to nodes.

The mapping model completes the description by placing
components onto nodes according to map. Mapping models
are subject to the following constraint:

idC(C) ⊆ idF (F). (1)

This constraint provides a simple mechanism to decouple the
software architecture from the platform model: Each com-
ponent c encapsulates the functionality f that shares the
same ID. Other than these IDs, components and function-
alities are kept separate. As in AUTOSAR, the mapping
must respect communication paths:

∀(c1, c2) ∈ EC , (map(c1),map(c2)) ∈ E∗N (2)

where E∗N is the transitive closure of the node topology. Let
Map(S, P) be the set of all legal map structures for software
model S and platform model P .

Model construction under the basic abstraction is poly-
nomial-time solvable. For example, mapping every compo-
nent onto the same node is guaranteed to satisfy commu-
nication constraints. However, model synthesis tools may
have trouble dealing with this constraint, because a transi-
tive closure operator is required.

3.2 Extended Abstraction
We illustrate extensibility by adding new concepts to the

basic abstraction. Software components will be annotated
with timing information, the platform will contain infor-
mation about worst-case execution times (WCETs), and
the mapping will have more constraints. This extension
is based on the logical execution time (LET) semantics for
time-triggered architectures (TTAs). TTA-based tools / sys-
tems are actively being developed by AUTOSAR-compliant
vendors [12]. The resulting abstraction encodes an NP-hard
multi-processor scheduling problem [14].

Definition 4. Extended Software - Let
Se = 〈T, S, period, owner〉 be a structure where T is a finite
set, S is a software model, period : T → N is a function,
and owner : C → T is a function.

The extended software model contains a set T of timed mod-
ules. Each component is owned by a module according to
owner(c). Associated with each module is a unit of time,
called its period. The components owned by a module t
execute periodically, once every period(t) units of time. A
module also acts as a clustering constraint; all components
in a module must execute on the same node.

Definition 5. Extended Platform - Let
P e = 〈P,wcet〉 be a structure where P is a platform model
and wcet : F ×N → N.

The platform model is extended by a worst-case execution
time matrix wcet, i.e. wcet(f, n) is the WCET of function-
ality f on node n.

Definition 6. Extended Mapping - Let
Me = 〈Se, P e,map〉 be a structure where Se and P e are
extended software and platform models. As before, map :
C → N .

The extended mapping must ensure that a component c on
a node n can execute once every period(owner(c)) units of
time by considering the WCETs of c and all other compo-
nents placed on n. Assume n runs components from exactly
one module t, then the following constraint is sufficient for
schedulability:

period(t) ≥
∑

{c|map(c)=n}

wcet(n, fc) (3)

where fc is the functionality f with the same id as c, idF (f) =
idC(c).

The constraint is more complex when two or more modules
with differing periods are placed on the same node. Essen-
tially, the components execute at different rates, so the least
common multiple (lcm) of module periods must be used to
compare modules. Given a node n let:

lcm(n) = lcm

{
period(owner(c))

∣∣∣∣map(c) = n

}
. (4)

ECU A ECU B

Module 1, period=5 Module 2, period=8

TurnSignalSwitch=0

EmergencyButton=1

HeadLightController=2

EmergencyLightController=3

∀f, n wcet(f, n) = 1

Figure 2: Example model under the extended ab-
straction benchmark.

The true sufficient condition for schedulability is:

lcm(n) ≥
∑

{c|map(c)=n}

lcm(n)

period(owner(c))
wcet(n, fc). (5)

Components in the same module must be mapped to the
same device:

∀c, c′ ∈ C, owner(c) = owner(c′)⇒ map(c) = map(c′)
(6)

and the mapping must be valid under the basic abstraction:

〈S, P,map〉 ∈Map(S, P). (7)

3.3 Benchmark Instances
Figure 2 shows an example mapping model under the ex-

tended abstraction. This is based on the example in Figure
1, except that ports have been erased from components. The
sensors/actuators are grouped into one module with period
5 time units, and the controllers are grouped into another
module with a period of 8 time units. Assuming two ECUs
with the topology shown and a WCET matrix where ev-
ery functionality takes 1 time unit, then Figure 2 is a valid
mapping model. (Functionalities are not shown.)

In our benchmark experiments a random model is gen-
erated, except that some parts of the model are unknown.
Perhaps the map function is unknown or the timing spec-
ification is underspecified. A general synthesis algorithm
must complete these missing details to form a total map-
ping model that satsifies all constraints. We encode this
benchmark using the formalisms of various tools, so the def-
initions in Sections 3.1-3.2 may be rephrased, either out of
necessity to apply a particular tool or to improve efficiency.
Nonetheless, solving instances of this benchmark problem is
expected to challenge existing tools, because synthesis re-
quires: (1) reasoning about the finite transitive closure of
a graph, (2) aggregating WCETs, (3) solving an NP-hard
scheduling problem, and (4) computing LCMs. Each of these
ingredients poses challenges to various approaches.

4. FORMULA
formula is our specification language and analysis tool

for model-based abstractions. It was first introduced in [18].
A formal pattern for composing and extending abstractions

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

domain Software

{

 Component : (id: Integer).

 [defined]

 Connector : (from: Component,

 to: Component).

}.

model Ex1 : Software

{

 c0 is Component(0), c1 is Component(1),

 c2 is Component(2), c3 is Component(3),

 Connector(c0, c2), Connector(c1, c2),

 Connector(c1, c3), Connector(c3, c1)

}.

Figure 3: Specifying the basic software model with
formula.

with formula was first presented in [17]. formula speci-
fications consist of a set of regular types and a set of declar-
ative rules in the form of stratified logic programs. In the
interest of space, we informally present formula using the
running example.

4.1 Domains and Models
The basic specification unit for an abstraction is called

a domain. A domain contains all the data types and con-
straints required to describe an abstraction. Lines 1-8 of Fig-
ure 3 encode the basic software model (Definition 1). Line
3 declares a new data type called Component for creating
components. This declaration can be read like a structure
in C++. Each instance of a component has a integer field
called id. A component is instantiated by calling the Com-
ponent constructor with an integral argument for its id, e.g.
Component(0) creates a component with id of zero. As a
matter of style, we use rich data structures to represent con-
cepts, such as IDs, which might otherwise require additional
functions (e.g. the idC function in Definition 1). This is
possible because two formula instances are equal by struc-
tural equality, i.e. two instances are the same iff they were
created by the same constructor with the same arguments.

The relation EC is modeled by the Connector data type,
which has two fields of type Component for indicating the
source and destination of the component connection. A for-
mula model is just a finite set of data type instances sat-
isfying all constraints of the associated domain. Lines 8-14
encode the software model (ignoring modules) of Figure 2.
The notation c0 is Component(0) assigns the 0th component
to the identifier c0. This syntactic sugar allows instances to
be used across a model without constructing them repeat-
edly. After expanding all identifiers, a model is just a set of
data type instances.

A formula model instantiates sets, relations, and func-
tions using instances of data types. For example, to iden-
tify the set of components C in a formula model M , one
examines the Component instances. The function idC is
reconstructed by mapping each component to its id field:
idC(Component(id)) 7→ id. The relation EC is reconstructed
according to:

(c1, c2) ∈ EC ⇔ Connector

(
Component(idC(c1)),
Component(idC(c2))

)
∈M.

However, this last relationship depends on a technical-
ity that every component appearing as an argument to a
connector also appears directly in M . Consider the for-
mula model Ex1′ with a new instance added:

Ex1′ = Ex1 ∪
{
Connector

(
Component(100),
Component(100)

)}
. (8)

The Component(100) instance only exists as an argument
to a connector, unlike all the other components that exist
directly in Ex1. Such an connector contradicts our intent
that connectors form a finite relation over the declared com-
ponents. This situation is remedied by adding a constraint
on the use of connectors. Line 4 attaches the defined con-
straint to the Connector data type, which disallows models
where connectors contain components not defined in M . In
formula [defined] is called an attribute. Attributes attach
themselves to the expression immediately following their in-
troduction.

4.2 Logic Programs
The platform abstraction is slightly more complicated, be-

cause the transitive closure of the node topology must be
computed. Figure 4 shows this specification. As in the pre-
vious example, the data types Node, Func, Channel encode
the sets N , F , the injection idF , and the relation EN . Lines
8-10 compute the transitive closure using logic programming
rules.

Given a set of data instances X, a rule examines this set
and may create new instances as a result. Formally, rules
are inflationary functions that grow the set of instances. Let
I be the (infinite) set of all instances that can be formed ac-
cording to the type system. A rule R defines a function
ΓR : P(I)→ P(I), called its immediate consequence opera-
tor. If X ⊆ I, then R extends the set of instances according
to ΓR(X) ⊇ X. Given an initial set of instances X0 a logic
program applies rules until a fixpoint Xf is reached:

Xf = Γkn(. . .Γk2(Γk1(Xf)) . . .) ∧ X0 ⊆ Xf . (9)

Most logic programming languages restrict the form and or-
der of application of rules so Xf exists and is the least fix-
point. In formula the initial set X0 is always a model (fi-
nite set of data instances) and the rules derive information
about this model in the form of new data instances. for-
mula specifications correspond to stratified logic programs;
stratification is a syntactic restriction on rules guaranteeing
the existence of least fixpoints [8].

Returning to lines 8-10, these rules simultaneously intro-
duce an auxiliary data type called nReach and use this data
type to hold the transitive closure. Auxiliary data types
must begin with a lower-case letter and can never appear in
a formula model. The first rule nReach(n,n) :- n is Node
searches for Node instances. Every time an node is discov-
ered, it is bound to the variable n. Next, the head of the
rule extends the set of instances with the new data instance
nReach(n,n), where n is substituted with its binding. Sim-
ilarly, line 9 searches for channels and binds the channel
end-points to the variables x and y. The recursive nature of
transitive closure is captured by the final rule, which must
be applied until no new nReach instances are created. for-
mula performs this forward computation until a fixpoint is
reached to evaluate models against their domain specifica-
tions.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

domain Platform

{

 Node : (id: Integer).

 Func : (id: Integer).

 [defined]

 Channel : (from: Node, to: Node).

 nReach(n, n) :- n is Node.

 nReach(x, y) :- Channel(x, y).

 nReach(x, z) :- nReach(x, y), nReach(y, z).

}.

Figure 4: Specifying transitive closure of node topol-
ogy.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

domain Mapping restricts Software * Platform

{

 [function]

 Map : (c: Component, n: Node).

 missingFunc :? c is Component,

 fail f is Func, c.id = f.id.

 badTopology :? Connector(x, y),

 Map(x, nx), Map(y, ny),

 fail nReach(nx, ny).

 conforms :? !(missingFunc | badTopology).

}.

Figure 5: Defining legal maps through composition
and constraints.

4.3 Domain Constraints
The previous examples imposed minimal constraints on

their models. We now describe the mapping abstraction,
which contains more complex constraints requiring addi-
tional features to encode. Figure 5 shows the specification
of the mapping abstraction. Line 1 composes and imports
the Software and Platform domains. (We describe this line
in more detail shortly.) It suffices to know that the types,
rules, and constraints of the other domains can be accessed
within the scope of the Mapping domain. Line 4 introduces
a data type Map for representing the assignment of com-
ponents onto nodes. Map is annotated with the [function]
attribute, so it must act like a function.

The first interesting constraint is that for every compo-
nent there exists a functionality with the same ID (Equa-
tion 1). This constraint is expressed with a query called
missingFunc. Like a rule, the body of a query is a pattern.
Unlike a rule, a query sets a boolean variable to true if the
pattern is matched at least once; otherwise it is set to false.
The name of the boolean variable is given on the left side
of the query operator (:?). The body of missingFunc tries
to locate a component c for which there is no corresponding
functionality f with the same id. The fail keyword is a logic
programming construct called negation-as-failure. It allows
a pattern to test for the absence of a data instance. The
missingFunc query becomes true exactly when Equation 1 is

not satisifed. The next constraint is that map must respect
component communication (Equation 2). The badTopology
query encodes this by trying to find a connector that is not
mapped to nodes that (transitively) communicate. Again,
the badTopology query is satisfied exactly when the con-
straint is violated.

These query definitions do not actually constrain the do-
main models. To turn them into constraints they must ap-
pear in a special query called conforms. Line 13 defines the
special conforms query as a boolean combination of the pre-
vious queries. In this case, conforms is true when both miss-
ingFunc and badTopology are false. formula tests if a model
satisfies domain constraints by evaluating the logic program
and checking if conforms evaluates to true. In fact, every
domain has a conforms query, even if it is not explicitly de-
fined. In the previous examples, the [defined] attributes sim-
ply added additional queries into the specification that were
implicitly mentioned in conforms. In the Mapping domain,
the [function] attribute also introduces additional queries an
appends them to our explicit conforms query.

4.4 Composition and Extension
The specification of the Mapping domain is succinct be-

cause it can utilize the previous specifications in its context.
However, uncontrolled importation of formal specifications
can be dangerous. Constraints may contradict each other
and logic programs may interact creating an unexpected net-
effect. formula provides several composition operators for
controlled composition. We summarize a few of these.

Given two formula domains DX and DY , then the pseudo-
product operator (*) forms a new domain DX∗Y = DX ∗DY

whose models can be uniquely decomposed into a model of
DX and a model of DY . In other words, DX∗Y represents
all the possible pairs of models. The pseudo-product opera-
tor is constructive. It forms the product domain by union-
ing both domains, creating a conforms query that conjuncts
conformance of the original domains, and checking that the
composite logic program is still well-behaved. Actually, the
pseudo-product is slightly more flexible. It only guarantees
unique decomposition if DX and DY have disjoint type dec-
larations. Disjointness can always be constructed using the
renaming operator (as), which on-the-fly renames all decla-
rations: (DX as A) ∗ (DY as B). Now every type TX in DX

is named A.TX and every type TY in DY is named B.TY . If
the signatures overlap and renaming is not applied, then the
models of DX∗Y will have an overlap in their decomposition.

Another useful operator is the restriction operator (re-
stricts). The restriction operator imports the contents of
one domain into another, but automatically conjuncts the
conforms query of the imported domain onto the conforms
query of the importer. It also performs static analysis to en-
sure that the composite logic program is well-behaved. The
result is that the models of a restricted domain must use the
imported abstractions correctly. Combining these operators
give a powerful mechanism to modularize and compose ab-
stractions. Returning to line 1 of Figure 5, the Mapping do-
main restricts the pseudo-product of Software and Platform.
The pseudo-product sets the stage for describing maps from
components to nodes. The restriction operator ensures that
the new abstraction only adds constraints.

These composition operators can be used to describe a
formal pattern for extending MDA abstractions. First, re-
stricted domains are formed from the software and plat-

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

domain ExtSoftware restricts Software

{

 Module : (id: Integer, per: Natural).

 [function]

 Owner : (c: Component, m: Module).

}.

domain ExtPlatform restricts Platform

{

 [function(f, n -> t)]

 Wcet : (f: Func, n: Node, t: Natural).

}.

domain ExtMapping restricts

 Mapping * ExtSoftware * ExtPlatform

{

 badCluster :? Owner(c1, m), Owner(c2, m),

 Map(c1, n1), Map(c2, n2),

 n1 != n2.

 unschedulable :? nLCM(n, t), t <

 sum(nCost(n, _),1).

 conforms :? !(badCluster | unschedulable).

 onNode(n, c, p) :- m is Module(_, p),

 Owner(c, m), Map(c, n).

 nLCM(n, t) :- n is Node, t =

 lcm(onNode(n, _, _),2).

 nCost(n, t) :- onNode(n, c, p),

 f is Func(id), Component(id) =

 c, Wcet(f, n, w), nLCM(n, l),

 t = l / p * w.

}.

Figure 6: Composition pattern for adding new ab-
stractions.

form abstractions. These may contain new data types and
constraints. Lines 1-11 in Figure 6 show the ExtSoftware
and ExtPlatform domains, which define Modules, Owners and
Wcets. Second, a pseudo-product is formed from the re-
stricted software/platform domains and the original map-
ping domain (Line 13). Finally, this pseudo-product is fur-
ther restricted to exclude those maps that are not valid ac-
cording to the extended software/platform abstractions.

According to our benchmark, the ExtMapping domain must
enforce a clustering constraint: Components in the same
module go to the same device. This is easily specified in
lines 15-17 with the badCluster query. The schedulability
constraint is more difficult to specify, and is done using sev-
eral auxilliary rules. The first rule (lines 24-25) records
which tasks are mapped to which nodes with which peri-
ods. This information is stored using the auxiliary onNode
data type. The next rule (lines 27-28) applies the lcm aggre-
gation operator to all periods associated with a particular
node. Aggregation operators find all instances of a particu-
lar form and then aggregate over their fields. In this case the
lcm operator is aggregating over the second (zero-indexed)
field of onNode instances. The final LCM of a node is stored

1.

2.

3.

4.

5.

6.

7.

8.

partial model Ex1Partial : ExtMapping

{

 c0 is Component(0), c1 is Component(1),

 ///More data instances from software model

 n0 is Node(0), n1 is Node(1),

 ///More data instances from platform model

 Map(c0, _), Map(c1, _), Map(c2,_),Map(c3, _)

}.

Figure 7: A partial model for defining a synthesis
problem.

as an instance of the nLCM data type. The last rule records
the cost of placing a component c on node n according to
the wcet matrix and the lcm of n. The unschedulable query
checks if the LCM of a node is too small to support all of its
components. This completes the specification of the basic
and extended abstractions using formula.

4.5 Synthesis
In order to synthesize models, formula specifications are

translated into quantifier-free first-order formulas. This is
accomplished by symbolically executing a logic program over
a set of instances that may contain variables. We call this
input set a partial model and it determines the parts of the
model that must be solved. Unknowns can be placed any-
where and our framework will attempt to complete them.
Figure 7 shows a partial model where the completion solves
the mapping problem for the instance of Figure 2. Notice
that the Map instances in line 7 receive underscores for their
arguments. These underscores stand for fresh variables that
must be instantiated. Partial models allow unknowns to be
combined with parts of the model that are already fixed.

Let q be a query defined in domain D, then symbolic
execution over a partial model generates a quantifier-free

first-order formula ϕ[
⇀
x] encoding all the ways that variables

could be assigned values so the query q becomes true. Gen-
erating this formula requires unrolling all the paths through

the logic program. Let
⇀
x denote the vector of variables ap-

pearing in ϕ, then a satisfying assignment is an assignment
of variables to values {x1 7→ v1, . . . , xn 7→ vn} such that ϕ

is true. Given a satisfying assignment for ϕ[
⇀
x], a reverse

translation converts this instance a into formula model.
The expressiveness of formula specifications may result

in a formula ϕ containing elements from many different
mathematical theories. For this reason we utilize the state-
of-the-art satisfiability modulo theories (SMT) solver Z3 [9]
to construct satisfying instances. SMT solvers represent a
significant step in automated theorem by soundly combining
decision procedures for various theories while using efficient
SAT techniques to drive the solving process. For example,
symbolic execution over the unschedulable query (Figure 6)
might impart the following fragment into ϕ:

testnLCM (x) ∧ testnCost(y1) ∧ testnCost(y2) ∧ y1 6= y2
∧

2Int(selnLCM,1(x)) <

(
2Int(selnCost,1(y1))+
2Int(selnCost,1(y2))

)
. . .

This fragment tests if x is of the nLCM data type and if y1, y2
are of the nCost data type. If so, fields are extracted from
instances using selector functions, e.g. selnLCM,1(x) returns

the first (zero-indexed) field of x. If y1 6= y2, then the sum of
these periods must be greater than the LCM of x. The func-
tion 2Int coerces fields into integers. SAT techniques provide
a strategy for satisfying subformulas, and specific decision
procedures actually solve the subformulas. In this example,
three different decision procedures are required: (1) Term
algebras (TA) for inductive data types encoded with testers
and selectors, (2) linear arithmetic for summing WCETs, (3)
uninterpreted function symbols for axiomatizing data type
coercions (2Int).

5. EVALUATION
In order to compare our techniques with other approaches,

we encoded the extended abstraction (Section 3.2) in two
other tools: Alloy [16] and SModels [23]. In these experi-
ments we do not evaluate the ease of specifying constraints,
but focus entirely on the ability of tools the synthesize mod-
els. Our experiments are purely quantitative.

All the tools we test find models by converting specifica-
tions into quantifier-free SAT-like problems where search is
directed by the DPLL algorithm. At first glance it might
seem that tool evaluation is only testing the relative effi-
ciency of the underlying SAT/SMT solvers. However, it
turns out this is not the case because all tools accept speci-
fications that are more expressive than quantifier-free first-
order logic. As a result, the translation process into the
underlying solver may be a source of exponential blow-up.
Depending on the approach, this blow-up may or may not
be avoidable.

5.1 Setup
We derive two parameterized benchmarks from the ex-

tended abstraction example. Note that in the following
benchmarks we fix all module periods to 10 to avoid com-
puting the LCM. formula implements a careful encoding of
LCM by unrolling a binary GCD algorithm. However, other
tools do not have native encodings of LCM, so we decided
to remove this rather specific operator from the evaluation.

The first benchmark, Deploy(c,m, n) requires a tool to
find a deployment for a random partial model containing c
components owned by m modules onto n nodes. The compo-
nent and node topologies, the WCET matrix, and the mod-
ule ownership are randomly generated and may represent
an unsatisfiable mapping problem. There are potentially
nm possible mappings to consider. The second benchmark,
T iming(c,m, n) requires a tool to find a WCET matrix that
makes the system schedulable for a random mapping of c
components owned by m modules onto n nodes. A ran-
dom instance fixes the component and node topologies, the
module ownership, and the mapping. Again, the random
instance may be unsatisfiable. In principle, the size of this
search space is unbounded as any WCET might be feasible.
However, since modules have a fixed period of 10 only small
WCETs are reasonable choices.

5.2 Background on Alloy
Alloy [16] is a modeling language based on first-order

relational logic. Its flagship tool, the Alloy Analyzer, is
equipped with a SAT-based engine that can be used to gen-
erate valid system configurations or counterexamples to a
property. Due to the lightweight nature of the language and
its powerful analysis, the Alloy Analyzer is gaining popular-

ity among the model-based development community, with
applications in a variety of domains [1, 5, 24].

At its core, Alloy is essentially first-order logic with built-
in support for transitive closure, relation composition, and
aggregation. It can be used to model components, platforms,
and complex mapping constraints, as well as composition
and extension of domain abstractions. Like formula, Alloy
supports arithmetic operations, which are crucial in specify-
ing interesting properties of embedded systems. Both for-
mula and the Alloy Analyzer provide automated support
for model synthesis. The combination of these three aspects
makes the Alloy Analyzer a unique and suitable tool for
comparison against formula.

Although both of the tools provide the same kind of anal-
ysis, they differ in the underlying engines; formula is based
on symbolic execution of logic programs into an SMT solver,
and the Alloy Analyzer encodes n-ary relations into a SAT
solver. The SMT solver employs powerful decision proce-
dures for theories, including linear arithmetic, uninterpreted
functions, term algebras, and bit vectors. In comparison,
the Alloy Analyzer compiles the entire specification into a
propositional conjunctive-normal form (CNF), so only bit-
level reasoning can be applied. This has implications on the
translation overhead for Alloy.

The Alloy Analyzer, using its backend compiler called
Kodkod [25], translates an input specification directly into
an equisatisfiable CNF before presenting it to an off-the-
shelf SAT solver. The underlying represention in Alloy is
relations. For the purpose of translation into a boolean for-
mula, Kodkod encodes every relation as a matrix, where
each entry corresponds to a boolean variable that indiciates
whether or not a particular tuple belongs to the relation.
The size of the matrix is exponential in the arity of the re-
lation. For example, consider a relation Map, which binds
each component to some node. Let us assume that the up-
per bound on the number of Component and Node instances
is 6. Then, the size of the resulting matrix is 6 · 6 = 32.

This underlying representation has significant implications
on the performance of the Alloy Analyzer. Kodkod applies
a number of optimizations in order to reduce the size of the
resulting CNF, but in general, given k number of variables in
the specification, the resulting CNF is exponential in size.
Thus, when the degrees of freedom in the synthesis prob-
lem is large, Kodkod quickly runs out of memory capacity
during the translation phase, even before reaching the SAT
solver. In our experiments the Alloy engine preemptively re-
jects some synthesis problems by detecting that the resulting
CNF will be too large.

5.3 Background on SModels
SModels [23] is a tool that implements the stable model

semantics for answer set programming (ASP). The goal of
ASP is to declaratively encode and solve problems using
logic programming. For example, classic NP-hard problems
like graph coloring and Hamiltonian cycle problems have
very concise formulations as logic programs. In this sense,
ASP is similar in spirit to formula: An answer set is a set
of facts (like a formula model) under which some query
evaluates to true in the logic program. ASP attempts to
construct these answer sets.

However, the techniques to construct answer sets are dif-
ferent from the symbolic execution approach used by for-
mula. First, ASP uses a more general semantics for logic

programs called the stable model semantics [10]. This se-
mantics addresses problems when using negation-as-failure
(NAF) recursively. Logic programs that do not use NAF in
this way are called stratified logic programs. formula only
accepts stratified programs. Fortunately, the stable model
semantics for stratified programs coincides with formula’s
interpretation of stratified programs, so the tools can be
compared directly.

The first phase in constructing an answer set is called
grounding, which expands the logic program into one that
contains no variables. Grounding is implemented by a re-
lated tool called LParse. SModels reads the results of LParse
to construct an answer set. In our experiments the ground-
ing process is a major source of exponential blow-up. If
the program can be grounded before memory resources are
consumed, then SModels can find solutions quickly. Once
all variables are removed by grounding, SModels uses SAT
techniques to derive answer sets (stable models) from the
expanded program.

In order to ground the logic program LParse must have a
bound on the range of values that can match an expression.
For example, the following rule from the ExtMapping domain
is problematic:

onNode(n, c, p) :- m is Module(, p), Owner(c, m), Map(c, n).

The period p of a module m is an unbounded integer value.
In order to ground this rule, an explicit finitization of the
periods must be given in the form of a range. The declara-
tion period(0..10) creates a period relation that accepts the
integers one through ten. Next, p must be guarded by this
finite relation:

onNode(n, c, p) :- m is Module(, p), Owner(c, m),

Map(c, n), period(p).

The grounding process creates instances of this rule for the
possible substitutions of the variables. The larger the finiti-
zation the larger the grounded program.

5.4 Constructing Deployments
We studied two subproblems of the Deploy(c,m, n) bench-

mark. First, we constructed random instances of the form
Deploy(5, 1, n) with 1 ≤ n ≤ 20. This subproblem is poly-
nomial-time solvable, because there is only one module in-
volved. In theory, SAT/SMT solvers should be efficient at
solving these instances, so this subproblem reveals the cost of
translating into SAT. For SModels we finitize WCET times
to be in the interval [1, 20]. However, aggregating WCETs
may overflow this interval, so we define a related interval
maxtime = [0, 20×n]. Aggregation computations are ranged
over this bigger interval. Alloy also requires a finitization of
integers in the form a bit-width. We chose the bit-width to
be: bw = 1 + dlog2(20× n)e. The addition of an extra bit is
required because Alloy assumes integers are signed. Figure
8 shows the results. In SModels we observe the exponential
cost of grounding the logic program as the finitization and
number of nodes increases. Alloy continues to scale, though
formula exhibits the best results for this computationally
easy subproblem.

The next benchmark consisted of instances of the form
Deploy(n, n, n) for 1 ≤ n ≤ 20 (Figure 9). These prob-
lem instances are NP-hard to solve, and each instance is
quadratically bigger than the previous. SModels does rea-
sonably well for n < 6, after which all memory resources

0 5 10 15 20

0

100

200

300

FORMULA Alloy SModels

DEPLOY_5_1_n (results in seconds)

Figure 8: Generate deployments for random in-
stances of five components in one module onto n
nodes.

Exceeded capacity

Exceeded resources

0 5 10 15 20

0

50

100

150

200

250

FORMULA Alloy SModels

DEPLOY_n_n_n (results in seconds)

Figure 9: Generate deployments for random in-
stances of n components, n modules, and n nodes.

are depleted. Alloy performs competitively for n < 7. Af-
ter n = 6 Alloy preemptively rejects the problems due to
the unacceptably large estimated cost of translation. for-
mula continues to scale reasonably well, with some hint of
exponential growth for n > 15. This is the hardest bench-
mark for formula.

5.5 Constructing Timing Specifications
We studied the same subproblems for the T iming(c,m, n)

benchmark. This benchmark should reveal the affects of
unknowns that range over many possible values. Since the
WCET matrix is unknown, there are c × n of these un-
knowns. Surprisingly, the T iming(5, 1, n) benchmark yields
similar results for all tools (Figure 10). In hindsight, the ea-
ger grounding of logic programs by LParse incurs the same
translation cost regardless of whether the WCET matrix is
given or not. A similar argument can be made for Alloy’s
representation of relations. formula has a higher transla-

0 5 10 15 20

0

100

200

300

FORMULA Alloy SModels

TIMING_5_1_n (results in seconds)

Figure 10: Generate a WCET matrix for random
instances of five components in one module and n
nodes.

Exceeded capacity

Exceeded resources

0 5 10 15 20

0

50

100

150

200

250

FORMULA Alloy SModels

TIMING_n_n_n (results in seconds)

Figure 11: Generate a WCET matrix for random
instances of n components, n modules, and n nodes.

tion cost for this problem, but it is not enough to observably
impact performance.

The final benchmark T iming(n, n, n) also exhibits similar
results (Figure 11). Again SModels depletes resources for
n > 7 and Alloy rejects problems for n > 6. Interestingly,
formula behaves better on this instance even though there
are more degrees of freedom with larger ranges than the
Deploy(n, n, n) benchmark. We attribute this to the SMT
solver’s ability to efficiently reason about linear arithmetic.
Since the mapping of components to nodes is already fixed,
most of the entries in the WCET are actually irrelevant.

6. RELATED WORK
In addition to Alloy and SModels we describe some other

related work. DESERT [21] is a framework for exploring
design alternatives at the architectural level. It requires a
representation of architectural variants as a tree of design al-

ternatives. Boolean constraints can be added to this tree to
model the cross-cutting impact of design choices. DESERT
encodes design spaces using BDDs [7] and can instantiate
legal models once the BDD is formed.

CoBaSa [20] is a tool for automating the assembly of com-
mercial off-the-shelf (COTS) components. It compiles sys-
tem requirements and constraints among components into
a pseudo-Boolean satisfiability (PBSAT) problem, which is
tackled by a constraint solver. Although CoBaSa uses con-
straint solving for model synthesis, it does not provide lan-
guage level constructs for composing abstractions.

There are many synthesis tools for embedded systems
that produce optimized implementations from specifications.
Gries provides a survey of these tools [11]. However, most of
these are tailored for a particular domain, and provide only
a fixed set of abstractions and constraints. Our work focuses
on providing a generic, flexible framework to support exten-
sible specifications such as AUTOSAR. Also, we currently
do not address the problem of optimization.

In software product lines, researchers have studied tech-
niques to explore and analyze the space of product config-
urations based on feature diagrams [2]. These efforts focus
on modeling feature interactions in the form of constraints,
and do not typically deal with schedulability constraints.

7. CONCLUSION
In conclusion we have demonstrated that the formula ap-

proach can be used to construct modular and extensible
specifications for general MDA abstractions. We have pro-
vided MDA benchmarks derived from industrial case studies
and compared our approach with others on these bench-
marks. The results show that the formula framework is a
step towards general automation for MDA, and out-performs
other state-of-the-art approaches. These results are not en-
tirely due to the underlying SMT solver technology, but also
rely on a careful translation of specifications into SMT for-
mulas. For this task, we use an optimized symbolic execu-
tion engine to translate logic programs into SMT formulas.

8. REFERENCES
[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray.

UML2Alloy: A Challenging Model Transformation. In
MoDELS, pages 436–450, 2007.

[2] D. S. Batory. Feature Models, Grammars, and
Propositional Formulas. In SPLC, pages 7–20, 2005.

[3] A. Benveniste, L. P. Carloni, P. Caspi, and A. L.
Sangiovanni-Vincentelli. Heterogeneous Reactive
Systems Modeling and Correct-by-Construction
Deployment. In Proceedings of the International
Conference on Embedded Software (EMSOFT 2003),
pages 35–50, 2003.

[4] B. Best, J. Jürjens, and B. Nuseibeh. Model-Based
Security Engineering of Distributed Information
Systems Using UMLsec. In Proceedings of the
International Conference on Software Engineering
(ICSE 2007), pages 581–590, 2007.

[5] B. Bordbar and K. Anastasakis. MDA and Analysis of
Web Applications. In TEAA, pages 44–55, 2005.

[6] M. Broy. Challenges in automotive software
engineering. In Proceedings of the International
Conference on Software Engineering (ICSE 2006),
pages 33–42, 2006.

[7] R. E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Trans. Computers,
35(8):677–691, 1986.

[8] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic
programming. ACM Comput. Surv., 33(3):374–425,
2001.

[9] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08), pages 337–340,
2008.

[10] M. Gelfond and V. Lifschitz. The Stable Model
Semantics for Logic Programming. In ICLP/SLP,
pages 1070–1080, 1988.

[11] M. Gries. Methods for evaluating and covering the
design space during early design development.
Integration, 38(2):131–183, 2004.

[12] C. Hammerschmidt. Vector, TTTech win Audi
Autosar software contract. EE Times Europe,
(222900943), July 2010.

[13] H. Heinecke, W. Damm, B. Josko, A. Metzner,
H. Kopetz, A. L. Sangiovanni-Vincentelli, and M. D.
Natale. Software Components for Reliable Automotive
Systems. In DATE 2008, pages 549–554, 2008.

[14] T. A. Henzinger, B. Horowitz, and C. M. Kirsch.
Giotto: a time-triggered language for embedded
programming. Proceedings of the IEEE, 91(1):84–99,
2003.

[15] M. Herrmannsdoerfer, S. Benz, and E. Jürgens. COPE
- Automating Coupled Evolution of Metamodels and
Models. In ECOOP 2009, pages 52–76, 2009.

[16] D. Jackson. Software Abstractions: Logic, language,
and Analysis. MIT Press, 2006.

[17] E. K. Jackson, D. Seifert, M. Dahlweid, T. Santen,
N. Bjørner, and W. Schulte. Specifying and
Composing Non-functional Requirements in
Model-Based Development. In Proceedings of the
International Conference on Software Composition
(SC 2009), pages 72–89, 2009.

[18] E. K. Jackson and J. Sztipanovits. Towards a formal
foundation for domain specific modeling languages. In
Proceedings of the International Conference on
Embedded Software (EMSOFT 2006), pages 53–62,
2006.

[19] O. Kindel and M. Friedrich. Software Engineering with
AUTOSAR. dpunkt, Heidelberg, 2009.

[20] P. Manolios, D. Vroon, and G. Subramanian.
Automating component-based system assembly. In
ISSTA, pages 61–72, 2007.

[21] E. Neema, J. Sztipanovits, and G. Karsai.
Constraint-based design-space exploration and model
synthesis. In EMSOFT, pages 290–305, 2003.

[22] Object Management Group. MDA Guide Version
1.0.1, 2003.

[23] T. Syrjänen and I. Niemelä. The Smodels System. In
LPNMR 2001, pages 434–438, 2001.

[24] A. Tiberghien, P. Merle, and L. Seinturier. Specifying
Self-configurable Component-Based Systems with
FracToy. In ABZ, pages 91–104, 2010.

[25] E. Torlak and D. Jackson. Kodkod: A Relational
Model Finder. In TACAS, pages 632–647, 2007.

