Design Space Exploration for Security

Eunsuk Kang
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, USA
eunsuk.kang @berkeley.edu

Abstract—Design space exploration involves identifying a set of
design decisions, and evaluating their potential impact on various
qualities of a system, such functionality, performance, reliability,
and security. This activity is widespread in other engineering
disciplines, but is rarely articulated or performed during software
construction, despite its potential influence on the security of
the resulting system. In this paper, we argue that design space
exploration should be an essential part of any secure development
process. We outline the key elements of a framework intended
to support this activity, and discuss the potential benefits and
challenges associated with building such a framework.

I. INTRODUCTION

Developers today face a barrage of design decisions when
building a software system. These range from architectural-
level decisions such as the choice of language frame-
works, data allocation, and communication protocols, down
to implementation-level decisions such as data structure en-
codings, libraries, and error handling mechanisms.

A wide variety of design alternatives is both a blessing and a
curse, especially in security. We are able to construct increas-
ingly complex and diverse systems at a faster rate than ever;
at the same time, understanding the consequences of these
decisions, and potential vulnerabilities that they introduce, is
well beyond the reach of those but few domain experts.

As an example, consider the following question on Stack
Exchange, a popular question-answer site, where a web de-
veloper seeks advice on two alternative ways of transmitting
a session ID as part of a HTTP request':

“I recently followed a discussion, where one person
was stating that passing the session id as URL
parameter is insecure and that cookies should be
used instead. The other person said the opposite
and argued that Paypal, for example, is passing the
session id as URL parameter because of security
reasons.
Is passing the session id as URL parameter re-
ally insecure? Why are cookies more secure? What
possibilities does an attacker have for both options
(cookies and URL parameter)?”
What makes this seemingly simple decision challenging for
developers? First, security is a type of system property that
cannot be readily evaluated or quantified like others, such as
functionality and performance. For instance, the above two
ways of transmitting a session ID are functionally equivalent,

Uhttp://security.stackexchange.com/questions/14093/why-is-passing-the-
session-id-as-url-parameter-insecure

and so a typical test case would not reveal their different
impacts on the security of an application. In addition, the sheer
complexity of components that constitute modern systems
further aggravates the challenge of evaluating a security deci-
sion. Foreseeing the potential vulnerabilities of using a cookie
versus a URL parameter requires an in-depth knowledge of a
modern browser, which takes significant effort to acquire and
maintain on a developer’s part.

In this paper, we argue that exploring different design de-
cisions and evaluating their impact—an activity called design
space exploration—should be an essential part of any secure
development process. Currently, it is carried out (if at all) in
a rather ad-hoc manner, and we believe that opportunities and
challenges abound in building frameworks and tools to aid
developers in this activity.

We will begin by outlining the general structure of a
framework for design space exploration, and the roles that
it may play in a secure development process (Section II). We
will then report on our initial experience with building and
applying a security analysis tool called Poirot (Section III).
We will discuss prior works that have influenced our proposal
(Section IV), and some of the challenges in integrating design
space exploration as a part of a development process (Sec-
tion V). We will conclude with a discussion and summary of
our proposal (Section VI).

II. A FRAMEWORK FOR DESIGN SPACE EXPLORATION

Conceptually, the idea of design space exploration (DSE)
is straightforward: It refers to the act of considering possible
options for any decision that contributes to the construction of
a system. We, as developers, carry it out all the time (albeit
often implicitly in our head). Whenever we debate the trade-
offs between using C++ vs Java for our next project, the cost
and benefits of deploying SSL for a particular API endpoint,
or the allocation of firewall policies, we are all exploring the
space of possible design options. Many of these decisions do
have significant impact on security, although this is not always
evident to those without security expertise or prior experience
in the domain. Can we define the notion of design space
exploration more precisely, and build a systematic framework
around to support or partially automate this activity?

A. Key Elements

A conceptual outline of a DSE framework is shown in Fig-
ure 1. The user (typically a developer) provides, at minimum,
two different input artifacts: a description of the system to

Partial System
Description —1{ | Exploration Evaluation
Engine "1 Feedback
Lw|
Security Policy /
—_— —
Design Domain
Candidate Models

(a) Usage 1: Evaluating a design candidate

Partial System
Description Lol

Design Candidate 1
| +— & Feedback

Exploration
Engine

Security Policy [~a| Design Candidate 2

i

& Feedback
Domain ——
Models Design Candidate N
& Feedback

(b) Usage 2: Enumerating design alternatives

Fig. 1. Overview of a DSE framework

be designed, along with a security policy that states various
restrictions on access to critical system resources. A system
description may be partial, in that certain parts of the system
may be deliberately left unspecified or unknown; these parts
are called design parameters. A design candidate is a particu-
lar set of values for design parameters, which, when combined
with a partial system description, yields a complete description
of the system. Finally, the set of all possible design candidates
forms the design space for the system.

Recall the Stack Exchange example from Section I. Suppose
that the developer who asked the question is attempting to
design an online shopping cart application. Informally, the
DSE elements in this example would correspond to:

« System description: An API model for the shopping cart.

o Security policy: “Sensitive data associated with each
customer (billing information, cart content, etc.,) should
only be accessible to that customer.”

o Design parameters: The method of transmitting a ses-
sion ID along with customer requests.

o Design candidate: A complete description of how the
API is implemented on the HTTP protocol.

We envision two typical use cases for a DSE framework:
(1) evaluation and (2) enumeration. In the former case, shown
in Figure 1(a), the user provides a particular design candidate
in addition to a system description and a security policy. The
exploration engine then performs an evaluation of the given
candidate, checking whether the system satisfies the given
policy; if not, it produces feedback that explains how the
policy may be violated by a potential attack on the system. For
instance, in our example, the user could provide a complete
API model that involves transmitting a session ID as a cookie;
the DSE engine would then evaluate the design candidate
against the policy, and produce a scenario showing how an
attacker may carry out a CSRF attack (a possible consequence

of using browser cookies) in order to manipulate another
customer’s account.

Alternatively, the user may not provide any design candidate
at all, and simply ask the exploration engine to enumerate
potential candidates one-by-one, each time producing feedback
that describes potential risks associated with that candidate.
(Figure 1(b)). In our example, when prompted without an input
candidate, the engine would enumerate all possible ways of
transmitting a session ID, and produce an output as follows:

o Cookie: Risk of a CSRF attack on stateful operations or
cookie theft through XSS.

o URL query parameter: Risk of a session fixation attack
or exposure of session ID through a HTTP referer header.

o Hidden form data: Risk of exposure of session ID
through a HTTP referer header if used for GET requests.

« others...

For each of these candidates, the engine would also display
a sample scenario that demonstrates a violation of the given
policy and, depending on its analysis capability, suggest po-
tential mitigations against the attack. This exploratory mode
is especially useful in early development stages, where the
developer may have little knowledge or certainty about the
consequences of different design decisions.

A key component of a DSE framework is the library
of domain models, which are leveraged by the exploration
engine during the evaluation of potential design candidates.
In our example, this library would include generic models of
various components of the Web, such as a web server, the
HTTP protocol, a browser, and its various features (cookie
handling, page rendering, scripts, etc.). Once constructed by
domain experts, these models should be reusable for analysis
of multiple systems in the same domain. The library should
also be extensible, in that fresh knowledge about a feature or
newly discovered vulnerability could be encoded as a separate
model and inserted into the library for later use.

So far, we have limited our discussion of DSE to a con-
ceptual level, ignoring details such as the underlying notation
used to build a system description, the type of security policies
allowed, and the technique used for design exploration. In
Section III, we will introduce one concrete instantiation of this
conceptual framework, and discuss our preliminary experience
with DSE.

B. Assumptions

At first glance, what we have described so far does not seem
much different from a typical formal verification framework:
Given a system model and a security specification from the
user, a rigorous technique is applied to check that the system
is secure and, if not, produce some evidence (often in form
of a counterexample) that shows how the specification may
be violated. Indeed, techniques from formal methods will
likely play an important role in a DSE framework. However,
our proposal takes a departure from traditional verification
approaches in several ways:

a) Uncertainty in developer knowledge: A typical secu-
rity testing or verification tool is applied ex post facto; that is,
it assumes that a system has already been constructed, and its
complete description (e.g., source code or binary) is available
as an input artifact. But in an early development phase, many
of the design decisions are yet to be made, and so it may
simply be infeasible to come up with any coherent or complete
artifact that can be evaluated by existing tools.

A DSE framework must be designed with an assumption
that the developer may possess only partial knowledge about
the system to be constructed. This will require an input
notation that allows the developer to express uncertainty about
design decisions, and an analysis technique that is capable of
reasoning about security despite incomplete information about
the behavior of the system.

b) Design guidance, not proofs: The outcome of a typi-
cal verification tool is binary: It may produce a positive result,
concluding that the given system artifact is free of certain
classes of vulnerabilities, or a negative result, highlighting
parts of the system that are vulnerable to an attack. Some
tools may even provide a proof or a certificate that the system
satisfies a certain security policy. Ultimately, the developer
expects the tool to produce a definitive answer on whether or
not the system is secure.

We envision DSE playing a more informative role, aiding
developers in their decision making process by generating
information about potential security risks associated with each
design decision. The ability to enumerate design alternatives
also enables an analysis of trade-offs between them. A design
candidate that poses few security risks but overly restrictive in
functionality may be passed over for a more flexible alternative
with greater but acceptable risks. In some systems, no single
candidate may be completely free of vulnerabilities, and so
being able to compare alternatives becomes even more crucial.

c) Support for evolving decisions: A typical develop-
ment is carried out in a fluid, disorderly manner: Customer
requirements change frequently, and the set of available design
options may evolve over time. The developer may be required
to backtrack on one or more decisions made earlier and
explore the reformulated design space. A DSE framework
must support this evolutionary nature of design, by showing
how a change in a requirement or a design decision impacts
security, without the user having to restart the DSE activity
from scratch. Most existing verification tools are not designed
with this as one of their primary goals.

III. AN EXPERIMENTAL SYSTEM: POIROT

In this section, we describe our initial experience with
building a security analysis tool called Poirot [24], which was
specifically designed to support DSE activities. This project
was motivated by an observation that many vulnerabilities
in modern systems are introduced by decisions made during
the transition from a high-level design to a low-level imple-
mentation. For instance, OAuth [19], a popular authentication
protocol formally verified at an abstract level [10], [36], [43],
has been shown to be susceptible to attacks when implemented

Add
ItemID | i
Req Token | t
Method ? 7 R
URL ?
Set<Header> ? ‘—’;:f‘ : URL)
Body ? Origin mystore.com \'.
HEEPOREE ? Path additem ;"
Set<Query> ? ¥

Fig. 2. The structures of the Add operation, a HTTP request, and a URL.
The leftmost column in each structure contains the types of arguments to the
operation. Dotted edges represent different choices for encoding the token (1)
inside a request; “?” represents an unknown value for the argument.

inside a browser or mobile client [40], [12]. The problem is
that a standard browser (or a mobile device) contains features
and environmental interactions that are absent from the ab-
stract specification of the protocol; and so depending on how
the protocol is implemented, different types of vulnerabilities
may creep into the final implementation.

A. Mapping as Design Decisions

A key concept in Poirot is the notion of a mapping, which
describes how an abstract operation is represented in terms
of a concrete operation. For example, when designing an
online shopping cart, one may define an operation named
Add, which corresponds to the action of adding a new item
to a customer’s shopping cart. At the abstract design level,
this operation contains two arguments, as shown in Figure 2:
the identifier of the item to be added (i), and a token that
represents a customer’s credential (¢). In order to deploy the
shopping application onto the HTTP protocol, our developer
must eventually decide how the two parameters from Add are
to be mapped to its counterparts in a concrete HTTP request.

The input language of Poirot provides built-in constructs for
specifying these design decisions as a mapping from abstract
to concrete operations. More crucially, this mapping may be
only partially specified, allowing the developer to express her
uncertainty about design decisions and systematically explore
different candidate mappings. For instance, Figure 2 depicts
a partial mapping specification that lists only the origin and
path of the Add URL, leaving unspecified how the item ID and
token will be transmitted as part of a request; this, naturally,
yields a space of possible mappings, each leading to a different
implementation of the shopping cart.

Poirot also supports an incremental design exploration, by
allowing the user to add or remove design decisions without
having to modify other parts of the system model. This
means, for example, that the user may start with a rather
underspecified model of a system, and gradually extend the set
of design decisions as she gains more insights about potential
security issues through iterative interaction with the tool.

B. Analysis in Poirot

Let us describe the exploration technique behind Poirot in
a more precise manner. In the simplest use case, Poirot can

be used as a typical verification tool. Let Abs be a model
that describes a high-level system design or protocol, and P a
desired security policy. A common method of verifying Abs
against P, adapted by Poirot, involves finding a trace of the
system that leads to a violation of the policy:

It eT:t e traces(Abs) A —sat(t, P)

where traces(Abs) returns the set of all possible traces in the
system described by Abs, and sat(t, P) evaluates to true if
and only if policy P holds over a particular trace ¢. If no such
trace exists, then we may conclude that the system satisfies
the given policy.

Once satisfied with the initial design of the system as
depicted in Abs, the user may wish to explore different imple-
mentation choices and analyze their impact on security. A key
feature of Poirot is in its ability to generate candidate mappings
given their partial specification. Let Conc be a model that
depicts the behavior of a generic, low-level platform (e.g., a
server-browser architecture), and S a mapping specification
that describes a partial relationship between Abs and Conc.
Then, the problem of generating a design candidate can be
formulated as finding a mapping m (adhering to the user-
specified .S) such that if m is used to implement Abs, the
resulting system exhibits at least one trace that leads to a
violation of P:

dmeM,teT:
S(m) At € traces(impl(Abs, Cone, m)) A —sat(t, P)

where ¢mpl is a composition function that combines two
models according to a given mapping. In other words, m
describes an insecure implementation decision that renders the
resulting system vulnerable to an attack.

We are also developing an extension to Poirot to generate a
mapping that ensures that the resulting implementation always
satisfies the policy:

Im e M : S(m)A
Vt €T :t € traces(impl(Abs, Conc, m)) = sat(t, P)

In other words, the mapping m, if it exists, would correspond
to a set of secure implementation decisions that together
preserve the given policy.

Poirot’s engine works by encoding an input system descrip-
tion and policy in a modeling language called Alloy [20],
which, in turn, leverages a SAT-based constraint solver to gen-
erate sample traces or check a system against a specification.
Alloy takes a declarative approach, where each model is built
as a conjunction of a set of logical constraints, in comparison
to an operational language where a system is described as a
sequence of computational steps. This allows an Alloy model
to be partial, in that it may depict only parts of a system
(and still be amenable to analysis), and constructed in an
incremental manner, where new details about the system can
be simply inserted into the model as additional constraints.
These characteristics make Alloy particularly suitable as an
underlying formalism for a DSE framework.

We have successfully used Poirot to model and analyze the
security of several web applications, discovering previously
unknown attacks. We found the ability to reason about security
with partial design knowledge especially useful, since we
were not the developers of the systems ourselves, and initially
started with incomplete knowledge about their behaviors.
Building and applying the tool, however, was not without
challenges, which we will discussed in Section V. More details
about Poirot and its applications can be found in [24], [22].

IV. RELATED WORK

a) Verification and static analysis for security: State-of-
the-art analysis tools can now be applied to realistic systems,
and discover domain-specific security issues (e.g., information
flow violations) in addition to more common vulnerabilities
(e.g., buffer overflows) [31], [45], [46]. Both automated and
interactive proof systems have been successfully used to con-
struct verified components (e.g., compilers, libraries, operating
systems [13], [18], [26], [44]) that provide strong theoretical
guarantees about security. As these tools continue to improve
in their expressive power and scalability, they will remain an
indispensable part of a secure development process.

These tools are typically applied to an existing implementa-
tion or system artifact. In comparison, relatively less attention
has been paid to building tools that can be used to reason
about security during early design stages. Two areas of re-
search stand out: (1) security protocol design and (2) network
verification. A long line of work exists on formally verifying
cryptographic protocols for desirable security properties [1],
[71, [8], [37]. More recently, there has been a growing level of
interest in leveraging similar types of techniques for verifying
network designs; a number of tools [3], [32], [25] allow the
user to analyze the impact of configurations before deploying
them onto a real network. Again, the focus of these tools is
on verification, less on exploration, and the notion of a design
candidate is often implicit. Nevertheless, theories and algo-
rithms underlying these works are just as applicable to DSE,
and we believe that there are clear needs and opportunities for
leveraging them for the kinds of exploratory activities that we
have discussed in this paper.

b) Threat modeling: Threat modeling involves identify-
ing and articulating the capabilities of an attacker, and devising
countermeasures against potential attacks [29], [39], [41]. Like
DSE, this activity is most effective when carried out in an
early development phase, where the cost of implementing a
mitigation is relatively low.

DSE and threat modeling as complementary activities that
are most effective when performed in tandem. The emphasis
of threat modeling is on understanding choices available
to an attacker in compromising a system (vulnerabilities to
exploit, interfaces to use as entry points, etc.). But these
choices inevitably depend on the design decisions made by
the developer: Different decisions result in distinct system
structures and behaviors, which, in turn, give rise to different
kinds of threats. Most threat modeling, however, is performed
on informal system descriptions, and there seems to be little

tool support for helping developers explore the impact of
design decisions on potential threats to the system. The types
of analyses that we have proposed as part of a DSE framework
may also prove beneficial here by, for example, automatically
instantiating generic threat models against a particular system
description.

c) Security knowledge: One of the key lessons from
safety engineering that are just as applicable to security is the
importance of learning from failures [4]. On the positive side,
a wealth of knowledge is available on known vulnerabilities,
past incidents, and potential mitigations. Community efforts
such as CVE, CWE, and CAPEC have been successfully
carried out to collect and categorize different types of domain
knowledge into easily accessible databases.

But leveraging these knowledge directly during the con-
struction of a particular system remains a manual, ad-hoc
process, in part because most of the knowledge is in a form
that is not readily machine-manipulable. There were a few
early efforts on integrating vulnerability reports and common
security issues into a security tool, such as COPS [15],
MulVal [35] and attack graphs [38]. More recently, several
researchers have embarked on the task of building a formal,
generic model of the Web that can serve as a basis for veri-
fication of web-based protocols and systems [2], [5], [16]. In
general, however, the problem of codifying and mechanizing
security knowledge has received relatively little attention in the
research community, despite its importance and applicability
in secure development activities, including DSE.

V. CHALLENGES

Much work remains to be done to better understand the
needs of developers during early design stages, refine the
elements of DSE accordingly, and develop new techniques and
tools to support this activity. In this section, we outline a few
challenges that we faced during our experience with building
and applying Poirot.

a) Design Notation: One of the major challenges in
designing a DSE framework is providing a suitable notation
for specifying a design space. Such a notation should be
precise, so that it can be made amenable to automatic analysis,
and ideally also be approachable to developers who may
not be able to afford learning an entirely new notation. A
programming language may be considered as an option for its
familiarity, but is generally a poor medium for articulating
design decisions. Formal specification languages, such as
Dafny [27] or Alloy [20], provide a more expressive and
concise way of specifying designs, but require an advanced
knowledge of logic that many developers lack. In fact, this
challenge is not unique to DSE; the difficulty involved in
building a specification is often regarded as one of the major
obstacles to the adaptation of formal methods in industry.

Furthermore, no single notation is likely to be sufficient to
capture a wide variety of design decisions that are made during
a typical development, and some of those decisions may not
even be formalizable. Poirot focuses on one particular kind of
design decisions; namely, how to encode high-level operations

in terms of low-level representations. But there are a plenty
of other decisions with security implications, at varying levels
of granularity and abstraction (choice of cryptographic suites,
data query sanitization, web server configurations, just to name
a few). For example, a detailed analysis of cryptographic suites
is likely to require some form of probabilistic reasoning, which
lies outside the capability of Poirot.

It is clear that there is no silver bullet that will cover all
design tasks. Instead, a more promising approach may be
to employ a domain-specific language (DSL) that embeds
the core design concepts as first-class objects, and facilitates
the specification and exploration of design candidates with
a minimal amount of syntax. With a growing number of
DSLs in areas such as privacy policies [30], [45], web API
design [42], [34], and software-defined networks (SDN) [33],
[3], we are hopeful that it will be feasible to integrate DSE
into a development process without requiring significant effort
from developers.

b) Improved Feedback: As discussed in Section II-B,
most useful types of feedback from a DSE tool are likely to
involve information beyond a simple yes or no response. Often,
the user may wish to examine multiple design candidates at the
same time, and evaluate trade-offs that take into account not
only potential security risks, but other types of system require-
ments as well (ease of use, performance, etc.). For instance,
a design candidate that has relatively few vulnerabilities but
incurs a high performance cost may be considered undesirable,
depending on the requirements of the particular system to be
developed. A challenge is to provide a feedback mechanism
that addresses this multi-dimensional nature of design, by,
for example, allowing the user to rank design candidates by
certain criteria, and interactively prune out the design space
to arrive at a candidate that is deemed adequate for the final
implementation.

In addition to information about potential vulnerabilities,
a DSE engine could also provide suggestions for mitigating
those vulnerabilities. Such a mitigation may be presented in
form of additional design constraints, which then can be con-
sulted by the developer during the subsequent implementation
step (e.g., “to prevent CSRF, validate each stateful operation
using an additional unique session token”). In possible ap-
proaches to generating this type of feedback, the DSE engine
may leverage domain models that capture different mitigation
strategies (e.g., [6]), or apply techniques from automatic model
repair ([9], [11], [21]).

¢) Domain Modeling: In our experience with Poirot so
far, we have been interested mainly in the security of web-
based systems. In order to enable the analysis of such systems,
we spent a considerable amount of effort (approximately 6
man-months) building a library of models that describe various
components of the Web. The task of building suitable domain
models is extremely challenging. First, these models need to
be sufficiently general enough to be reusable for multiple
systems in that domain. In addition, they need to provide a
fairly accurate representation of the reality, since any feedback
from a DSE tool will be only as reliable as the fidelity of the

underlying models; for instance, if a domain model omits a
crucial system detail that could be exploited for an attack, the
tool will not be able to produce any information about the same
attack. We believe that a community-wide effort to validate
these models and keep them up-to-date will be a worthwhile
pursuit that will benefit not only system developers, but other
researchers who may be interested in building a similar type
of framework.

d) Scalability: Another challenge faced by DSE frame-
works (not limited to software, but in other types of systems
as well) is the sheer potential size of a design space that
needs to explored. The number of possible design candidates
is exponential in the number of design parameters; in some
systems, the domain of possible values for one or more design
parameters may be unbounded, resulting in an infinite design
space. Strategies or heuristics for effectively traversing this
space will play an important role in scaling a DSE framework
to practical systems.

A number of techniques for dealing with the state explosion
problem have been developed by the verification community,
and some of those may be applicable here as well [14], [17],
[28]. Another type of approach may leverage the developer’s
insights about the system to guide the exploration engine
towards particular regions of the design space. For instance, a
DSE framework called Formula [23] allows the user to specify
what it means for two design candidates to be considered
equivalent, and leverages this information to significantly
reduce the number of candidates that it needs to explore.
As suggested in Section V-Ob, we believe that building a
robust feedback loop will be crucial not only for providing
useful information to the developer, but also for tackling this
scalability challenge.

VI. CONCLUSION

The term design space exploration is a concept that is
already well understood in other engineering disciplines. It
is routinely carried out in construction of complex hardware,
physical, and embedded systems such as aircraft, automobiles,
and microprocessors. In these fields, an early investment in
design is easy to justify, as manufacturing costs tend to
be high, and the consequence of a product failure can be
destructive in terms of financial burden (in case of a recall)
or potential harm to users. On the other hand, software has
been ostensibly considered ‘“cheap” to produce and update,
contributing to the rather lukewarm reaction to the idea of
upfront design by developers. After all, if a problem can be
fixed at any time, why bother spending so much effort trying
to prevent it in the first place?

But this attitude may be changing. Computer systems are
more connected than ever, with average users storing more
of their sensitive data on locations that are easily accessible
to malicious individuals with enough will and sophistication.
The potential cost of a security failure is rapidly increasing,
and no longer limited just to information exposure; with the
continual growth in the number of cyber-physical systems and

smart devices, a security attack may directly result in damage
to critical infrastructures, the environment, and human lives.

Security testing, verification, bug finding, and coding prac-
tices will continue to be indispensable tools for ensuring the
security of a software system. At the same time, it is of our
opinion that security will erroneously remain something of an
afterthought—a quality that you add onto an existing system—
unless more effort is devoted to articulating DSE as an im-
portant development activity on its own, and building tools to
aid developers in this activity. Fortunately, our community has
made significant progress in developing underlying theories,
techniques, and domain knowledge in security; the next step
is to put them to appropriate use.

ACKNOWLEDGMENT

We thank our anonymous reviewers for their comments and
suggestions, which helped greatly improve this paper.

REFERENCES

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols:
The spi calculus. In CCS ’97, Proceedings of the 4th ACM Conference
on Computer and Communications Security, Zurich, Switzerland, April
1-4, 1997., pages 3647, 1997.

[2] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and D. Song. Towards
a formal foundation of web security. In CSF, pages 290-304, 2010.

[3] C.J. Anderson, N. Foster, A. Guha, J. Jeannin, D. Kozen, C. Schlesinger,
and D. Walker. Netkat: semantic foundations for networks. In The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, pages 113-126, 2014.

[4] R.J. Anderson. Why cryptosystems fail. Commun. ACM, 37(11):32-40,
1994.

[5] C. Bansal, K. Bhargavan, and S. Maffeis. Discovering concrete attacks
on website authorization by formal analysis. In 25th IEEE Computer
Security Foundations Symposium, CSF 2012, Cambridge, MA, USA,
June 25-27, 2012, pages 247-262, 2012.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-
site request forgery. In Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, pages 75-88, 2008.

[71 G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-
aided security proofs for the working cryptographer. In Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 71-90,
2011.

[8] B. Blanchet. An efficient cryptographic protocol verifier based on prolog
rules. In /4th IEEE Computer Security Foundations Workshop (CSFW-
14 2001), 11-13 June 2001, Cape Breton, Nova Scotia, Canada, pages
82-96, 2001.

[9]1 F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing model

checking in verification by Al techniques. Artif. Intell., 112(1-2):57—

104, 1999.

S. Chari, C. S. Jutla, and A. Roy. Universally composable security

analysis of oauth v2. 0. IACR Cryptology ePrint Archive, 2011:526,

2011.

G. Chatzieleftheriou, B. Bonakdarpour, S. A. Smolka, and P. Katsaros.

Abstract model repair. In NASA Formal Methods - 4th International

Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings,

pages 341-355, 2012.

E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague. Oauth

demystified for mobile application developers. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications

Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 892-903,

2014.

A. Chlipala. From network interface to multithreaded web applications:

A case study in modular program verification. In Proceedings of

the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2015, Mumbai, India, January 15-17,

2015, pages 609-622, 2015.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the
state explosion problem in model checking. In Informatics, pages 176—
194. Springer, 2001.

D. Farmer and E. Spafford. The cops security checker system. Technical
Report, Purdue Department of Computer Science, 1990.

D. Fett, R. Kiisters, and G. Schmitz. An expressive model for the web
infrastructure: Definition and application to the browser ID SSO system.
In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014, pages 673-688, 2014.

P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, volume 1032
of Lecture Notes in Computer Science. Springer, 1996.

C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill. TIronclad apps: End-to-end security via automated full-
system verification. In 77th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, Broomfield, CO, USA, October
6-8, 2014., pages 165-181, 2014.

Internet Engineering Task Force. OAuth Authorization Framework.
http://tools.ietf.org/html/rfc6749, 2014.

D. Jackson. Software Abstractions: Logic, language, and analysis. MIT
Press, 2006.

B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game.
In Computer Aided Verification, 17th International Conference, CAV
2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings, pages
226-238, 2005.

E. Kang. Multi-Representational Security Modeling and Analysis. PhD
thesis, MIT, 2016.

E. Kang, E. K. Jackson, and W. Schulte. An approach for effective
design space exploration. In Foundations of Computer Software. Model-
ing, Development, and Verification of Adaptive Systems - 16th Monterey
Workshop, Redmond, WA, USA, 2010, pages 33-54, 2010.

E. Kang, A. Milicevic, and D. Jackson. Multi-representational security
analysis. In Symposium on Foundations of Software Engineering (FSE),
2016.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In Proceedings of the
10th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, pages 15-27,
2013.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. sel4: formal verification of an OS kernel.
In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles, Big Sky, Montana, USA, October 11-14, 2009, pages 207—
220, 2009.

K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In Logic for Programming, Artificial Intelligence, and
Reasoning - 16th International Conference (LPAR), pages 348-370,
2010.

K. L. McMillan. A technique of state space search based on unfolding.
Formal Methods in System Design, 6(1):45-65, 1995.

Microsoft. Sdl threat modeling. https://www.microsoft.com/en-us/sdl/
adopt/threatmodeling.aspx. Accessed: 2016-06-24.

A. Nédas, T. Levendovszky, E. K. Jackson, I. Madari, and J. Szti-

(31]

(32]

[33]

[34]

[35]

[36] S

(371

(38]

(391

[40]

[41]
[42]

[43]

[44]

[45]

[46]

panovits. A model-integrated authoring environment for privacy policies.
Sci. Comput. Program., 89:105-125, 2014.

J. P. Near and D. Jackson. Rubicon: bounded verification of web
applications. In 20th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), page 60, 2012.

T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
The margrave tool for firewall analysis. In Uncovering the Secrets
of System Administration: Proceedings of the 24th Large Installation
System Administration Conference, LISA 2010, San Jose, CA, USA,
November 7-12, 2010, 2010.

T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi.
Tierless programming and reasoning for software-defined networks. In
Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2014, Seattle, WA, USA, April 2-4,
2014, pages 519-531, 2014.

O. A. 1. (OAI). Open API specification.
specification. Accessed: 2016-06-24.

X. Ou, S. Govindavajhala, and A. Appel. Mulval: A logic-based network

security analyzer. In USENIX Security Symposium, pages 8-8, 2005.
. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh. Formal verification

of oauth 2.0 using alloy framework. In Communication Systems and
Network Technologies (CSNT), 2011 International Conference on, pages
655-659. IEEE, 2011.

P. Y. A. Ryan and S. A. Schneider. Modelling and analysis of security
protocols. Addison-Wesley-Longman, 2001.

O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing.
Automated generation and analysis of attack graphs. In IEEE Symposium
on Security and Privacy, pages 273-284, 2002.

A. Shostack. Threat modeling: Designing for security. John Wiley &
Sons, 2014.

S.-T. Sun and K. Beznosov. The devil is in the (implementation) details:
an empirical analysis of OAuth SSO systems. In Proceedings of the 2012
ACM conference on Computer and communications security, pages 378—
390. ACM, 2012.

J. Viega and G. McGraw. Building secure software: How to avoid
security problems the right way. Pearson Education, 2001.

R. Workgroup. RESTful API modeling language (RAML). http://raml.
org. Accessed: 2016-06-24.

X. Xu, L. Niu, and B. Meng. Automatic verification of security
properties of oauth 2.0 protocol with cryptoverif in computational model.
Information Technology Journal, 12(12):2273, 2013.

J. Yang and C. Hawblitzel. Safe to the last instruction: automated
verification of a type-safe operating system. In Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10,
2010, pages 99-110, 2010.

J. Yang, K. Yessenov, and A. Solar-Lezama. A language for au-
tomatically enforcing privacy policies. In Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-
28, 2012, pages 85-96, 2012.

A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving
application security with data flow assertions. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles, Big Sky, Montana,
USA, October 11-14, 2009, pages 291-304, 2009.

https://openapis.org/

