INVITED: Runtime Monitoring for Safety of Intelligent Vehicles

Kosuke Watanabe, Eunsuk Kang, Chung-Wei Lin, Shinichi Shiraishi
Toyota InfoTechnology Center, USA, Inc.
{kwatanabe,ekang,cwlin,sshiraish}@us.toyota-itc.com

ABSTRACT

Advanced driver-assistance systems (ADAS), autonomous driving,
and connectivity have enabled a range of new features, but also
made automotive design more complex than ever. Formal verifica-
tion can be applied to establish functional correctness, but its scala-
bility is limited due to the sheer complexity of a modern automotive
system. To manage high complexity and limited development re-
sources, one alternative is to apply runtime monitoring techniques
to detect when the system transitions into an unsafe state (i.e., one
where it violates a critical safety requirement). In this paper, we
report on our experience integrating runtime monitoring into a
development workflow and present practical design considerations
on languages and tools from an industrial perspective. Using signal
temporal logic (STL) [12] and the Breach [6] monitoring tool, we
perform a case study showing how monitoring can be used to detect
undesirable interactions between two ADAS features called Coop-
erative Pile-up Mitigation System (CPMS) and False-Start Prevention
System (FPS). This is an initial step to utilize runtime monitoring
to achieve high assurance in the design of intelligent vehicles.

CCS CONCEPTS

« Computer systems organization — Embedded and cyber-
physical systems; - Software and its engineering — Software
verification and validation; Software safety; Specification lan-
guages;

KEYWORDS

Automotive systems; autonomous vehicles; connected vehicles;
formal verification; runtime monitoring; safety.

ACM Reference Format:

Kosuke Watanabe, Eunsuk Kang, Chung-Wei Lin, Shinichi Shiraishi. 2018.
INVITED: Runtime Monitoring for Safety of Intelligent Vehicles. In DAC
’18: DAC ’18: The 55th Annual Design Automation Conference 2018, June
24-29, 2018, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3195970.3199856

1 INTRODUCTION

Automotive design has become more complex than ever due the ad-
vances of advanced driver-assistance systems (ADAS), autonomous
driving, and connectivity between a vehicle and its surrounding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06...$15.00
https://doi.org/10.1145/3195970.3199856

| Requirements | | SyStCﬂ"l_| Testing ‘
Ay b
| System Pesig;n ‘ | Intcgratiﬁon Testing |
AV b
| Component Design ‘ | Unjgesting |

Implementation

Figure 1: The V-model of automotive system development.

environment. As a safety-critical system, safety is always one of
the top goals in automotive systems, and addressing the safety of a
modern vehicle with an increasingly complex design has become
an emerging issue that brings many challenges to engineers.

The traditional system development process in automotive in-
dustry is the V-model as shown in Figure 1 (from [19]). Usually, an
Original Equipment Manufacturer (OEM) defines a set of system
requirements and constructs a high-level design. The OEM also de-
fines the specifications of individual components to be implemented
accordingly by suppliers. If needed, the OEM and suppliers may ne-
gotiate the specifications and adjust the designs of the components.
After implementation, different levels of testing are performed to
check if the implemented components and their composition satisfy
the corresponding specifications and system-level requirements.

To establish the satisfaction of a specification or requirement,
formal verification can be applied to design models and implementa-
tions. However, formal verification is a computationally expensive
task, and its scalability limits its applicability to systems of high
complexity. As it is still challenging and too costly to apply verifica-
tion to complex systems like an intelligent vehicle with autonomy
and connectivity, runtime monitoring becomes a practical alterna-
tive to achieve safety goals. If a component or a system cannot
be formally verified to satisfy its specifications or requirements,
runtime monitoring can be deployed to detect and notify when
there is any specification or requirement violation during runtime.
In case of such a violation, the user may take appropriate actions,
such as switching to a safe mode or stopping the system altogether.

In particular, runtime monitoring can be applied to support two
types of development activities:

e Type 1: Monitor a specification violation by a compo-
nent. Although suppliers have an incentive to design and im-
plement components correctly to meet its specification given
by the OEM, there are still several scenarios where safety vio-
lations may happen: (1) ill-defined or ambiguous specifications
communicated to the suppliers, (2) design or implementation
errors inside a component, and (3) hardware failures during op-
eration. Note that, if applicable, formal verification is possible
to mitigate (1) and (2) scenarios, but (3) cannot be prevented
even with formal verification.

https://doi.org/10.1145/3195970.3199856
https://doi.org/10.1145/3195970.3199856

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

-
@-on

(a) (b) (c)

Figure 2: An illustration of CPMS. (a) Vehicle A fails to stop
in time and informs Vehicle B the coming collision. (b) With-
out CPMS, Vehicle B is pushed into the intersection. (c) With
CPMS, Vehicle B increases its brake torque and prevents
from being pushed into the intersection.

e Type 2: Monitor an assumption violation. An assumption
violation means an unexpected scenario or a scenario for which
a component is not designed. This is not regarded as a specifi-
cation violation, but it is still highly-related to safety as appro-
priate actions should be taken. For example, a specification of
an autonomous function can be that “if it is not snowing, then
the autonomous function must work.” Even if a supplier im-
plements the autonomous function, a runtime monitor which
detects snowing and notifies the system or the user is still essen-
tial. It should be mentioned that this yields another desirable
specification that “if it is snowing, then certain actions must
be taken.” However, it is not a specification of the autonomous
function, but rather assigned to another component that uses
the output of a monitor to trigger further safety actions.

In this paper, we report on our experience on the development
of a prototype monitoring framework for vehicle safety systems.
The main contributions of this paper include:

e We introduce our runtime monitoring workflow and the ratio-
nale behind our selections of Signal Temporal Logic (STL) [12]
as the property specification language and Breach [6] as the
monitoring tool.

e With STL and Breach, we perform a case study and create
runtime monitors for the integration of two ADAS features,
Cooperation Pile-up Mitigation System (CPMS) and False-Start
Prevention System (FPS).

e We show that the runtime monitors successfully detect an
assumption violation (Type 2 as mentioned above) within the
integration of two ADAS features. It is an initial but necessary
step for safety of future intelligent vehicles.

The paper is organized as follows. Section 2 and Section 3 introduce
the two ADAS applications and the monitoring workflow, respec-
tively. Section 4 presents our case study. The paper concludes with
discussion of the related work in Section 5, and challenges of using
runtime monitors and future research directions in Section 6.

2 MOTIVATING EXAMPLE

Modern vehicles are increasingly being equipped with the capability
to modify or replace existing software applications with new ones
via over-the-air (OTA) updates. Along the benefits of OTA, there are
risks that newly updated software may interact with an application
in unexpected ways, possibly resulting in a violation of the latter’s
assumption. Predicting all such interactions at the design time is
extremely challenging, and thus monitors are needed to detect and

Kosuke Watanabe, Eunsuk Kang, Chung-Wei Lin, Shinichi Shiraishi

tTTC
DCM DCM: Data Communication Medule
ang,.. req,,, tor,,,
‘ Gas Pedal }—33 CPMS ~ c'?;t?:ﬁer H>| Brake |
req,, T tor,,
| Brake Pedal FPS o) Engine “% Engine

ang .

Figure 3: The architecture with the CPMS and FPS features
installed. Edge labels indicate the type of data transmitted.

address potential violations after the vehicle is deployed into the
market. We describe an example of such interactions between two
ADAS features called CPMS (an existing application developed by
an OEM) and FPS (newly downloaded after deployment).

2.1 Cooperative Pile-up Mitigation System

CPMS is an ADAS application designed to leverage the V2V com-
munication capability to improve safety. As shown in Figure 2, the
objective of CPMS is to reduce secondary (but maybe more criti-
cal) damage of a coming-from-behind collision while waiting for a
signal, stopping in a traffic jam, or running at slow speed. CPMS
reduces the running distance after a collision and also notifies a
potential collision in advance so that the human driver can take
avoidance actions, where CPMS should not hinder the actions of
the driver. The architecture is shown in Figure 3. Time-to-collision
(TTC) is calculated by the following vehicle and sent to the ego
vehicle via V2V communication. CPMS examines the received TTC
and calculates the amount of brake torque as a request to the brake
controller, which then processes the request and manipulates the
brake actuator accordingly. However, if the driver intends to run
away from the following vehicle by pressing the gas pedal, then
CPMS cancels its prior brake request by sending an additional re-
quest with the brake torque set to 0. In our system architecture,
we regard the sensors, actuators, and controllers except CPMS as
“the environment of CPMS.” Then, we define specifications that are
realized by CPMS as guarantees and specifications that are realized
by its environment as assumptions.

2.2 False-start Prevention System

FPS is another safety application that may be installed onto a ve-
hicle. The objective of FPS is to prevent unexpected sudden start
by an accidental press of the gas pedal. It detects the accidental
press while the ego vehicle is stopping or running at slow speed
and then controls the engine torque to prevent the vehicle from
accelerating unintentionally. In particular, FPS determines whether
the press is intended or accidental using the current vehicle speed
and the degree and rate of changes in the angle of the gas pedal, and
generates a request to the engine controller to reduce the engine
torque to a predefined minimal value.

3 RUNTIME MONITORING WORKFLOW

Figure 4 illustrates the proposed workflow that leverages a runtime
monitor to improve the safety of a vehicle during both develop-
ment and deployment stages. Given a set of system requirements
that a vehicle must be designed to satisfy, the engineer constructs
contracts that formally specify the behavior of components to be

INVITED: Runtime Monitoring for Safety of Intelligent Vehicles

\. . Requirements Online
W~ (Contracts) Repository
Generate Check ————
assumption | Testing Environment Actual Environment

e

[=l
“=© e.g., Downloaded
application

e.g., Hardware,
off-the-shelf module

|

|

I

|

|

|

l

Monitor o :
m W
|

|

|

I

I

|

|

Check
guarantee
Integrate Check
Developed Artifact assumption
IEL’ LI e ' - I .
= >
e.g., code, e o 1 e o :E%
design model Development : Deployment

Figure 4: Overview of the runtime monitoring workflow.

implemented (in terms of guarantees) and the expectation on the en-
vironment (assumptions). From these contracts, a runtime monitor
is derived using an automatic synthesis tool. The resulting monitor
may be used to support two types of the development activities:
(1) during the testing of a component implementation, to detect
potential faults that may lead to a violation of its guarantee (Type
1 in Section 1), and (2) during system integration, to ensure that
components do not violate the assumptions made by each other
(Type 2 in Section 1).

During deployment, the monitor itself may remain integrated
into the vehicle and be used to detect potential violations of an
existing assumption by an application that is downloaded from an
online repository. If such a violation is found, the monitor may per-
form an additional safety procedure to disable the new application
and trigger a notification to the OEM, which may then produce a
software update to mitigate this conflict.

In the rest of this section, we list the major elements of the
proposed monitoring workflow and, for each one of these, describe
a concrete technique or tool that we selected in order to realize the
workflow, along with the rationale behind our decisions.

3.1 System Design Methodology

Design by contract [14] is a methodology for achieving high system
assurance by assigning, to each component, a contract that de-
scribes its expected behavior and applying an analysis technique to
check that the component satisfies its contract. Assume-guarantee
(AG) contracts are a type of contract specification that structures
the component behavior in two distinct parts—an assumption about
its environment and a guarantee on its output [1]. AG contracts
provide an intuitive way of structuring system specifications, with
well-defined operators for manipulating and reasoning about sat-
isfaction of contracts (including composition, decomposition, and
refinement of one contract by another). In particular, the separa-
tion of specification into assumptions and guarantees is aligned
with the two distinct use cases of runtime monitors described in
Figure 4; that is, monitoring for the violation of an assumption by
the environment or a guarantee by a component.

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

3.2 Property Specification Language

Two main factors were taken into consideration for the choice of a
language for specifying contracts: (1) expressiveness of the language
in being able to capture a wide range of requirements in automo-
tive systems, and (2) the availability of tool support for simulation
and verification against a property specified in the language. In
particular, requirements related to ADAS features such as CPMS or
FSP are typically time-sensitive (e.g., “the brake must be enabled
within a certain number of seconds”), and so it was critical that
the language to be considered would allow the engineer to readily
specify such constraints.

Signal Temporal Logic (STL) is a specification logic designed
for modeling and reasoning about the continuous behavior of a
system over time [12]. This logic itself is an extension of linear
temporal logic (LTL) [17] with an ability to specify properties over
real values and real time. In the past, STL has been successfully
applied to formally specify and analyze continuous and hybrid
systems [4, 10, 15].

Let us briefly summarize the syntax and semantics of STL [12]. A
signal s over domain D is a function s : T — D, where T represents
the time domain in Rs¢; the notation x[¢] for t € T denotes the
value of x at time t. An STL formula takes the following form:

p=u|-¢|e1Ae2| @1Upq p)02

where a < b for a,b € Qx, and u(t) is an atomic predicate of the
form f(s1[t],sk[t]) > O for a set of k signals s = (s1,...,sp) at
some time ¢.

The satisfaction of STL formula ¢ by signal s at time ¢ is defined
as follows:

(s,t) Fu

(s,t) o
(s,1) F @1 A 2
(s,1) = 01U[q4, 192

flsalt], . se[t]) > 0

(s,t)Fo

(s t) E o1 A(s,) F @2

It et+at+b]-(s,t)) E @2
"eltt'](st") Ee1

t 00O

AVt

The until operator U alone is sufficient to express two other types
of temporal operators that are often useful in system specification—
eventually (F) and always (G):
Fla,519=TUlap1¢ Glap® = ~Fla,p7¢

A partial list of the STL formulas used to specify the system
requirements and contracts for CPMS and FPS is shown in Figure 5.
The formulas R.1 and R.2 describe the safety requirements that
the vehicle must be designed to satisfy. In particular, R.2 may be
decomposed into (1) a guarantee to be provided by the CPMS feature
and (2) an assumption about the environment of CPMS (which
includes the input pedals and controllers that it communicates
to) such that they together satisfy the overall requirement; i.e.,
G.C A A.C = R.2. Note that the ADAS applications (CPMS and
FPS) are capable of manipulating the engine and the brake only via
requests to the controllers, and thus the formulas that describe their
guarantees do not reference the actual torque values (i.e., tory,
and toreng).

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

Kosuke Watanabe, Eunsuk Kang, Chung-Wei Lin, Shinichi Shiraishi

System Requirements

must be turned off until the collision occurs.

angle of the gas pedal.

CPMS Assumption

CPMS Guarantee

FPS Guarantee

some minimal value.

R.1: If the vehicle is stationary and a collision is about to occur with the following vehicle, the brake must be enabled and the engine

Vego = 0 A t17c £ Toafe = (torhrk = TBcpMs A toreng = TEnin) U[t,t+tTTc] (collision)
R.2: If the gas pedal is pressed before the collision occurs, the brake must be disabled and the engine must be engaged depending on the

Vego < Vslow A anggas = GASon A —(collision) = Fy 141 uey 1(E0Tbrk = 0 A toreng = f(anggas))

A.C: If the vehicle is stationary or rolling, and no brake request exists, the engine is engaged depending on the angle of the gas pedal.

Vego < Vsiow Areqprk < TBorr = Flt 14 Tepus | (E0Tbrk = 0 A toreng = f(anggas))

G.C: If the gas pedal is pressed before the collision occurs, a request is generated to reduce the brake torque to zero.

Vego < Vslow A anggas = GASon A angp i < BRAKE,rf A =(collision) = Fy sy 1ipys1(reqprk = 0)
G.F: If the gas pedal is pressed abruptly while the vehicle is stationary or rolling, a request is generated to reduce the engine torque to

Vego < Vsilow A Aanggas > Anigh = (reqeng < TE10w)U[t, t+Tips](419gas < GASrelease)

(Vego: vehicle speed, Vsyoy: rolling speed, trrc: time to collision, Tsafe: min. time to avoid collision, Tepus: CPMS activation duration, Teps: FPS activation duration,
Trunaway: max. time before runaway, T Bcpys: target brake torque by CPMS, T Epin: min. engine torque, Apjgn: abrupt angle change, f: angle to torque translation.)

Figure 5: A partial list of system requirements and contract specifications for CPMS and FPS.

3.3 Monitoring Tool

Two practical considerations were taken into account during the se-
lection of a monitoring tool: (1) the generated monitor must be com-
patible with the modeling environment and hardware platform used
by automotive engineers at an OEM (in our case, Simulink/ MATLAB)
and (2) the tool must support online monitoring (i.e., the monitor
must be able to compute the satisfaction of an STL formula dynam-
ically as it observes its target, instead of requiring complete traces
to be generated beforehand).

Breach [6] is a framework designed to enable formal analysis
and monitoring of continuous and hybrid systems. Given a system
property as a STL formula, the tool is capable of synthesizing an
online monitor that detects when the property is falsified by a
signal generated by the system. The monitor may be generated as
a C++ program or a MATLAB S-function (which can be realized as
a Simulink block), which enables seamless integration with other
automotive controller models that we have constructed for our own
simulation purposes.

Another major feature of Breach is its ability to check not only
the Boolean satisfaction of a formula, but also compute the robust-
ness of the satisfaction. In particular, Breach extends the original
semantics of STL (described above in Section 3.2) with the notion
of distance between the actual signal and the value that determines
the satisfaction or violation of a property. In continuous domains
such as automotive where signals are subject to noise and errors,
such quantitative notion of satisfaction is useful as a way of dis-
tinguishing marginal satisfactions from definite ones (even though
this feature was not critical for our case study, as we were mainly
concerned with detecting a violation, the robustness output was
nevertheless useful for debugging our controller models).

4 CASE STUDY

We present a case study on applying our runtime monitoring frame-
work to detect possible interactions between two ADAS features
(CPMS and FPS) in a vehicle simulation environment.

4.1 Implementation and Setup

Vehicle controllers and monitors. To simulate the dynamics and
behaviors of a vehicle, we constructed models of controllers that
manipulate different actuators in the vehicle (e.g., engine, brake) as
well as models of the ADAS applications (FPS and CPMS) and mon-
itors. In particular, the main vehicle controllers were implemented
and integrated inside Unity (https://unity3d.com), a popular game
development environment that can be extended to perform simula-
tion with advanced vehicle physics. The FPS and CPMS applications
were implemented as Simulink models, and additional MATLAB
functions were used to transmit the outputs of these applications to
the Unity controllers (the communication method will be described
shortly). Furthermore, Breach is capable of generating online moni-
tors as Simulink blocks from STL formulas, and so the integration
the monitors with the CPMS and FPS models was straightforward.
Communication framework. Runtime monitors and their tar-
gets (i.e., controllers whose behavior is being monitored) may not
always reside on the same device. For instance, during design and
testing phases, a monitor may be implemented as a program in
a high-level language (e.g., C++), a Simulink/MATLAB block, or
as a low-level FPGA component. To achieve flexibility to deploy
and reuse the monitor on multiple platforms, we specifically devel-
oped a system architecture with a middleware called MQTT [16], a
messaging protocol that allows components (possibly running on
different devices) to communicate using a publish-subscribe pattern.

https://unity3d.com

INVITED: Runtime Monitoring for Safety of Intelligent Vehicles

or
1.5
1k
0.5-
0 Il L L Il Il Il Il
2 4 6 8 10 12 14
(a) Vehicle speed (km/h)
Wk ————— -o-actual engine request (%)
——driver's engine request (%)
80 —FPS's engine request (%)
601
40F
201
0
Il L L Il Il Il Il
0 2 4 6 8 10 12 14
(b) Requests to the engine controller (%)
6
5 —robustness of CPMS's assumption

——robustness of FPS's guarantee
——violation to CPMS's assumption

(c) Robustness for property satisfaction

Figure 6: Results from simulation of CPMS and FPS. The x-
axis on each graph is measured in seconds.

In this architecture, the developer of a monitor or a controller only
needs to adhere to an MQTT API for publishing and subscribing to
messages, and does not need to be aware of the platform details of
other components. In particular, Mosquitto (https://mosquitto.org),
an open source implementation of MQTT, was used.

Simulation scenarios. For our simulation runs, our goal was to
construct scenarios similar to those shown in Figure 2. In the initial
system state, the ego vehicle (Vehicle B in the figure) is stationary
at an intersection, with another vehicle (A) approaching the former
and unable to stop in time to avoid a collision. In particular, Unity
allows the construction of various scenarios by spawning multiple
vehicles with an initial velocity and distances between them. At
the time of the collision, we scripted the ego vehicle driver to press
the gas pedal at the maximum angle to model the runaway action.
We tested two different scenarions, depending on whether FPS
is enabled or disabled, and measured the outputs of the ADAS
controllers as well as their monitors.

4.2 Experimental Results

Figure 6 shows measurements from a simulation run with both the
CPMS and FPS controllers enabled. In the corresponding scenario,
the driver of the ego vehicle is notified of a potential collision from
rear by CPMS and decides to run away by fully pressing on the gas
pedal, which then results in the maximum engine request as shown

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

in Figure 6b. At the same time, FPS detects that the gas pedal has
been pressed abruptly (through the sudden change of its angle) and
subsequently generates requests to reduce the engine torque to a
minimal value (< 20%). As a result, the vehicle fails to accelerate
and run away from the collision despite the design intent of CPMS.

Figure 6¢ shows the robustness output from the Breach monitors
for the satisfaction of the CPMS assumption A.C and FPS guarantee
G.F (stated as STL formulas in Figure 5). An additional monitor
was allocated to observe the violation of the CPMS assumption (i.e.,
—A.C). In this scenario, as FPS begins to override the driver’s intent
to run away, the assumption that the engine is engaged according to
the angle of the gas pedal no longer holds, resulting in the violation
of A.C (and thus, its robustness value dropping below 0). Note the
FPS guarantee G.F becomes satisfied only when the driver finally
releases the gas pedal (around time 8)—thus the delay between the
violation of A.C and the satisfaction of G.F.

In the other scenario where FPS is disabled, the CPMS monitor
did not detect any violation, as expected. Throughout our experi-
ments, however, our monitor also detected violations of the guaran-
tee for CPMS, due to implementation errors in our Simulink model
of CPMS. Our experience demonstrates the usefulness of runtime
monitoring for both detecting unexpected interferences (Type 2 in
Section 1) and debugging implementations (Type 1 in Section 1).
Performance. A runtime monitor can potentially introduce timing
delays between the application being monitored and the rest of the
system; in safety-critical systems like vehicles, such delays may not
be acceptable. To evaluate the level of overhead incurred by our
monitoring approach, we (1) measured the additional simulation
time introduced by the use of the monitor for our scenarios and (2)
performed a stress test of the MQTT-based communication archi-
tecture. For (1), we used a built-in MATLAB function to measure the
overall simulation time consumed by Simulink with and without
the runtime monitor activated. For scenarios of length 30 seconds
(in virtual time), Simulink took approximately 1.871 CPU seconds to
complete the simulation with the monitor, while it consumed 0.420
seconds without it, resulting in around 4.5 times overhead intro-
duced by the monitor. While this overhead may appear significant,
we believe that this is in part due to the performance characteristics
of the Simulink environment. In practice, for integration into an
actual vehicle, we envision using a dedicated Electronic Control
Unit (ECU) or hardware device that runs in parallel with the target
component and periodically monitors the input and output signals.
Nevertheless, further research is warranted to optimize the perfor-
mance of online STL monitoring and generate efficient monitoring
code that can be deployed real-time.

For (2), we setup a local-area network (LAN) with 200 nodes (100
subscribers and 100 publishers), and measured the throughput and
transmission delay. In total, each node was scripted to send 10,000
messages using the Mosquitto publish-subscribe API, with each
message being 1024 bytes in size. On average, the overall throughput
was approximately 5220 messages per second (delivered), with
the average transmission delay of 0.5 seconds per message. Our
evaluation suggests that an MQTT-based architecture is suitable
for testing and simulation, as it provides a similar (if not better)
level of performance as the Controller Area Network (CAN) bus
and thus, can be used to emulate an in-vehicle network with high
fidelity. However, a further investigation is needed to evaluate

https://mosquitto.org

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

whether the same architecture can be deployed inside a vehicle,
as hardware capabilities and constraints of in-vehicle components
(e.g., ECUs) may be different from those that were used in our
simulation environment.

5 RELATED WORK

Runtime verification [8] is an active area of research on techniques
and tools (including monitoring) for reasoning about behaviors
dynamically during the execution of a system. Runtime monitoring
has been applied to automotive systems [9, 11, 20], but has not been
used to detect violations of an environmental assumption due to
an unexpected interference from other components.

The problem of feature interaction—which arises when two or
more applications interact in subtle ways that lead to a violation
of a desired system property—has been studied in the context of
the automotive domain [2, 5, 13]. As far as we know, our approach
is the first to leverage STL formulas in order to detect interactions
among features that result in assumption violations.

6 CHALLENGES AND FUTURE DIRECTIONS

Based on our experience applying the state-of-the-art monitoring
tool to an automotive case study, we believe that runtime moni-
toring is a promising approach for providing an additional layer
of assurance in connected vehicles. Here, we summarize the chal-
lenges of building and applying the monitoring framework from the
perspective of an OEM, and suggest potential research directions
that we believe are crucial for making runtime monitoring more
accessible to automotive engineers.

One of the authors is an automotive engineer with experiences
in controller design but without a prior exposure to formal specifi-
cation and verification. It took the author approximately 1.5 months
to study and become comfortable with STL. While we believe that
the potential benefits from runtime monitoring are worth the ef-
fort of acquiring this knowledge, better language support could
be developed to facilitate the encoding and reuse of specifications
for automotive engineers (for example, by providing a collection
of common specification patterns or templates in automotive use
cases, similar to LTL property patterns in [7]).

Design is often an iterative process, beginning with an initial ab-
stract design that focuses on a discrete high-level protocol or logic,
and eventually arriving at a more concrete design that contains
details about signals and timing. A tool or framework that supports
this iterative process by allowing the engineer to specify design
models using both LTL (for abstract design) and STL (detailed de-
sign), and perform an analysis that the concrete design conforms
to the abstract one would be highly beneficial.

The decomposition of an end-to-end system requirement into
individual component specifications is another challenging activity
that could greatly benefit from automation. While various theories
for specification decomposition have been studied [3, 18], there is
a need for mature tools that seamlessly integrate and carry out the
decomposition task as part of a design process.

During the system deployment, once a violation of an assump-
tion is detected, further actions may be performed to minimize
the possible consequences of the violation, either by disabling the
problematic application or overriding the existing requests with

Kosuke Watanabe, Eunsuk Kang, Chung-Wei Lin, Shinichi Shiraishi

one that will ensure the safety of the vehicle. Mechanisms for the
enforcement of safety in the presence of possible assumption viola-
tions are another important problem that we believe will play an
important role in safe automotive design.

Finally, seemingly auxiliary aspects of a tool, such as ease of
installation, tutorials, well-designed UI, and documentation, are
crucial for making these types of system verification techniques
more approachable to engineers.

ACKNOWLEDGMENTS

The authors would like to thank Omar Hussien, Santhana Raghavan,
and Zhihao Zhang for their valuable inputs.

REFERENCES

[1] Alberto Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner
Damm, Tom Henzinger, and Kim Guldstrand Larsen. 2015. Contracts for Systems
Design: Theory. Research Report RR-8759. INRIA.

[2] Cecylia Bocovich and Joanne M. Atlee. 2014. Variable-specific resolutions for
feature interactions. In International Symposium on Foundations of Software Engi-
neering (FSE). 553-563.

[3] Chris Chilton, Bengt Jonsson, and Marta Kwiatkowska. 2014. Compositional
assume-guarantee reasoning for input/output component theories. Science of
Computer Programming 91 (2014), 115-137.

[4] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit
Juniwal, and Sanjit A. Seshia. 2017. Robust online monitoring of signal temporal
logic. Formal Methods in System Design 51, 1 (2017), 5-30.

[5] Alma L. Juarez Dominguez, Nancy A. Day, and Jeffrey J. Joyce. 2008. Modelling
feature interactions in the automotive domain. In International Workshop on
Modeling in Software Engineering (MiSE). 45-50.

[6] Alexandre Donzé. 2010. Breach, A Toolbox for Verification and Parameter Syn-
thesis of Hybrid Systems. In Computer Aided Verification (CAV °10). Springer
Berlin Heidelberg, 167-170.

[7] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in
Property Specifications for Finite-State Verification. In International Conference
on Software Engineering (ICSE). 411-420.

[8] Klaus Havelund and Grigore Rosu. 2002. Synthesizing Monitors for Safety

Properties. In Tools and Algorithms for the Construction and Analysis of Systems

(TACAS). 342-356.

Donal Heffernan and Ciaran MacNamee. 2016. Runtime observation of func-

tional safety properties in an automotive control network. Journal of Systems

Architecture - Embedded Systems Design 68 (2016), 38-50.

Austin Jones, Zhaodan Kong, and Calin Belta. 2014. Anomaly detection in cyber-

physical systems: A formal methods approach. In IEEE Conference on Decision

and Control (CDC). 848-853.

[11] Aaron Kane, Omar Chowdhury, Anupam Datta, and Philip Koopman. 2015. A
Case Study on Runtime Monitoring of an Autonomous Research Vehicle (ARV)
System. In Runtime Verification (RV). 102-117.

[12] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of

Continuous Signals. In Formal Techniques, Modelling and Analysis of Timed and

Fault-Tolerant Systems. Springer Berlin Heidelberg, 152-166.

Andreas Metzger. 2004. Feature interactions in embedded control systems. Com-

puter Networks 45, 5 (2004), 625-644.

Bertrand Meyer. 1992. Applying "Design by Contract". IEEE Computer 25, 10

(1992), 40-51.

Pierluigi Nuzzo, John B. Finn, Antonio Iannopollo, and Alberto L. Sangiovanni-

Vincentelli. 2014. Contract-based design of control protocols for safety-critical

cyber-physical systems. In Design, Automation & Test in Europe (DATE). 1-4.

OASIS. 2015. MQTT Version 3.1.1. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/

mqtt-v3.1.1.html. (2015). Accessed: 2018-03-11.

[17] Amir Pnueli. 1977. The Temporal Logic of Programs. In Symposium on Foundations
of Computer Science (SFCS ’77). 46-57.

[18] Jean-Baptiste Raclet. 2008. Residual for Component Specifications. Electr. Notes
Theor. Comput. Sci. 215 (2008), 93-110.

[19] Rakesh Rana, Miroslaw Staron, Christian Berger, Jérgen Hansson, Martin Nilsson,
and Fredrik Térner. 2013. Increasing Efficiency of ISO 26262 Verification and
Validation by Combining Fault Injection and Mutation Testing with Model Based
Development. In International Conference on Software Technologies. 251-257.

[20] Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, and Radu Grosu. 2016. Ap-
plying Runtime Monitoring for Automotive Electronic Development. In Runtime
Verification (RV). 462-469.

=

[10

[13

[14

[15

[16

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

