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Abstract—Assume-guarantee (A/G) contracts are mathemati-
cal models enabling modular and hierarchical design and verifi-
cation of complex systems by rigorous decomposition of system-
level specifications into component-level specifications. Existing
A/G contract frameworks, however, are not designed to effectively
capture the behaviors of cyber-physical systems where multiple
agents aim to maximize one or more objectives, and may interact
with each other and the environment in a cooperative or non-
cooperative way toward achieving their goals. We propose an
extension of the A/G contract framework, namely optimizing A/G
contracts, that can be used to specify and reason about properties
of component interactions that involve optimizing objectives.
The proposed framework includes methods for constructing new
contracts via conjunction and composition, along with algorithms
to verify system properties via contract refinement. We illustrate
its effectiveness on a set of case studies from connected and
autonomous vehicles.

I. INTRODUCTION

Assume-guarantee (A/G) contracts are mathematical models
enabling modular and hierarchical design of complex systems
by rigorous decomposition of system-level requirements into
component-level specifications [1]-[7]. Informally, a contract
C = (A,G) specifies the behavior of a component in terms
of its expectation on the behavior of the environment (the
assumptions A) and the promises that it makes (the guarantees
G) in the context of its environment. If the assumptions are
satisfied by the environment, any component that implements
the contract will satisfy its guarantees.

Different A/G contract frameworks have been proposed over
the years to support a variety of models of computation (e.g.,
synchronous, dataflow, or timed models) for embedded system
design [1]. However, the development of contract frameworks
that are rich enough to support cyber-physical system (CPS)
design is an active research area. In this paper, we consider
components that, in addition to satisfying their guarantees,
may also attempt to produce behaviors that are considered
“preferable” with respect to a certain goal or objective. Perfor-
mance is a common example of such an objective; for instance,
beside a safety requirement that a minimum distance to the
neighboring vehicles must be maintained, an autonomous ve-
hicle may have a performance objective of minimizing the time
to destination or the fuel consumption. Unlike the guarantees,
which a component must be designed to satisfy under all valid
environments, an objective does not mandate the component to
always behave in the optimal manner; nevertheless, it may play
a crucial role in shaping its behaviors. Existing contract-based
frameworks, however, do not provide a method to capture such
a notion of objectives.

This paper proposes an extension of the A/G contracts
framework termed optimizing A/G contracts. Along with A
and G, an optimizing contract includes an objective O that
captures how desirable are certain behaviors over the others.
In particular, we define O : G — R”" as an objective function

that ranks each valid output behavior of a component with a
(possibly multi-dimensional) quality metric. Building on this
notion of contract, we propose a mathematical framework for
the design of CPSs with objectives, including methods for con-
structing new contracts via conjunction and composition, and
for verifying system properties out of component properties
via contract refinement.

Some of the components in a system may have conflicting
objectives, in that optimizing an objective for a certain compo-
nent results in a sub-optimal behavior for another component.
When these components are composed, potential conflicts
may arise; our framework provides an approach to capture or
resolve such conflicts by formulating this problem as a multi-
objective optimization problem. In particular, the proposed
framework provides the notion of cooperative composition
to model system interactions where some of the components
are designed to cooperate with each other to produce optimal
behaviors for the overall system.

By developing a framework of optimizing contracts, we also
establish a link between contract-based design and optimal
control of multi-agent systems. Optimal control is the long-
studied problem of synthesizing a controller that attempts to
minimize a given cost function while satisfying a set of system
constraints [8]. Among prior works, the ones that are closest
to ours are approaches that employ a formal logic, e.g., linear
temporal logic (LTL) or signal temporal logic (STL) [9], to
specify the desired behavior of the system while producing an
optimal control policy [10]-[15]. Unlike these works, which
mostly deal with the control of a single system or component,
our work provides a formal framework to enable compositional
reasoning about the behaviors of multiple components that
may have their own distinct objectives to be optimized. More-
over, our notion of objective is amenable to encapsulate other
quantitative notions of robust satisfaction of logic formulas.
We illustrate the effectiveness of the proposed framework
on case studies from connected and autonomous vehicles,
including the verification and synthesis of cooperative and
non-cooperative behaviors from contracts expressed in signal
temporal logic.

II. MOTIVATING EXAMPLE

Consider two autonomous vehicles at a T-junction where
only one car can pass at a time. Each vehicle can either Pass
or Wait. If both vehicles decide to pass through the T-junction
at the same time, they will collide. On the other hand, if both
decide to wait, they may enter a deadlock state in which they
wait indefinitely. Ideally, we would like one vehicle to wait and
the other to pass, so that they can traverse the T-junction one at
a time. We model the preference between system behaviors by
assigning a reward (or penalty) to each combination of actions
of the two vehicles, (uj,u;), where u; is the action of vehicle
1 (Mp) and u, is that of vehicle 2 (M;). The objectives of
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TABLE II: M, Rewards

M, and M, are to maximize the rewards associated with their
actions, shown in Tab. I and II, respectively. Rewards are as
low as —10 to penalize collision and take on a maximum value
when a vehicle manages to traverse the junction.

From the perspective of M, the behavior that results in the
optimal reward is (u;,u) = (Pass,Wait). However, if M is
not aware of the next action or associated reward of M5, it
will instead opt for Wait since it must act conservatively to
guarantee safety (i.e., no collision) for all the possible actions
of M,. If M, selects its action in the same manner as M;
(i.e., maximizes its own reward), the two vehicles will enter
the deadlock state. On the other hand, if the vehicles were
able to communicate their actions and rewards to each other,
they may be able to avoid deadlock by making decisions in a
cooperative manner.

We would like to formally reason about the overall behavior
of this system using A/G contracts, where each vehicle is
modeled as a component implementing a contract, and the
composition of My and M, represents the end-to-end system.
To do so, we seek for a framework that (1) captures the
behaviors of a component while optimizing its objective,
and (2) supports a composition mechanism that takes into
account the notion of cooperation and non-cooperation. In the
following, we first provide an overview of the current A/G
contract framework and then describe how we extend it to
address these issues.

III. ASSUME-GUARANTEE CONTRACTS

We provide an overview of the A/G contract framework [1]
by starting with the notion of component. A component M is
an element of a design, characterized by a set of variables V,
a set of ports P, and a set of behaviors [[M]] over variables and
ports. Components can be connected to form larger systems
by sharing certain ports under constraints on the values of
certain variables. For simplicity, we use the term “variables”
to denote both component variables and ports.

An A/G contract C = (V,A,G) is a triple where V denotes
the set of component variables, A denotes the assumptions,
i.e., the set of behaviors that a component M expects from the
environment, and G denotes the guarantees, i.e., the behaviors
promised by M if the assumptions hold. A component M is a
(valid) implementation of a contract C when AN[[M]] C G; we
then say that M implements C and write M |=C. A component
E is a (valid) environment of C when [[E]] C A; we then
write E =g C. A contract C = (V,A,G) is in saturated form
if G=GUA where A is the complement of A. A contract
C = (V,A, G) can be saturated by turning it into C' = (V,A’, G)
where A" = A and G = GUA. C and C' are equivalent,
since they are characterized by the same sets of environments
and implementations. In the remainder of the paper, unless
otherwise specified, we assume that all contracts are saturated,
as saturated forms will be used to define the main contract
operations and relations.

A contract C is compatible if there exists a valid envi-
ronment E for M, ie., if and only if A # 0, where 0 is

the empty set. The intent is that an implementation M can
only be used under a compatible environment. C is consistent
if there exists a feasible implementation M for it. For a
saturated contract, this is equivalent to G # 0. To reason
about different abstraction layers in a design, contracts can
be ordered according to a refinement relation. A contract
C = (V,A,G) refines C' = (V,A’,G’), written C <X C', if and
only if A D A’ and G C G'. Contract refinement amounts to
weakening the assumptions and strengthening the guarantees.
Thus, if M |=C and C < ', then M |=C’. On the other hand,
if E =g C', then E =g C. We can then replace C' with C in
the design.

Contracts can be combined into a larger contract via con-
Jjunction or composition. Conjunction (A) is used to combine
multiple requirements on the same component, such that all the
requirements can be simultaneously satisfied. If a component
M is an implementation of C; ACy, ie., M = C; AC,, then
both M = C; and M |= C; hold. Composition (®) is used to
express complex system-level requirements by combining sim-
pler component-level requirements. Given C; and C; and their
implementations M| and M», respectively, the behavior of the
system composed by M; and M, can then be analyzed using
C1 ® Cp. We refer the reader to the literature [1] for details.
We will recall the mathematical expressions of conjunction
and composition below, as we introduce the proposed A/G
contract extensions.

IV. OPTIMIZING A/G CONTRACTS

We start by defining optimizing contracts and the related
notions of compatibility and consistency.

Definition IV.1 (Optimizing Contract). An optimizing contract
C is a tuple C = (U,X,A,G,0), where
o U is a set of uncontrolled (input) variables and X is a
set of controlled (output) variables, with UNX = 0 and
V=UUX;
e« A and G are sets of behaviors over V representing the
assumptions and the guarantees, respectively,
e 0:G — R" is an n-dimensional objective function map-
ping behaviors in G to n-tuples of rewards.
We also denote by u, x, and v = (u” ,x7)T a behavior over U,
X, and V, respectively.

Definition IV.2 (Optimal Guarantees). For an optimizing
contract C = (U,X,A,G,0), we define the set of optimal
guarantees Gpax = argmax, min, O(v) s.t. v € ANG.

Definition IV.2 amounts to stating that a component M
implementing C assigns values to its controlled variables
to maximize its reward, but has no information about the
environment E and its objective, except that E satisfies the
assumptions. The optimal guarantees are then computed in
the worst-case scenario that the uncontrolled variables are
assigned to minimize O.

Definition IV.3 (Compatibility and Consistency). An optimiz-
ing contract C = (U,X,A, G, 0) with optimal guarantees Gpax
is compatible if and only if A # @ and consistent if and only
if Gmax # 0.

Example IV.1 (Optimizing Contracts). Consider a contract
C={UL{Xh1<u<2-(1<u<2)V(0<x<4)u+x)
where assumptions and guarantees are expressed by pred-
icates on the real variables # and x. We obtain Gpax =



(argmax, min, (u+x) s.t. (1<u<2)A(0<x<4))=(1,4)T.
Since A # 0 and G,y # 0, the contract C is both compatible
and consistent.

We now extend the conjunction operation and define the new
operations of cooperative and non-cooperative composition to
encapsulate conflicting objectives of components.

Definition I'V.4 (Conjunction). Given the optimizing contracts
C = (U,X,A],G],O]) and G, = (U,X,Az,Gz,Oz), the con-
junction of Ci and C,, denoted as C; A C,, is an optimizing
contract on the same variable sets U and X and such that:

A=A UA, (D
G=G; NGy 2)
0=(01,05)". 3)

Assumptions and guarantees in (1) and (2) are computed
as in the traditional A/G contract framework [1]. O in (3) is
obtained by conjoining the objectives of C; and C. Gpax can
then be computed as in Def. IV.2.

Computing the optimal guarantees results, in general, into
a multi-objective optimization problem [16], which can be
addressed by either constructing the Pareto optimal fronts to
select a Pareto optimal solution, or by reducing the original
problem to a standard, single objective optimization problem.
For simplicity, we follow the latter approach in the examples
of this paper. Specifically, we assume that a weight vector
w= (wi,...,w,) € R" is provided, which encodes, for exam-
ple, the priority given by the designer (or the agents in the
system) to the components of O. We then generate a single
objective function as the weighted sum of all the components
of O according to w, i.e., O =Y, w;O;. In the following,
without loss of generality, we further assume w = (1,...,1).

Example IV.2 (Conjunction). We compute the conjunction of
the following saturated contracts:

C={U}AX},0<u<3,2<x<3)V-(0<u<3),u—x)
C={U}{X},0<u<2,(1<x<4)v-(0<u<2),3x)

We obtain C; ACp = (r{U},{X},O <u<32<x<3)Vv
—(0<u<3),(u—x,3x)")) and Gip2 max = argmax, min, (u+
2x) st (0<u<3)A(2<x<3)=(0,3)T.

Definition IV.5 (Cooperative Composition). The cooper-
ative composition of C; = (Uj,X1,A1,G1,01) and C, =
(Uz,X5,A2,G,,0,), denoted by C;®C,, is an optimizing con-
tract (U,X,A,G,0) such that

U=U1UU2\X, X=X1UXp @
A= (A] ﬂAz)U67 G=G1NGy (®)]
0=(01,07)" (©6)

and the optimal guarantees Gpax can be computed as in
Def. IV.2.

Definition IV.6 (Non-cooperative Composition). We call non-
cooperative composition of C; = (U,X;,A1,G1,0,) and C; =
(Uz,X2,A2,G,07) the contract C;®C, = (U,X,A,G) such
that U, X, A, G are defined as in Def. IV.5 and G =
G1,max N G2 max, Where: (1) G| max are the optimal guarantees
for the optimizing contract C; = (U UY;,X \ ¥1,4,G,0),
with Y1 = U; NX2; (2) Gomax are the optimal guarantees for

M M
1 x 2 y

Fig. 1: Connection of Components M and M,

the optimizing contract > = (U UVY3,X \ ¥5,A,G,0,), with
Y> = Uy NX1. G max and G2 max are separately computed as in
Def. IV.2.

Cooperative composition reduces to a single optimizing
contract because components are allowed to share (conjoin)
their objectives and make decisions towards optimizing them.
On the other hand, non-cooperative composition cannot be
reduced to a single optimizing contract. Its behaviors are,
instead, described by the two optimizing contracts C; and C,.
In non-cooperative composition, components may share some
of their variables but have no information about each others’
objective. Consequently, two separate optimization problems
are solved to find the optimal guarantees of each contracts. Be-
cause each component makes worst-case assumptions about its
environment, non-cooperative composition usually results into
a sub-optimal solution from the overall system perspective.

Example IV.3 (Composition). Consider a component M)
implementing C; = (0,{X}, T,0 <x <3, —x) and a component
M, implementing C; = ({X},{Y},0<x<4,0<y<2,2x+Y),
connected as shown in Fig. 1. We use T to denote the
Boolean value True. We compute the composition of C; and
C, with and without cooperation. After placing both contracts
in saturated form, we obtain C;®C, = (0,{X,Y}, T,(0 <x <
3)A(0<y<2),(—x,2x+y)") and Gz pax = argmax, y(x+
y) st (0<x<3)A(0<y<2)}=(3,2)". Since Az, # 0
and Gy a7 0, Ci ®C; is compatible and consistent.

On the other hand, the optimal guarantees for C;RC,
are. Gigomax = Glmax N Gomax = (0,2)7, since Gimax =
argmax, (—x) st. (0<x<3)A(0<y<2)={0y":
0 <y <2} and Gy max = argmax, min,(2x+y) s.t. (0 <x <
3N 0<y<2)={(0,2)T}.

A refinement relation between optimizing contracts can be
expressed via optimal refinement, which enables reasoning
about replaceability between components whose behaviors aim
to optimize an objective.

Definition IV.7 (Optimal Refinement). Given the optimizing
contracts C; = (U,X,A1,G1,01) and G, = (U,X,A»,G2,0;)
on the same variables, we say that C, optimally refines Ci,
written Cy =* Cy, if and only if

A2 ) A17 G2,max - Gl,max (7)

We observe that if the objective of an optimizing contract
is empty, it reduces to a traditional contract, with Gpax = G.
Accordingly, if both of the objectives of C; and C, are
empty, optimal refinement reduces to the traditional refinement
relation.

V. CONTRACT-BASED VERIFICATION AND SYNTHESIS

We define verification and synthesis problems based on
the optimizing A/G contract framework introduced above.
We express assumptions and guarantees using formulas in
bounded signal temporal logic (STL) [9], i.e., STL formulas in
which all the temporal operators are interpreted over bounded



time intervals. We refer the reader to the literature for the
formal definition of the syntax and the semantics of bounded
STL formulas [10], [11], [17]. The assumptions and guarantees
of a contract can be defined by the sets of behaviors that
satisfy the bounded STL formulas ¢4 and ¢g, respectively.
We further consider STL formulas expressing properties of
discrete-time systems, and denote system behaviors by Xyt
and v, defined over the variables X, U, and V, respectively.
Behaviors are discrete-time traces (signals) of length H, which
is the time horizon of interest.

Problem 1 (Compatibility and Consistency Checking). Given
a system M and an optimizing contract C = (U, X, ¢4, g, O)
for M over the time horizon H, determine whether C is com-
patible, i.e., ¢4 is satisfiable, or consistent, i.e., the following
optimization problem is feasible: max » min,z O(V) s.t. v |=

WA JeR

Problem 2 (Contract Optimal Refinement Checking). Given
a system M and optimizing contracts C; = (U, X, 941, 9g1,01)
and Gy = (U, X, 942, 92, 0>) defined over the system variables
and a time horizon H, determine whether C, <* Cj, i.e.,
whether both of the following conditions hold: (i) @41 A —¢42
is unsatisfiable; (i) G2 max N G1 max is empty, where Gq max and
G2 max are defined as follows:

Gl max = argmgxm}iln 01 (V) st v Edai Ao (8)
X u

G2 max = argmla}xmliin 02(VH) s.t. v EonAde: (9)
X u

Problem 3 (Synthesis from Optimizing Contracts). Given a
system M and an optimizing contract C = (U,X, ¢4, 9c,0)
for M over the time horizon H, determine a se-
quence x that solves the following optimization problem:
max,»# min,z O(V) s.t. v = g4 A 9.

The definition of Problems 1-3 directly descends from
the definitions of contract compatibility, consistency, optimal
refinement, and optimal guarantees. We introduce below algo-
rithms for the solutions of these problems.

A. Contract-based Verification

We assume that a function SOLVEMAX(M, V, ¢, O, H)
is available, which returns sequences (x,u’) by solving
the optimization problem: max # ,» O(v?) subject to v/ = ¢.
Moreover, we assume that the function SOLVEMAXMIN(M,
U, X, ¢, O, H) returns sequences (x',u’) by solving the
optimization problem: max x min,z O(v) subject to v |= ¢.
Recent work [10], [11], [17] has proposed algorithms based
on mixed integer linear programming (MILP) to solve these
problems for certain classes of objectives and bounded STL
formulas of practical interest. We leverage the encodings and
the MILP-based algorithms proposed in the above references
to implement SOLVEMAX and SOLVEMAXMIN.

We address compatibility checking by calling SOLVE-
MAX(M, V, ¢4, [1, H). If there exists a solution trace, then C
is compatible. Similarly, to check consistency, we call SOLVE-
MAXMINWM, U, X, ¢4 A\ @g, O, H). If there exists a solution
trace, then C is consistent. We can use SOLVEMAXMIN to
also find an element of G,,4y.

We check the optimal refinement C; <* C; by using Algo-
rithm 1. Lines 1-3 check whether ¢4; — @47 is a valid formula,
which amounts to checking that @¢4; A ~@4, is unsatisfiable.
If this is not the case, the algorithm immediately returns

Algorithm 1: CHECKOPTREFINE
Input: AH/[ Ci1 = (U,X,9a1,961,01), Co = (U, X, 042,962, 02),
Output: Refine = {0, 1}

1 v« SOLVEMAX(M, V, ¢s1 A—=@a2, [1, H)

2 if v =0 then

3 L] return 0;

4 v' < SOLVEMAXMIN(M, U, X, ¢a1 A ¢G1, O1, H)
5 Ol,max — Ol(VH)

6 V1 < SOLVEMAXMIN(M, U, X, ¢a2 A dG2, Oz, H)
7 02,max < OQ(VH)

8 vl « SOLVEMAXMIN(M, U, X,

$a2 A 9G2 A (02(V) = 0 max) A (01 (V) < 02 a), 02, H)
9 if v =0 then
10 i return 1;
11 else
12 | return 0;

Algorithm 2: NONCOOPSYN

Input: My, My, H, Cy = (UUY1,X\Y1,04,96,01),
C2 = (UUYZaX\Y27¢Aa¢G702)
Output: (vfﬂvg’)
1 vl < SOLVEMAXMIN(M; x My, UUYy, X\ Y1, 94 A oG, Oy,
H)
2 Vil «— SOLVEMAXMIN(M| x Ma, U UY>, X\ Y2, 94 A 9. Oz,
H)

C> £* Cy. Lines 4-12 check that Gy max € Gimax based on
Def. IV.7. We first find the rewards Ojmax and Oz max for
elements in G max and G max, respectively. We then look for
a trace v that belongs t0 G1 max N G2 max, 1.€., a trace such
that O2(V) = Op max and 01 (V1) < Of max. If there exists no
such trace satisfying the additional constraints, the algorithm
returns C; <* Cy; otherwise, we find C, 73* C.

B. Synthesis from Optimizing Contracts

To solve Problem 3 for a contract C = (U,X,A,G,0),
we can directly use SOLVEMAXMIN(M, U, X, ¢4 A @g,
O, H) to find a trace in Gp,x. However, finding such a
trace is less straightforward for a contract that is obtained
via cooperative or non-cooperative composition. Let C; =
(U1,X1,041,061,01) and Cy = (U2, X2, Pa2,962,02) be con-
tracts specified for the composition between M; and M,,
written M| X M,. Because cooperative composition C;&Cy =
(U,X,¢4,06,0) is an optimizing contract, we can generate
a sequence x' satisfying it by calling SOLVEMAXMIN(M x
M, U, X, $aNgg, O, H), where ¢ := ¢g1 \ PG, 9a 1= ¢ —
(941 A ¢a2), and O = (O7,07)".

Non-cooperative composition C;®C, requires, instead, the
solution of two optimization problems to generate a trace
satisfying the composite contracts, as shown in Algorithm 2.
We find a trace Vlfl in G max and vé’ in G2 max and concatenate
them to provide a solution in G max N G2 max-

VI. CASE STUDIES

We first show how the scenario proposed in Sec. II can be
analyzed using optimizing contracts; then, we discuss two case
studies in the context of autonomous vehicles.



A. Motivating Example

We can write an optimizing contract for each vehicle in the
example of Sec. II as follows:

= ({U2},{U1},uz € {Wait,Pass},
(u; € {Wait,Pass}) A ((u),uz) # (Pass,Pass)),R))
G = ({Ul}v {UZ}vul € {Wait7Pass},
(up € {Wait,Pass})A ((u1,up) # (Pass,Pass)),R;)
The cooperative and non-cooperative compositions can be
computed as follows, where C;%C; = (C1,C,):
Ci®C, = (@ {U17U2} T ((ul,uz) € {Walt Pass} )
((u1,up) # (Pass,Pass)),R; +R»)
= ({L},{U1}, T, ((u1,uz) € {Wait,Pass}*)A
((u1,up) # (Pass,Pass)),R;)
U1}, {02}, T, ((u1,u2) € {Wait,Pass}?)A
((u1,u2) # (Pass,Pass)),Ry)
The optimal guarantees with cooperation are Gjgp max =
argmax, , (Ry + Ry) st ((u,uy) € {Wait,Pass}?) A

((u1,up) # (Pass,Pass)) = {(Wait,Pass)}. The ones without
cooperation are G, max = G1,max N G2,max = {(Wait,Wait)}

where  Gimax = argmax, min, R; s.t ((,up) €
{Wait,Pass}?) A ((u,ua) # (Pass,Pass)) =
{(Wait,uz) : up € {Wait,Pass}} and Gopwx =

argmax,,, min, Ry s.t. ((u1,uz) € {Wait,Pass}?) A ((u1,u2) #
(Pass,Pass)) = {(uj,Wait) : u; € {Wait,Pass}}. With
cooperation, the optimal behavior of the composite is to
let M, Pass first while M; Wait. Without cooperation, the
optimal behavior requires for both vehicles to Wait for the
other vehicle to Pass.

B. Automotive Case Studies

We study the control of vehicles on a highway merging and
a T-junction scenario with and without cooperation. We encode
the satisfaction problem for STL formulas as a MILP problem
and use a model predictive control (MPC) scheme [10]. MILP
problems are solved using YALMIP [18] and GUROBI [19] on
an Intel core i5 with 8-GB RAM.

We consider a closed-loop discrete-time vehicle i, as shown
in Fig. 2, and its environment including N interacting vehicles.
We denote by x;x = (Pxik, Pyiks Vriks Vyik)! the vehicle state
at step k. The control input u; ; = (ax.iAk,ay)i)k)T is determined
by the current vehicle states x;; and the states of the other
vehicles X, j=1,....N, j#i. (Pxik: Pyik) is the (x,y)-
position, (vy;x,Vyik) is the (x,y)-velocity, and (ay;,ay;k) is
the (x,y)-acceleration of a vehicle i at the <™ time step. We
describe a trace of the system within the time horizon H as
(Ll

Each vehicle M; is specified by a contract C; and controlled
using an MPC scheme with the prediction horizon of 2 s and
the control horizon of 1 s. We use a time discretization step
of 0.1 s and assume that all vehicles within the environment
have the same dynamics. Each vehicle can sense the position
and the velocity of the surrounding vehicles at each time step.

Physical constraints include formulas such as ¢p; =
Gou)((Jail <5) A (|vi| <10)), no collision constraints ex-
pressed as Oyc (i, j) = Go,u) ((|Pri — Pxjl = 2) A(|pyi— pyjl =
2)), and path planning objectives as O;. The value of the

Environment
Vehicle 2

Vehicle 1

Plant
Xigesr = Axpp + Bugg

Plant
Xpp41 = AXgp + Bug

Controller Controll
ontroller
Xk Xjz1he = Utk

X200 Xjz2,k = Uz

V3 va V5
I

Fig. 2: A closed system with N vehicles

Xjx2,k

J

Xjz1k

path planning objective function O;(x; ) increases as a vehicle
approaches the destination and decreases if a vehicle travels
off the designated course or collides to another vehicle.

1) 2-D T-junction: We first consider two autonomous vehi-
cles implementing the contract in (10) on a T-junction for 8 s
of simulation. Driven by its objective, vehicle 1 (2) starting
at the red (blue) dot gains higher reward as it approaches
the destination at the red (blue) cross as shown on Fig. 3a.
We compose two contracts with and without cooperation and
synthesize control trajectories for the composed components.

N N
Ci= ({x%éi}v{x{{}v /\ Op, . P N /\ One,ij+i) Oi)  (10)
Jj=1 Jj=1

2) 2-D Highway Merging: We also consider the control of
three autonomous vehicles on a 2-D highway merging scenario
for 8 s. Vehicle 1, 2, and 3 implement contracts as in (10).
Similarly to the highway merging example, vehicle 1, 2, and
3 (red, blue, green) start from the dot and try to approach the
destination cross, as shown in Fig. 4a, driven by their objective
functions. Oy, O, and O3 are modified accordingly.

3) Results and Analysis: The synthesized traces of the
vehicles for a T-junction and highway merging scenarios are
given in Fig. 3 and 4, respectively. In the non-cooperative cases
in both scenarios, we observed behaviors where vehicles act
conservatively and slow down to avoid a low reward due to a
collision. For instance, vehicle 2 (blue) in Fig. 3b atr =2 s
is decelerating to maximize its reward against possibly hostile
(objective minimizing) behaviors of vehicle 1 (red). Vehicle 1
(red) on Fig. 4b at t =2 s also displays a similar behavior.
On the other hand, when there is cooperation, there are less
occurrences of such deceleration, since the vehicles are aware
of and act to accommodate each others’ next maneuver.

Tab. III summarizes the performance of the controller under
cooperation and non-cooperation in the two scenarios. We
report the arrival time of each vehicle and the sum of the
arrival times of both the vehicles. In both the T-junction
and highway merging scenarios, cooperating vehicles arrive
at the destination earlier than non-cooperating vehicles. We
also report the sum of the absolute value of the accelerations
(the last four columns), which is directly related to fuel
consumption. With cooperation, the value is always lower
than that of non-cooperating vehicles, suggesting that the
vehicles can reach their destinations more efficiently under
co-operation.

The examples in this paper utilize MILP, which is NP-hard.
However, for certain fragments of STL the control synthesis



(a) T-junction
t=2s t=3s

I

B

(b) With cooperation (Top) and without cooperation
(Bottom)

Fig. 3: T-junction scenario for two vehicles

; _—

(b) With cooperation (Left) and without cooperation (Right)
Fig. 4: Highway merging for three vehicles

problem reduces to convex optimization problems that can
be solved in polynomial time [10]. Tab. IV summarizes the
number of variables and constraints of each MILP solved in
the highway merging case study. Generating a control strategy
in a 5-vehicle scenario required at most 10.3 s.

Overall, these examples illustrate the capabilities and ex-
pressiveness of the proposed contract framework to enable
reasoning about the overall behavior of a system with multiple,
possibly (non-)cooperating components.

VII. CONCLUSIONS

We proposed an extension of the A/G contract framework
that explicitly includes objectives as first-class entities, along
with assumptions and guarantees, and provides additional
composition operators to capture component interactions that
involve (non-)cooperation. There are several possible exten-
sions of this work, including further investigation of the
properties of the newly defined operators, the relationship
between optimizing contracts and the contract meta-theory in
the literature [1], and concrete instances of the framework
in the context of multi-agent dynamical systems and hybrid
games.

TABLE III: Results from cooperation and non-cooperation

Arrival Time [s] Y ug] Tm/s2]
Vi V) V3 Total Vi 123 V3 Total
A Coop 39 29 6.8 374 225 59.9
Tjunction o) Coop || 47 33 80 308 348 65.6
Highway Coop 53 6.7 7.0 19.0 54 107 0.1 16.2
Merging Non-Coop 53 75 >80 >208 9.3 144 153 390

TABLE IV: Runtime for the highway merging scenario

Number of ~ Number of Variables Number of  Runtime

MILPs Binary  Continuous  Constraints [sec]
Highway Coop 8 380 240 38 19.6
Merging 2 V. Non-Coop 48 380 240 46 53.1
Highway Coop 8 540 360 56 31.1
Merging 3 V. Non-Coop 72 540 360 80 140.9
Highway Coop 8 1280 600 132 82.4
Merging 5V~ Non-Coop 120 1280 600 212 364.0
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