
Safe Environmental Envelopes of Discrete
Systems

Rômulo Meira-Góes1(B), Ian Dardik2, Eunsuk Kang2, Stéphane Lafortune3,
and Stavros Tripakis4

1 School of EECS, Pennsylvania State University,
State College, USA
romulo@psu.edu

2 School of Computer Science, Carnegie Mellon University,
Pittsburgh, USA

{idardik,eunsukk}@andrew.cmu.edu
3 EECS Department, University of Michigan, Ann Arbor, USA

stephane@umich.edu
4 Khoury College of Computer Science, Northeastern University, Boston, USA

stavros@northeastern.edu

Abstract. A safety verification task involves verifying a system against a
desired safety property under certain assumptions about the environment.
However, these environmental assumptions may occasionally be violated
due to modeling errors or faults. Ideally, the system guarantees its critical
properties even under some of these violations, i.e., the system is robust
against environmental deviations. This paper proposes a notion of robust-
ness as an explicit, first-class property of a transition system that captures
how robust it is against possible deviations in the environment. We mod-
eled deviations as a set of transitions that may be added to the original
environment. Our robustness notion then describes the safety envelope of
this system, i.e., it captures all sets of extra environment transitions for
which the system still guarantees a desired property. We show that being
able to explicitly reason about robustness enables new types of system
analysis and design tasks beyond the common verification problem stated
above. We demonstrate the application of our framework on case studies
involving a radiation therapy interface, an electronic voting machine, a
fare collection protocol, and a medical pump device.

Keywords: Robustness · Discrete Transition Systems · Model
Uncertainty

1 Introduction

A common type of verification task involves verifying a system (C) against a
desired property (P) under certain assumptions about the environment (E); i.e.,
C||E |= P . Such assumptions may capture, for example, the expected behavior of
a human operator in a safety-critical system, the reliability of the communication
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13964, pp. 326–350, 2023.
https://doi.org/10.1007/978-3-031-37706-8_17

https://doi.org/10.5281/zenodo.7922595
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37706-8_17&domain=pdf
https://doi.org/10.1007/978-3-031-37706-8_17

Safe Environmental Envelopes of Discrete Systems 327

channel in a distributed system, or the capabilities of an attacker. However, the
actual environment (E′) may occasionally deviate from the original model (E),
due to changes or faults in the environment entities (e.g., errors committed by
the operator or message loss in the channel). For certain types of deviations, a
system that is robust would ideally be able to guarantee the property even under
the deviated environment; i.e., C||E′ |= P .

This paper proposes the notion of robustness as an explicit, first-class prop-
erty of a transition system that captures how robust it is against possible devi-
ations in the environment. A deviation is modeled as a set of extra transitions
that may be added to the original environment, resulting in a new, deviated
environment E′ that has a larger set of behaviors than E does. Then, system
C is said to be robust to this deviated environment with respect to P if and
only if it can still guarantee P even in presence of the deviation. Finally, the
overall robustness of C with respect to E and P , denoted Δ, is the largest set
of deviations that the system is robust against.

Conceptually, Δ defines the safe operating envelopes of the system: As long
as the deployment environment remains within these envelopes, the system can
guarantee a desired property. Being able to explicitly reason about Δ enables
new types of system analysis and design tasks beyond the common verification
problem stated above. Given a pair of alternative system designs, C1 and C2, one
could rigorously compare them with respect to their robustness levels; they both
may satisfy property P under the normal operating environment E, but one may
be more robust to deviations than the other. Given two properties, P1 and P2

(the latter possibly more critical than the former), one could check whether the
system would continue to guarantee P2 under a deviated environment even if it
fails to do so for P1. Finally, given E, P , and a desired level of robustness, Δ,
one could synthesize machine C to be robust to Δ.

In this paper, we formalize (1) the proposed notion of robustness and (2) the
problem of computing Δ for given C, E, and P . One approach to automatically
compute Δ is a brute-force method that enumerates all possible sets of devi-
ations; however, as we will show, this approach is impractical, as the number
of deviations is exponential in the size of the environment. To mitigate this,
we present an approach for computing Δ by reduction to a controller synthesis
problem [35,37].

We have built a prototype of the proposed approach for computing robust-
ness and applied it to several case studies, including models of (1) a radiation
therapy interface, (2) an electronic voting machine, (3) a public transportation
fare collection protocol, and (4) a medical pump device. Our results show that
our approach is capable of computing Δ to provide information about deviations
under which these systems are able to guarantee their critical safety properties.

The contributions of this paper are as follows: (i) A novel, formal definition
of robustness against environmental deviations (Sect. 4); (ii) A simple, brute-
force method for computing robustness and a more efficient approach based on
controller synthesis (Sect. 5); and (iii) A prototype tool for computing Δ and an
experimental evaluation on several case studies (Sect. 6).

328 R. Meira-Góes et al.

2 Motivating Example

As a motivating example, we consider the Therac-25 radiation therapy machine.
This machine is infamous for a design flaw that caused radiation overdoses,
several of which led to the deaths of patients who received treatment [18]. In
this section, we introduce a model for the Therac-25 based on the descriptions in
[18] and discuss several methods for analyzing its safety. We show that robustness
provides a generally richer analysis than classic verification.

x x x
beam ready

up, enter up, x, e enter

x, e enter

up

beamReady

b

(a) The operating terminal, Cterm.

SP

FL

mid-
rotate

rotate

rotate

e

x

e

x
Spreader

Flattener

mid-
rotate

(b) The turntable, Cturn.

choose
mode mode beam

x, e enter b

(c) The normative environment, E

Fig. 1. The Therac-25 is modeled as CT25 = Cterm||Cbeam||Cturn. Cbeam is in Fig. 7b.

System. We model the Therac-25 as the composition of the following three
finite-state machines: (1) Cterm, a computer terminal that nurses use to oper-
ate the Therac-25, (2) Cbeam, a beam-emitter that fires a radiation treatment
beam in either X-ray or electron mode, and (3) Cturn, a turntable that rotates
between two hardware components called the flattener and the spreader. For-
mally, we define the Therac-25 as the composition all three machines: CT25 =
Cterm||Cbeam||Cturn. We show the terminal and turntable in Figs. 1a and 1b
respectively. We show the beam in Sect. 6.2 (Fig. 7b), where we present a case
study on the Therac-25.

Environment. Nurses operate the Therac-25 by typing at a keyboard con-
nected to a terminal. A nurse begins by choosing a beam mode by typing either
an “x” for X-ray or an “e” for electron mode. The nurse then hits the “enter” key
and waits for the terminal to display “beam ready” before finally pressing the
“b” key to fire the beam. This workflow defines the operating environment which
we call E, shown in Fig. 1c.

Safety property. Since the X-ray beams contain a high concentration of radi-
ation, it is imperative that the flattener is in place when the machine fires an
X-ray. We capture this key safety property in the following LTL [36] formula:

G
(
XFIRED → FLATMODE

)

Safe Environmental Envelopes of Discrete Systems 329

In this formula, XFIRED is a predicate that is true if an X-ray beam was just
fired, while FLATMODE is a predicate that is true when the turn table is in
flattener mode. We refer to this safety property as Pxflat in this example.

Safety Analyses. Robustness opens our safety analysis beyond classic verifi-
cation. We discuss several analysis options below.
(1) Standard Verification: We can check that the Therac-25 is safe within
the operating environment, that is, E||CT25 |= Pxflat. Standard model checking
techniques [2] show that the Therac-25 is indeed safe with respect to E.
(2) Robustness Calculation: Given that the Therac-25 is safe with respect
to E, we can calculate its robustness Δ. This calculation identifies the set of safe
environmental envelopes of the Therac-25. Importantly, these envelopes reveal
the environmental deviations that the Therac-25 can safely handle. For example,
in Sect. 6.2, we show that the Therac-25 is robust against the environmental
deviations in Fig. 8 in which a nurse repeatedly hits “enter” or the “up” arrow
key after choosing a beam mode.
(3) Controller Comparison: Holding the environment E and the property
Pxflat constant, we can compare the robustness of the Therac-25 against other
models. In Sect. 6.2, we introduce the Therac-20 (CT20) and compare the robust-
ness between CT25 and CT20. Although both machines are safe with respect to
the normative environment, we will find that CT25 is strictly less robust than
CT20. We will show how contrasting the robustness between the two machines
exposes a critical software bug in the Therac-25. Furthermore, we will show that
fixing the bug in the Therac-25 causes its robustness to be equivalent to the
Therac-20.
(4) Property Comparison: Holding the environment E and the machine CT25

constant, we can compare the machine’s robustness with respect to Pxflat and
a second safety property. For example, we could consider a new safety property
P ′ that strengthens Pxflat by additionally enforcing the spreader to be in place
when a beam is fired in electron mode. The property P ′ might be of interest
to avoid an underdose, a situation that might result from the flattener being
in place when an electron beam is fired. Because P ′ is stronger than Pxflat, a
designer may be interested to compare the robustness between the properties to
understand which environmental deviations maintain Pxflat, but violate P ′.

3 Modeling Formalism

This section describes the underlying formalism used to model the environment,
controlled systems, and the properties enforced by them.

Labeled Transition Systems. Given a finite set A, the usual notations |A|
and A∗ denote the cardinality of A and the set of all finite sequences over A
respectively. In this work, we use finite labeled transition systems to model the
behavior of the environment, the controller, and the property.

330 R. Meira-Góes et al.

Definition 1. A labeled transition system (LTS) E is a tuple 〈QE , ActE , RE ,
q0,E〉, where QE is a finite set of states, ActE is a finite set of actions, RE ⊆
QE × ActE × QE is the transition relation of E, and q0,E ∈ QE is the initial
state.

LTS E is said to be deterministic if for any (q, a, q′), (q, a, q′′) ∈ RE , then q′ = q′′;
otherwise it is nondeterministic. We extend the transition relation RE to finite
sequences of actions as RE

∗ ⊆ QE × ActE
∗ × QE in the usual manner. A trace

of E is a finite sequence of actions a0 . . . an of E complying with the transition
in RE

∗, i.e., (q0,E , a0 . . . an, q) ∈ RE
∗ for some q ∈ QE . The set of all traces in

E is denoted by beh(E).
Given LTSs E1 and E2, the parallel composition || defines standard synchro-

nization of E1 and E2 [2,7]. The composed LTS E1||E2 = 〈QE1 × QE2 , ActE1 ∪
ActE2 , RE1||E2 , (q0,E1 , q0,E2)〉 synchronizes over the common actions between E1

and E2 and interleaves the remaining actions. Lastly, given LTSs E1 and E2, we
say that E1 is a subset of E2, denoted E1 ⊆ E2, if QE1 ⊆ QE2 , ActE1 = ActE2 ,
RE1 ⊆ RE2 , and q0,E1 = q0,E2 .

Control Strategy. Let an LTS E represent the environmental model to be
controlled. A control strategy, or simply controller, for E is a function that
maps a finite sequence of actions to a set of actions, i.e., C : ActE

∗ → 2ActE .
A controlled trace of E is a trace of E, a0 . . . an ∈ beh(E), such that ai ∈
C(a0 . . . ai−1) for any i ≤ n. The set of all controlled runs, denoted by beh(E/C),
defines the closed-loop system of C controlling E. For convenience, this closed-
loop system is denoted by E/C. In this work, we assume that controller C
has finite memory and it can be represented by a deterministic LTS. With an
abuse of notation, the LTS controller representation is also denoted by C. For
convenience, we define controller C = 〈QC , ActC , RC , q0,C〉 to have the same
actions as in E, i.e., ActC = ActE . In this manner, the closed-loop system
E/C can be represented by the composition of environment E and controller C:
E/C = E||C.

Remark 1. We assume that all elements of the set of actions ActE are “control-
lable” actions, that can be acted upon by a controller. However, the nondeter-
ministic transition relation of E can be used to model uncontrollable actions of
the environment. After an action a is selected by the controller at state q, the
environment decides which state the system will be in, similarly to two-player
games [15].

Safety Property. In this work, we consider a class of regular linear-time prop-
erties called safety properties over an environment E [2]. A safety property P is
represented by a deterministic LTS P that defines the set of accepted behaviors.
Usually, the LTS P encodes both the traces that satisfy P and those that violate
it by including a sink error state. Formally, any trace that reaches the error state
err ∈ QP violates the safety property. An LTS E satisfies property P , denoted
by E |= P , whenever the traces in beh(E) do not reach the error state in P . In
this manner, we can test if E |= P by composing E||P and investigating if the
err is reached.

Safe Environmental Envelopes of Discrete Systems 331

(a) Environment E (b) Controller C (c) Property P

Fig. 2. LTSs for the running example

Example 1. We describe a simple example that we use as a running example
throughout the paper. Figure 2 depicts the environment E, controller C, and
property P considered in this example. The environment E defines that action a
is immediately followed by action b. Although controller C in Fig. 2b only shows
action a, we assume that ActC = {a, b}. In this manner, C only allows action
a to occur. Lastly, property P defines that action a should happen at most two
times while action b should never happen. It follows that E/C |= P since the
controller disables action b and the environment only executes one instance of
action a.

4 Robustness Against Environmental Deviations

4.1 Deviations

A deviation is a set of transitions d ⊆ (QE × ActE × QE) A deviated system is
defined by augmenting the transitions of environment E with a deviation set:

Definition 2. Given an LTS E = 〈QE , ActE , RE , q0,E〉 and a deviation d ⊆
QE × ActE × QE. We define the deviated system Ed as Ed := 〈QE , ActE , RE ∪
d, q0,E〉.

A controller C that guarantees property P for environment E, i.e., E/C |= P ,
might violate this property for the deviated environment Ed, i.e., Ed/C 	|= P .

Definition 3. Controller C is a robust controller with respect to environment E,
deviation d, and property P if Ed/C |= P . Deviation d is a robust deviation with
respect to E, C, and P if C is a robust controller with respect to E, d, and P .

Remark 2. In this paper, we are only interested in ensuring safety properties
over the controlled system. For this reason, it is sufficient to only consider adding
new transitions to the environment. If a controlled system is safe, then deleting
transitions from the environment does not violate the safety property.

4.2 Comparing Deviations

Each deviation set affects the environment in different ways. To reason about
the effects of each deviation set, we compare them using a partial order relation
over QE × ActE × QE . For deviations d1 and d2 such that d1 ⊆ d2, d2 deviates

332 R. Meira-Góes et al.

LTS E more than d1 since beh(Ed1) ⊆ beh(Ed2). For this reason, we select the
relation ⊆ over QE × ActE × QE to be the partial order to compare different
deviation sets.

Definition 4.Given E and deviations d1, d2, d1 is at least as powerful as d2 if
d2 ⊆ d1.

4.3 Robustness

Intuitively, robustness is defined as the set of all possible robust deviations d with
respect to the environment E, controller C, and safety property Psaf . Addition-
ally, we introduce an environmental constraint, Penv, to capture domain knowl-
edge about the system under analysis. Penv will filter environment deviations
that might not be physically feasible or of interest to analyze. This constraint is
captured as a safety property over E, i.e., E |= Penv states that the environment
satisfies the constraint. Formally, our robustness notions is defined as follows:

Definition 5. Let environment E, controller C, property Psaf such that E/C |=
Psaf , and environment constraint Penv such that E |= Penv be given. The
robustness of controller C with respect to E, Psaf , and Penv, denoted by
Δ(E,C, Psaf , Penv), is a set of robust deviations Δ ⊆ 2QE×ActE×QE . Δ is defined
to be the (unique) set of robust deviations satisfying the following conditions:

1. ∀d ∈ Δ. Ed/C |= Psaf [d is robust];
2. ∀d ⊆ QE × ActE × QE .Ed/C |= Psaf ∧ Ed |= Penv ⇒ ∃d′ ∈ Δ.d ⊆ d′ [d is

represented];
3. ∀d, d′ ∈ Δ. d 	= d′ ⇒ d 	⊆ d′ [unique representation].
4. ∀d ∈ Δ. Ed |= Penv [d is feasible].

When E,C, Psaf , and Penv are clear from context, we simply write Δ. The set
Δ is also denoted as the safety envelope of C with respect to E, Psaf , and Penv.

Intuitively, the set Δ defines an upper bound on the possible deviations from E
that controller C is robust against. In other words, Δ captures the envelopes for
which controller C remains safe.

If a designer does not have domain knowledge about the system, then Penv

can be set to not constrain the environment, i.e., Penv = Act∗E . After computing
Δ without environmental constraints, a designer can obtain important informa-
tion about the system and the environment. In the next analysis iteration, this
knowledge can be transformed into environmental constraints to enhance the
robustness analysis, i.e., Penv ⊆ Act∗E .

By definition, Δ is always non-empty since d = ∅ is always robust. Moreover,
due to conditions 2 and 3, only maximal robust deviations are included in Δ.
We show that there is a unique set of deviations that satisfies the conditions of
Def. 5. The proof of this lemma is available at [27], pg. 23.

Lemma 1. Given LTS E, controller C, safety property Psaf , and environment
property Penv, there is a unique Δ that satisfies the conditions in Def. 5.

Safe Environmental Envelopes of Discrete Systems 333

Example 2. Back to our running example, we investigate robust deviations
and Δ. For simplicity, we do not impose any environment constraint, i.e.,
Penv = Act∗E . Figure 3 shows four robust deviations for our running example,
where transitions in green are deviations added to the environment. All robust
deviations allow at most two transitions with action a, which is the maximum
number allowed by the property. In this example, Δ has three robust deviations
that are represented in Figs. 3b–3d. Since the robust deviation shown in Fig. 3a
is a subset of both deviations in Fig. 3b and Fig. 3c, it is not included in Δ.

(a) A robust deviated environment (b) Maximal robust deviated environment

(c) Maximal robust deviated environment (d) Maximal robust deviated environment

Fig. 3. Robust deviated environments. Robust transitions QE ×{b}×QE are omitted.

4.4 Problem Statement

Although Def. 5 has formally introduced our notion of robustness, it does not
show how to compute robustness. Therefore, we investigate the problem of com-
puting the set Δ.

Problem 1. Given E, C, Psaf , and Penv as in Def. 5, compute Δ.

4.5 Comparing Robustness

Our robustness definition also allows us to compare the robustness between
different controllers as well as different safety properties.

Comparing Controllers. Holding the environment and safety property con-
stant, we can compare the robustness of the controllers.

Definition 6. Given an environment E, controllers C1 and C2, safety prop-
erty Psaf , and environment constraint Penv, controller C1 is at least as robust
as C2 if and only if for all d2 ∈ Δ(E,C2, Psaf , Penv) there exists d1 ∈
Δ(E,C1, Psaf , Penv) such that d2 ⊆ d1. Equality and strictly less/more robust
are defined in the usual manner using ⊆.

334 R. Meira-Góes et al.

Comparing Safety Properties. Holding the environment and controller con-
stant, we can compare the robustness between safety properties.

Definition 7. Given an environment E, controllers C, safety properties Psaf,1

and Psaf,2, and environment constraint Penv, controller C is at least as robust
with respect to Psaf,1 than with respect to Psaf,2 if and only if for all d2 ∈
Δ(E,C, Psaf,2, Penv), there exists d1 ∈ Δ(E,C, Psaf,1, Penv) such that d2 ⊆ d1.

5 Computing Robustness

This section presents two manners of solving Problem 1. One is a brute-force
algorithm whereas the second uses control techniques to obtain the solution.
Usually when dealing with regular safety properties, one transforms the safety
property into an invariance property. This transformation is simply obtained
by composing the environment with the safety property; then, an invariance
property equivalent to the safety is defined over this composed system [2]. In
this composed system, an invariance property is simply defined by a set of
safe states. Unfortunately, computing robustness for safety properties does not
directly reduce to computing robustness for invariance properties.

When transforming a safety property Psaf to an invariance property, we
compose the environment and the safety property. Let us assume that there are
no environmental constraints. In our scenario, the invariance property Pinv is
defined based on the composed system E||C||Psaf , i.e., Pinv ⊆ QE||C||Psaf

. The
composed system Pinv introduces memory to the environment to differentiate
when the safety property is violated or not. This memory addition prevents a
simple reduction between invariance and safety properties since robustness is
defined with respect to the environment. Robustness defines new transitions in
E whereas computing robustness with respect to Pinv defines new transitions in
E||C||Psaf . For this reason, we cannot simply reduce the problem of computing
Δ with respect to safety properties to the problem of computing Δ with respect
to an invariance property.

5.1 Brute-Force Algorithm

One way of solving Problem 1 is via a brute-force algorithm. Intuitively, this
algorithm is broken into two parts: (i) finding the set of robust deviations that
satisfy the environmental constraint, and (ii) identifying the maximal ones within
this set. In part (i), we verify Ed||C |= Psaf and Ed |= Penv for all deviations
d ⊆ (QE ×ActE ×QE)\RE , which can be solved using standard model checking
techniques [2]. Since this algorithm checks if every deviation set is robust or not,
it is clear that it computes Δ.

5.2 Controlling the Deviations Without Environmental Constraints

Due to the lack of scalability of the brute-force algorithm, we search for more
efficient ways to compute Δ. For readability purposes, we start by describing our

Safe Environmental Envelopes of Discrete Systems 335

algorithm in detail assuming no environmental constraints, i.e., unconstrained
environment Penv = Act∗E . In the next section, we show how to use this algo-
rithm to completely solve Problem 1, i.e., for a possibly constrained environment
Penv ⊆ Act∗E .

Overview of the Control Algorithm. At a high level, we transform the
problem of computing Δ to a problem of controlling environmental transitions
to avoid safety violations. Intuitively, we control deviations to force them to be
robust, i.e., we take the viewpoint that we can control transitions in (QE×ActE×
QE) \ RE . Different ways of controlling transitions in (QE × ActE × QE) \ RE

provide different robust deviations.

Fig. 4. Overview of our approach to compute robustness for the unconstrained envi-
ronment. The inputs are the LTSs of environment E, controller C, and property Psaf .
The set A is the set of all environment transitions, A = QE × ActE × QE . The LTSs
T1, . . . , Tn ⊆ F represent controlled meta-systems.

Figure 4 provides an overview of our approach. First, we define LTS EA to be
the deviated system with all possible transitions, i.e., A = QE ×ActE ×QE . The
deviated system EA is the maximally deviated environment since it encompasses
every possible deviated system Ed for d ⊆ QE × ActE × QE .

Next, we compose the deviated environment EA with controller C and prop-
erty Psaf , to create a “meta-system” F . This meta-system provides information
about how the deviated environment EA under the control of C can violate Psaf .
Following this composition, we pose a control problem over the meta-system to
prevent any violation of Psaf . There are multiple ways of controlling this com-
posed system; in our approach, we obtain a finite number of controllers encoded
as Ti ⊆ F . These different ways of controlling the meta-system provide different
robust deviations from which we can extract Δ. To make our approach concrete,
we describe each step in detail using our running example, shown in Fig. 2.

Constructing the Meta-system. The deviated environment EA =
EQE×ActE×QE

contains the behavior of any other deviated environment. There-
fore, we define the meta-system to be the composition of deviated environment
EA, controller C, and property Psaf , i.e., F = EA||C||Psaf . Figure 5a shows
the meta-system F for our running example. Since C only has one state, we
omit its state from the state names in Fig. 5a, i.e., states in Fig. 5a are defined as
(qe, qp) ∈ QE ×QPsaf

instead of (qe, qc, qp) ∈ QE ×QC ×QPsaf
. All transitions in

F are labeled a, omitted in Fig. 5a, since controller C only enables action a. We

336 R. Meira-Góes et al.

also identify in F which transitions are derived from the environment (dashed
blue) and which are derived from deviations (green). For simplicity, we define a
single error state in F to capture every (qe, qc, err) ∈ QE × QC × QPsaf

.

(a) Meta-system F (b) Meta-controller T1

(c) Meta-controller T2

Fig. 5. Meta-systems. All transitions have action a since C only enables action a (see
Fig. 2b). Dashed blue transitions represent transitions that are feasible in RE while
solid green transitions represent the deviated transitions in (QE × ActE × QE) \ RE .
The shaded area in Fig. 5b contains all safe states in the meta-system.

Controlling the Meta-system. Once the meta-system is constructed, we pose
a meta-control problem over F to ensure that the meta-system avoids the error
states, i.e., states (qe, qc, err) ∈ QE × QC × QPsaf

. These error states represent
safety violations in the closed-loop system. For instance, in Fig. 5a, if transition
(2, C) → err occurs, then the closed-loop system violates Psaf since more than
two actions a were executed. In this meta-control problem, a meta-controller can
disable transitions in F that originated from deviations in E, i.e., transitions in
(QE × ActE × QE) \ RE .

Problem 2. Given meta-system F , synthesize a meta-controller T ⊆ F such
that (1) for any (qe, qc, qp) ∈ QT then state qp 	= err; and (2) for any(
(qe, qc, qp), a, (q′

e, q
′
c, q

′
p)

) ∈ RF \ RT such that (qe, qc, qp) ∈ QT , it follows that
(qe, a, q′

e) /∈ RE .

Problem 2 states that the meta-controller is a subset of the meta-system
F . We want to maintain the same structure as in F since we need to enforce
that the meta-controller does not disable any transition associated with RE .
Condition (1) in Problem 2 ensures that property Psaf is not violated. On the
other hand, condition (2) guarantees that only transitions assigned to deviations
are disabled.

Safe Environmental Envelopes of Discrete Systems 337

Back to our example, the LTS T described by the shaded area in Fig. 5b
demonstrates a possible meta-controller that satisfies Problem 2. Condition (1)
is satisfied since the error state is not included in the shaded area. With respect to
condition (2), only solid green transitions are disabled. Figure 5c shows another
meta-controller.

To solve Problem 2, one can solve a safety game over F using fixed-point
computation [15,25]. Due to space limitations, we point the reader to [27], pg. .23
for the solution to this safety game.

Extracting Robust Deviations. Each meta-controller that solves Problem 2
relates to a robust deviation. Intuitively, a meta-controller disables deviations
that would violate Psaf . For instance, the meta-controller T1 shown in Fig. 5b
disables transition (3, B) → (1, C), which relates to disabling transition 3 a−→ 1
in the environment. Figure 3a depicts the deviated environment related to meta-
controller T1. Similarly, Fig. 3b shows the deviated environment associated with
meta-controller T2.

To extract a robust deviation from a meta-controller, we have to (1) identify
the transitions that the meta-controller has disabled; and (2) project the disabled
transitions to transitions QE × ActE × QE . Since a meta-controller is a subset
of the meta-system, the disabled transitions are obtained by comparing F and
T . Intuitively, the disabled transitions are those that escape the shaded area in
Fig. 5.

Disabled := {(q, a, q′) ∈ RF | q ∈ QT ∧ (q, a, q′) /∈ RT } (1)

For instance, in the case of meta-controller T1, the transition ((1, B), a, (1, C))
belongs to the Disabled set. Next, based on the disabled transitions, we project
them to transitions in QE × ActE × QE , i.e., transitions in the environment.

del := {(qe, a, q′
e) ∈ QE × ActE × QE | ((qe, qc, qp), a, (q′

e, q
′
c, q

′
p)) ∈ Disabled}

(2)
Transitions in del are the transitions to be deleted from QE × ActE × QE such
that (QE × ActE × QE) \ del is a robust deviation set. If transitions in del are
included in a deviation set, they can cause a violation of property Psaf . In the
case of T1, the transition (1, a, 1) is included in del. If we maintain, for instance,
transition 1 a−→ 1 as part of a deviation set d, then the closed-loop Ed/C violates
the property Psaf since the path (1, A) → (1, B) → (1, C) → err would be
feasible in the meta-controller.

Computing Robustness Δ. Problem 2 searches for meta-controllers that guar-
antee the satisfaction of property Psaf . To compute Δ, we need to obtain a finite
number of meta-controllers. Algorithm 1 formalizes our description in Fig. 4. It
takes as input the environment E, the controller C, a deviation set d, and a
safety property P . From the algorithm overview description in Fig. 2, we have
that for the unconstrained environment d = A = QE×ActE×QE and P = Psaf .

In Algorithm 1, line 4 computes the largest possible set of invariant states
that avoid the error state, i.e., Inv(QF \ Err) solves the safety game as shown

338 R. Meira-Góes et al.

Algorithm 1. COMPUTE-ROBUSTNESS
Input: LTSs E, C, P and deviation d
Output: Set of deviations D
1: D ← ∅
2: F ← Ed||C||P
3: Err ← {(qe, qc, qp) ∈ QF | qp = err}
4: W ← Inv(QF \ Err)
5: for all S ∈ 2W \ {∅} do
6: T ← Meta-Controller(S, F)
7: del ← {(qe, a, q′

e) ∈ d | ∃((qe, qc, qp), a, (q′
e, q

′
c, q

′
p)) ∈ RF \RT s.t. (qe, qc, qp) ∈

QT }
8: D ← D ∪ {d \ del}
9: while ∃d1, d2 ∈ D s.t. d1 ⊆ d2 do

10: D ← D \ {d1}
return D

11: procedure Meta-Controller(S, F)
12: S ← Inv(S)
13: if q0,F /∈ S then
14: T ← ∅
15: else
16: QT ← S, ActT ← ActF , q0,T ← q0,F
17: RT ← {(q, a, q′) ∈ S × ActT × S | (q, a, q′) ∈ RF }

return T

in [27], pg. 23. Based on this invariant set, each iteration in the loop (lines 5–8)
computes a meta-controller (line 6) and stores its respective robust deviation
(line 8). The meta-controller T is also computed by using the function Inv. The
meta-controller solution ensures that QT ⊆ S. Line 7 computes environmental
transitions that must be deleted in order to obtain a robust deviation. The
computed robust deviations are stored in Δ. Lastly, the loop in lines 9–10 ensures
that only maximal robust deviations are included in Δ.

In more detail, to solve Problem 2, we must guarantee that the meta-system
F does not reach any states in Err := {(qe, qc, qp) ∈ QF | qp = err}. Formally,
we compute the set Inv(QF \ Err), which contains every state in F that does
not reach a state in Err via a transition associated with RE . Based on this
invariant set, we can extract any meta-controller that remains within this set.
Informally, the Meta-Controller(S, F) in line 11 of Algorithm 1 computes a
meta-controller that remains within states in S. First, this procedure computes
the invariant set of S, i.e., Inv(S) with respect to meta-system F (line 12). In
this manner, a meta-controller is defined by projecting the meta-system F to
states and transitions in the set of state Inv(S) (lines 16–17).

The following theorem shows that Δ computed via Algorithm 1 is equal to Δ
as in Definition 5 when Penv = Act∗E , i.e., Algorithm 1 partially solves Problem 1.

Theorem 1. Given LTS E, controller C, and property Psaf , Algorithm 1 out-
puts Δ as in Definition 5 when Penv = Act∗E.

Safe Environmental Envelopes of Discrete Systems 339

Proof. Sketch. In order to show that Theorem 1 holds, we provide two interme-
diate lemmas whose proofs are available at [27], pg. 24 (Lemma 2 and Lemma 3).
The first lemma states that every meta-controller T produces a robust deviation.
In this manner, we show that for every d ∈ Δ, the deviation d is robust. The sec-
ond lemma shows that for every maximal robust deviation d ∈ Δ, there exists a
meta-controller T associated with deviation d. Consequently, Algorithm 1 com-
putes every possible maximal robust deviation.

Using Algorithm 1 to compute Δ for our running example, we obtain Δ that
contains the three maximal robust deviations shown in Fig. 3. Lastly, we provide
the computational complexity of Algorithm 1.

Theorem 2. Algorithm 1 outputs Δ in O(2|QE ||QC |(|QP |−1)).

Proof. It follows from the size of 2W .

Although Algorithm 1 has exponential complexity, we empirically show in Sect. 6
that it scales better than the brute-force algorithm.

Heuristics to Exploit the Structure of F . In Algorithm 1, we compute
robust deviations for every possible subset of the largest invariant state set,
c.f., line 5. To improve the efficiency of Algorithm 1, we provide a sound and
complete heuristic that identifies and skips redundant subsets of 2W \ ∅. The
heuristic is based on the observation that sets of states that are not directly
connected in F correspond to redundant deletion sets from QE × ActE × QE .
As such, the heuristic exploits the structure of F by performing a depth-first
search over its state space, hence skipping disconnected groups of states. For
instance, the heuristic will skip the subset {(1, A), (3, C)} because (1, A) and
(3, C) are not connected in F . This subset is redundant because its deletion set
del = {((1, A), (1, B)), ((1, A), (2, B)), ((1, A), (3, B))} is identical to the deletion
set for the subset {(1, A)} which is connected. In the worst-case scenario, our
heuristic computes the power set of W , i.e., exactly as in line 5.

5.3 Controlling the Deviations with Environmental Constraints

When introducing environmental constraints, we must eliminate the robust devi-
ations that violate these constraints as described in Definition 5. One might think
that Penv and Psaf could be combined as a single safety property for which we
then compute Δ. However, this approach does not work since Penv must be
enforced only by the environment whereas Psaf is a property of the closed-
loop system. Another approach is to verify if Penv is satisfied for each deviation
obtained in the for-loop (lines 5–8) in Algorithm 1. Although this approach is
feasible, in practice, we want to reduce the number of deviations, using Penv,
before we compute the robust deviations. For this reason, we describe a sequen-
tial algorithm shown in Fig. 6. In this algorithm, Algorithm 1 is used multiple
times in this constrained scenario instead of a single time as in the unconstrained
scenario (Sect. 5.2).

340 R. Meira-Góes et al.

Fig. 6. Overview of our approach to compute robustness for constrained environments.

The algorithm to compute robustness for constrained environments can be
broken into two parts: (a) computing all maximal environments d̃i that sat-
isfy Penv; and (b) computing robust deviations for each deviated environment
Ed̃i

found in part (a). Computing the maximal environments that satisfy Penv

reduces to computing maximal deviations of E with respect to a controller that
allows every environment action, Call. Formally, the behavior of Call does not
restrain E, beh(Call) = Act∗E ; and it can be described by a one-state LTS. There-
fore, the output of part (a) is the set of maximal deviations d̃i with respect to
E, Call, and Penv, denoted as maximal environment deviations. Each maximal
deviated environment Ed̃i

satisfy the Penv.
Once we have obtained all maximal environment deviations that satisfy Penv,

we focus on finding the maximal robust deviations with respect to C and Psaf .
In other words, we run Algorithm 1 for each maximal deviated environment Ed̃i

together with C and Psaf . Since d is a subset of d̃i, we have that the perturbed
system Ed satisfies Penv.

Each maximal deviated environment Ed̃i
generates a set of maximal robust

deviations Di with respect to C and Psaf . The final step is combining these
maximal robust deviations with respect to each d̃i. Since they are maximal with
respect to d̃i, there could be deviations that are not maximal as defined by
Definition 5. The post-processing step combines the deviations and eliminates
any non-maximal deviations; and it outputs Δ as in Definition 5. The correctness
of this algorithm follows from Theorem 1.

6 Case Studies

6.1 Implementation

We have implemented a prototype tool for computing robustness [28]. The tool
accepts a model of an environment, a controller, and a safety property–as well
as an optional list of environmental constraints–and outputs Δ. The tool has
support for comparing the robustness of two controllers as well as the robustness
of a controller with respect to two separate safety properties. Currently, the
environment, controller, safety property, and environmental constraints must be
encoded in Finite State Process (FSP) notation [23] but this is not a fundamental
limitation.

Safe Environmental Envelopes of Discrete Systems 341

x

X-ray
mode

electron
mode

ready to

ready to

e

e

x

b

b

switching
mode

rotate

(a) The beam Cbeam with hardware
interlocks used in the Therac-20.

x

X-ray
mode

electron
mode

ready to

ready to

e

e x
b

b

(b) The beam Cbeam without hardware
interlocks used in the Therac-25.

Fig. 7. The beam components of the two Therac machines. The hardware interlocks
cause C′

beam to have a fifth state “switching mode” that will only switch to X-ray mode
after the flattener rotates into place.

We wrote the tool in the Kotlin programming language. Our tool includes
an implementation of the brute-force algorithm from Sect. 5.1, as well as an
implementation of Algorithm 1 and Algorithm 1 with heuristics. In the following
case studies, we leverage the tool to calculate and compare the robustness of
several systems. We summarize our performance results for each case study in
Sect. 6.6.

6.2 Therac-25

Background. In Sect. 2, we introduced the Therac-25 radiation therapy
machine. In this section, we present a case study in which we compare the
robustness of the Therac-25 to that of its predecessor, the Therac-20. We begin
by showing that the Therac-20 is strictly more robust than the Therac-25. We
then use this information to identify and fix a critical safety bug in the Therac-25
model.

Therac-20. The Therac-20 is a radiation therapy machine that was designed
before the Therac-25. Unlike the Therac-25, the Therac-20 was not known for
causing accidents that led to injuries and death. A key difference between the
two machines is that the Therac-20 includes hardware interlocks in its beam
component (Fig. 7a), while the Therac-25 does not (Fig. 7b). The purpose of
the hardware interlocks is to provide a layer of security at the hardware level for
upholding Pxflat. In our model, the interlocks work by ensuring that the flattener
is completely rotated into place before allowing an operator to fire an X-ray
beam. Unfortunately, hardware interlocks were considered expensive so they were
omitted from the design of the later Therac-25 model. In the following section,
we compare the robustness between the two Therac machines with respect to
the normative environment E and the key safety property Pxflat.

Comparing Controllers. Using standard model checking techniques [2], we
can confirm that both the Therac-20 and the Therac-25 are safe with respect

342 R. Meira-Góes et al.

Fig. 8. Visual robustness comparison
between the two Therac machines.
Both machines are robust against gray
transitions, but only the Therac-20 is
robust against green transitions. (Color
figure online)

Fig. 9. Software fix that eliminates the
race condition in the Therac-25.

to E and Pxflat. Historically, however, the Therac-20 is known to be safer than
the Therac-25. Therefore, we improve our safety analysis by also comparing
the robustness between the two machines with respect to E, Pxlfat, and an
environmental constraint Penv. Penv, shown in [27], pg. 26, Fig. 11, restricts the
environment to firing the beam at most once.

Our tool reports that the Therac-20 is strictly more robust than the Therac-
25. To understand this result, we can examine the difference between the robust-
ness for each machine. We show this difference visually by presenting one max-
imal robust deviation from each machine in Fig. 8. This figure shows that the
Therac-20 is robust against the scenario in which the operator 1) types “e” to
select electron beam mode, 2) optionally types “enter”, 3) presses the “up” arrow
key, and finally 4) types “x” to switch the beam into X-ray mode. The Therac-
25, however, is not robust against this scenario. We see this in Fig. 8 because
the series of actions must pass through at least one green arrow, where a green
arrow indicates a transition that the Therac-25 is not robust against. In fact, the
Therac-25 does not have any maximal robust deviations that allow this scenario.

The Therac-25’s lack of robustness to the scenario above represents a race
condition that occurs after the operator switches into X-ray mode from electron
mode. In this scenario, if the operator types “enter” and fires the X-ray beam
before the flattener rotates into place, the beam will fire an unflattened X-ray at
the patient. This critical bug was responsible for real-world radiation overdoses,
several of which resulted in death [18].

Fixing the Software Bug. In the previous section, we identified a critical
software bug in the Therac-25. Our goal in the current section is to fix this bug
entirely in the terminal software, thus avoiding an expensive hardware solution.

In Fig. 7a, we see that the hardware interlocks prevent a race condition by
blocking the operator from typing a “b” until the flattener is rotated into place.
Thus we can fix the race condition in software by altering the terminal to block
the operator from typing a “b” until the flattener is rotated into place. We
implement this fix by redesigning the terminal to block all key strokes from

Safe Environmental Envelopes of Discrete Systems 343

the instant it issues a “beam ready” message until the turntable rotates into
place, as shown in Fig. 9. Finally, we use our tool to evaluate the robustness of
the fix. The tool reports that the fixed Therac-25 design is strictly more robust
than the original, and equally robust to the Therac-20.

6.3 Voting

Background. In this section, we consider a case study of an electronic voting
machine, introduced in [46]. In this case study, we model the voting machine, a
voter, and a corrupt election official who attempts to “flip” the voter’s choice.
We define the voting machine as the composition of a voting booth and a user
interface, shown at [27], pg. 26 in Fig. 12a and Fig. 12b respectively.

In the normative environment–shown in Fig. 10a–the voter enters the booth,
enters their password, selects a candidate, clicks the vote button, and finally
confirms the choice. Unfortunately, some voters may inadvertently skip the con-
firmation step and leave the booth early. This deviation from the normative
behavior presents an opportunity for the election official to “flip” the intended
vote: after the voter leaves the booth, the corrupt official can enter the booth,
press “back” and change the vote to their liking. This scenario represents an
actual election fraud that took place in the US [38].

booth
empty

enter
pass-
word

select
candi-
date

candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

back back

(a) Normative environment for the voting
machine.

booth
empty

enter
pass-
word

select
candi-
date

candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

v.enter

v.exit

cfm

pass

back back

(b) The voting machine’s robustness is identical
with respect to Pall and Pcfm.

Fig. 10. Models for the voting machine example. In the figures above, the prefix “v”
represents actions by the voter.

Comparing Properties. In this case study, we will consider two safety prop-
erties, Pall and Pcfm, both of which imply the absence of vote flipping. Pall

requires that the election official cannot at any point select, vote, or confirm a
candidate. Pcfm is weaker, only requiring that the election official cannot at any
point confirm a candidate selection.

344 R. Meira-Góes et al.

Using our tool for comparison, we see that the voting machine is equally
robust with respect to each property. However, this result is surprising because
Pcfm is weaker than Pall. To understand this result, we examine Fig. 10b where
we present the sole maximal robust deviation for each property. In this figure, it
is clear that the voting machine is not robust against any deviation in which the
voter enters their password and then exits the booth without confirming their
vote. The key insight is that, when an election official has the ability to confirm,
it implies that the official can also select and vote. Therefore, we desire a voting
machine without this implication because it will reduce the number of points of
failure. For example, we could redesign the voting machine to require a password
as part of the confirmation step. In lieu of this insight, a designer could choose
to specify a margin of safety into the machine’s specification by requiring that
it is strictly more robust against Pcfm than Pall.

6.4 Oyster

Background. The Oyster example was introduced in [41], in which the authors
modeled the Oyster card that is used the public transportation system in the
United Kingdom. In our model, the controller consists of an entry gate and an
exit gate, where the card holder taps the Oyster card at the start and end of
their journey respectively. The environment models the actions of a card holder;
in the normative environment, a card holder chooses to tap with either their
Oyster card or a credit card, and taps in and out with the chosen card. The key
safety property is avoiding an incomplete journey, in which a card holder taps
in with one card and taps out with a different card.

Calculating Robustness. An incomplete journey is avoided under the nor-
mative environment. We calculate the robustness of the system under the two
environmental constraints 1) Oyster cards and credit cards give the correct infor-
mation to the gates and 2) the gates operate correctly and calculate the correct
fare when a card is tapped in and out. Unfortunately, the system is not robust
to any deviations.

6.5 PCA Pump

Background. In this section, we model a patient-controlled analgesia (PCA)
pump, originally introduced in [5]. A PCA pump is a medical device that dis-
penses pain medicine to a patient, offering them partial control over the dose
rate. A nurse uses the device interface to program the volume per dosage, as well
as a minimum and maximum dose rate to protect the patient from an overdose.
The pump includes batteries to power the device in case it is unplugged (e.g., by
mistake by the nurse or patient), yet the power may fail if the device runs out of
battery. In this case, the device cannot monitor the dosage amount or frequency,
which may cause an overdose. Therefore, we define the key safety property Ppfail

Safe Environmental Envelopes of Discrete Systems 345

which requires the PCA pump to abstain from administering medicine after a
power failure.

In the normative environment, the nurse operates the pump using the fol-
lowing three step workflow: 1) plug in the pump and turn it on, 2) program the
desired dosage parameters into the pump and administer the treatment, and 3)
turn off the device and unplug it. The nurse begins with step (1) and ends with
step (3), but may omit or repeat step (2) as many times as needed. A diagram
of the normative environment is available at [27], pg. 26, Fig. 13. Crucially, the
pump is safe with respect to this environment and Ppfail because the workflow
assumes that the pump is never unplugged in step (2).

Calculating Robustness. We use our tool to calculate the robustness of the
pump with respect to the normative environment, Ppfail, and an environmental
constraint Penv. In this case study, Penv restricts the environment to actions
that are allowed by the pump’s interface. A diagram of the sole maximal robust
deviation is available at [27], pg. 27, Fig. 14. The tool reports that the pump is
robust against four actions, three of which allow the operator to change settings
before administering the treatment, and the fourth allows the operator to turn
off the device prematurely after programming the dosage parameters. Unfortu-
nately, the pump is not robust against any deviations in which it is unexpectedly
unplugged. This poses a key weakness in the pump that the designers may wish
to improve upon.

6.6 Results and Discussion

We have run our tool on the examples and case studies above, and we present
our results in Table 1. All tests were run on a Mac Book Pro with an M1 Pro
chip and 32GB of RAM. In the table, |Act| is the union of ActE , ActC , ActPsaf

and ActPenv
, |dmax| is the size of the largest deviation in Δ, and |WPenv

| is the
size of the winning set for each maximal deviation d̃i (separated by a comma);
NA indicates the absence of an environmental constraint. Furthermore, “Wall
Heur” denotes the wall time for running Algorithm 1 with the heuristic, while
“Wall Plain” denotes the wall time for running Algorithm 1, and “TO” indicates
a time-out after five minutes.

Our results demonstrate that calculating robustness is tractable across sev-
eral different case studies. In particular, our tool’s performance on the larger
PCA pump case study shows promising results in terms of scalability. Further-
more, we have shown that Δ is useful as a means for both analysis and compari-
son of controllers. For example, in the Therac-25 case study, robustness provided
a richer analysis than classic verification that helped us discover–and ultimately
fix–a critical race condition. Finally, we have also demonstrated in the voting
machine case study that robustness provides a means for comparing two prop-
erties with respect to a controller and an environment.

346 R. Meira-Góes et al.

Table 1. Summary of results from running our tool.

Example |Act| |QE | |QC | |QP | |W | |WPenv | |Δ| |dmax| Wall Heur Wall Plain

Running Example 2 4 2 4 6 NA 3 13 0.433 s 0.431 sec
Therac-25 w/bug 9 5 21 5 62 28,30,31,37 4 21 4.921 sec TO
Therac-25 w/fix 9 5 19 5 72 18,20,23,25 4 26 0.852 sec TO
Therac-20 9 5 11 5 40 17,19,21,23 4 26 0.626 sec TO
Voting wrt. Pcfm 9 7 13 3 66 7 1 12 0.469 sec TO
Voting wrt. Pall 9 7 13 3 66 7 1 12 0.426 sec TO
Oyster 8 4 17 2 15 8 1 4 0.472 sec TO
PCA Pump 21 11 105 4 1396 34 1 15 1.922 sec TO

7 Related Work

Quantitative robustness notions for discrete transition systems have been inves-
tigated in several works [3,4,8,16,24,32,40,42]. We capture robustness qualita-
tively, which avoids the need for external cost functions over the discrete tran-
sition systems. The problem of synthesizing robust controllers against deviated
environments given by a designer is investigated in [45]. Since [45] focuses on
synthesizing robust controllers, their framework does not address the analysis
of robustness. Moreover, robust controllers are measured via a rank function
(quantitatively). Robust linear temporal logic (rLTL) extends the binary view
of LTL to a 5-valued semantics to capture different levels of property satisfaction
[43]. This work is tangent to ours as it focuses on specifying robustness.

In [17,49], the authors define robustness as a set of environmental behav-
iors for which a software system can guarantee safety. Defining robustness in
the semantic domain–i.e. in terms of behaviors–implicitly describes safe environ-
mental deviations. Our notion of robustness captures safe environmental devia-
tions explicitly in terms of transitions, which offer both syntactic (transitions)
and semantic (implied behaviors) information. Transition-based robustness also
allows us to capture the safe environmental envelopes of a system; it is not clear
how one might efficiently capture this information with only behaviors.

In [29], the authors define robustness also based on additional transitions
to the environment. Their definition of robustness compares the perturbed con-
trolled behavior, i.e., beh(Ed|f), instead of directly comparing the additional
transitions. In this manner, the partial order used to define robustness in [29]
is different from our notion of robustness. Moreover, only an efficient algorithm
for invariance properties is presented. Extending the work in [29], the authors
explore the relationship between controller robustness and permissiveness for
invariance properties [30].

Robust control in discrete event systems is also an active area of research
[1,10,19–21,26,31,33,39,44,47,48]. However, they usually deal with specific
types of faults such as communication delays, loss of information, or deception

Safe Environmental Envelopes of Discrete Systems 347

attacks [1,20,21,26,31,39,47]. We capture model uncertainty with our robust-
ness definition, which can be attributed to these faults. Robustness against model
uncertainty is tackled in the works of [10,19,44,48]. In these works, deviations
are modeled by the behavior generated by the environment. On the other hand,
we modeled deviations by the inclusion of extra transitions. In [11], a controller
realizability problem is studied for environments modeled as modal transition
systems, where a controller satisfies a property in all, some, or none of the LTS
family. Our notion of robustness explicitly computes which systems in the LTS
family satisfy the property.

Lastly, robustness also relates to fault-tolerance. Fault-tolerance has been
studied in the context of distributed systems [13,22,34]. In [6,9,12,14], synthesis
of fault-tolerant programs by retrofitting initial fault-intolerant programs. These
works focus on specific types of fault models, whereas our robustness model
computes the safety envelope the controller is robust against.

8 Conclusion

In this paper, we introduced a new notion of robustness against environmen-
tal deviations for discrete-state transition systems. Our notion of robustness is
syntactically defined by additional transitions and semantically defined by the
controlled behavior generated by these additional transitions. We provided two
methods to compute robustness: a brute-force algorithm, and an algorithm based
on a controller synthesis problem. We implemented these methods in a proto-
type tool which we used to analyze several case studies. In these case studies,
we demonstrated that our robustness analysis provides crucial information by
identifying the environmental envelopes in which the system can guarantee its
safety properties.

As part of future work, we plan to extend our work to investigate robustness
in the context of partially observable systems as well as in stochastic systems such
as Markov decision processes (MDPs). We also plan to investigate the benefit
of considering additional environmental states–as well as additional transitions–
in our robustness analysis. Finally, we plan to extend our work beyond safety
properties, e.g. including liveness.

Acknowledgements. This project was supported by the US NSF Awards CCF-
2144860, CNS-1801342, CNS-1801546, CCF-1918140, and ECCS-2144416.

References

1. Alves, M.V.S., da Cunha, A.E.C., Carvalho, L.K., Moreira, M.V., Basilio, J.C.:
Robust supervisory control of discrete event systems against intermittent loss of
observations. Int. J. Control 1–13 (2019)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Bloem, R., et al.: Synthesizing robust systems. Acta Inf. 51(3–4), 193–220 (2014)
4. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust sys-

tems. In: 2009 Formal Methods in Computer-Aided Design, pp. 85–92 (2009)

348 R. Meira-Góes et al.

5. Bolton, M.L., Bass, E.J.: Evaluating human-automation interaction using task ana-
lytic behavior models, strategic knowledge-based erroneous human behavior gen-
eration, and model checking. In: 2011 IEEE International Conference on Systems,
Man, and Cybernetics, pp. 1788–1794 (2011). https://doi.org/10.1109/ICSMC.
2011.6083931

6. Bonakdarpour, B., Kulkarni, S.S.: SYCRAFT: a tool for synthesizing distributed
fault-tolerant programs. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008.
LNCS, vol. 5201, pp. 167–171. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85361-9_16

7. Introduction to Discrete Event Systems. Lecture Notes in Computer Science,
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72274-6_9

8. Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving programs
robust. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering (ESEC/FSE 2011),
pp. 102–112. Association for Computing Machinery (2011)

9. Cheng, C.-H., Rueß, H., Knoll, A., Buckl, C.: Synthesis of fault-tolerant embedded
systems using games: from theory to practice. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 118–133. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-18275-4_10

10. Cury, J., Krogh, B.: Robustness of supervisors for discrete-event systems. IEEE
Trans. Automat. Control 44(2), 376–379 (1999)

11. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: The modal transition
system control problem. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 155–170. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32759-9_15

12. Ebnenasir, A., Kulkarni, S.S., Arora, A.: FTSyn: a framework for automatic syn-
thesis of fault-tolerance. Int. J. Softw. Tools Technol. Transf. 10(5), 455–471 (2008)

13. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Comput. Surv. 31(1), 1–26 (1999)

14. Girault, A., Rutten, E.: Automating the addition of fault tolerance with discrete
controller synthesis. Formal Method. Syst. Des. 35, 190–225 (2009)

15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

16. Henzinger, T.A., Otop, J., Samanta, R.: Lipschitz robustness of finite-state trans-
ducers. In: Raman, V., Suresh, S.P. (eds.) 34th International Conference on Foun-
dation of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 29, pp. 431–443.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2014)

17. Kang, E.: Robustness analysis for secure software design. In: Proceedings of the
3rd ACM SIGSOFT International Workshop on Software Security from Design
to Deployment (SEAD 2020), pp. 19–25. Association for Computing Machinery
(2020)

18. Leveson, N., Turner, C.: An investigation of the therac-25 accidents. Computer
26(7), 18–41 (1993). https://doi.org/10.1109/MC.1993.274940

19. Lin, F.: Robust and adaptive supervisory control of discrete event systems. IEEE
Trans. Automat. Control 38(12), 1848–1852 (1993)

20. Lin, F.: Control of networked discrete event systems: dealing with communication
delays and losses. SIAM J. Control Optimiz. 52(2), 1276–1298 (2014)

21. Lin, L., Zhu, Y., Su, R.: Towards bounded synthesis of resilient supervisors. In:
2019 IEEE 58th Conference on Decision and Control (CDC), pp. 7659–7664 (2019)

https://doi.org/10.1109/ICSMC.2011.6083931
https://doi.org/10.1109/ICSMC.2011.6083931
https://doi.org/10.1007/978-3-540-85361-9_16
https://doi.org/10.1007/978-3-540-85361-9_16
https://doi.org/10.1007/978-3-030-72274-6_9
https://doi.org/10.1007/978-3-642-18275-4_10
https://doi.org/10.1007/978-3-642-18275-4_10
https://doi.org/10.1007/978-3-642-32759-9_15
https://doi.org/10.1007/978-3-642-32759-9_15
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1109/MC.1993.274940

Safe Environmental Envelopes of Discrete Systems 349

22. WDAG 1996. LNCS, vol. 1151. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-61769-8_9

23. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley
and Sons Inc, USA (2000)

24. Majumdar, R., Render, E., Tabuada, P.: Robust discrete synthesis against unspec-
ified disturbances. In: Proceedings of the 14th International Conference on Hybrid
Systems: Computation and Control (HSCC 2011), pp. 211–220. Association for
Computing Machinery (2011)

25. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic
65(2), 149–184 (1993)

26. Meira-Góes, R., Marchand, H., Lafortune, S.: Towards resilient supervisors against
sensor deception attacks. In: 2019 IEEE 58th Annual Conference on Decision and
Control (CDC) (2019)

27. Meira-Góes, R., Dardik, I., Kang, E., Lafortune, S., Tripakis, S.: Safe environmen-
tal envelopes of discrete systems. Zenodo (2023). https://doi.org/10.5281/zenodo.
7999482

28. Meira-Goes, R., Dardik, I., Kang, E., Lafortune, S., Tripakis, S.: Transitional
robustness github repository (2023). https://github.com/cmu-soda/transitional-
robustness. Accessed 29 May 2023

29. Meira-Góes, R., Kang, E., Lafortune, S., Tripakis, S.: On tolerance of discrete
systems with respect to transition perturbations. arXiv:2110.04200 [eess.SY] (2021)

30. Meira-Góes, R., Kang, E., Lafortune, S., Tripakis, S.: On synthesizing tolerable
and permissive controllers for labeled transition systems. In: 16th IFAC Workshop
on Discrete Event Systems WODES 2022, vol. 55, no. 28, pp. 158–164 (2022)

31. Meira-Goes, R., Lafortune, S., Marchand, H.: Synthesis of supervisors robust
against sensor deception attacks. IEEE Trans. Automat. Control 66(10), 4990–
4997 (2021)

32. Neider, D., Weinert, A., Zimmermann, M.: Synthesizing optimally resilient con-
trollers. Acta Inf. 57(1), 195–221 (2020)

33. Paoli, A., Lafortune, S.: Safe diagnosability for fault-tolerant supervision of
discrete-event systems. Automatica 41(8), 1335–1347 (2005)

34. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

35. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 1989), pp. 179–190. Association for Computing Machinery (1989)

36. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), pp. 46–57 (1977)

37. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

38. U.S. Attorney’s Office Eastern District of Kentucky. Clay county officials and res-
idents convicted on racketeering and voter fraud charges (2010). https://archives.
fbi.gov/archives/louisville/press-releases/2010/lo032510.htm

39. Rohloff, K.: Bounded sensor failure tolerant supervisory control. In: 11th IFAC
Workshop on Discrete Event Systems, vol. 45, no. 29, pp. 272–277 (2012)

40. Samanta, R., Deshmukh, J.V., Chaudhuri, S.: Robustness analysis of string trans-
ducers. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
427–441. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_30

https://doi.org/10.1007/3-540-61769-8_9
https://doi.org/10.1007/3-540-61769-8_9
https://doi.org/10.5281/zenodo.7999482
https://doi.org/10.5281/zenodo.7999482
https://github.com/cmu-soda/transitional-robustness
https://github.com/cmu-soda/transitional-robustness
http://arxiv.org/abs/2110.04200
https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm
https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm
https://doi.org/10.1007/978-3-319-02444-8_30

350 R. Meira-Góes et al.

41. Sempreboni, D., Viganò, L.: X-men: a mutation-based approach for the formal anal-
ysis of security ceremonies. In: 2020 IEEE European Symposium on Security and
Privacy (EuroS&P), pp. 87–104 (2020). https://doi.org/10.1109/EuroSP48549.
2020.00014

42. Tabuada, P., Balkan, A., Caliskan, S.Y., Shoukry, Y., Majumdar, R.: Input-output
robustness for discrete systems. In: Proceedings of the Tenth ACM International
Conference on Embedded Software (EMSOFT 2012), pp. 217–226. Association for
Computing Machinery (2012)

43. Tabuada, P., Neider, D.: Robust Linear Temporal Logic. In: Talbot, J.M., Regnier,
L. (eds.) 25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 62, pp. 10:1–10:21.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2016)

44. Takai, S.: Maximizing robustness of supervisors for partially observed discrete event
systems. Automatica 40(3), 531–535 (2004)

45. Topcu, U., Ozay, N., Liu, J., Murray, R.M.: On synthesizing robust discrete con-
trollers under modeling uncertainty. In: Proceedings of the 15th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC 2012), pp. 85–
94. Association for Computing Machinery (2012)

46. Tun, T.T., Bennaceur, A., Nuseibeh, B.: Oasis: weakening user obligations for
security-critical systems. In: 2020 IEEE 28th International Requirements Engi-
neering Conference (RE), pp. 113–124 (2020). https://doi.org/10.1109/RE48521.
2020.00023

47. Wang, F., Shu, S., Lin, F.: Robust networked control of discrete event systems.
IEEE Trans. Automat. Sci. Eng. 13(4), 1528–1540 (2016)

48. Young, S., Garg, V.K.: Model uncertainty in discrete event systems. SIAM J. Con-
trol Optimiz. 33(1), 208–226 (1995)

49. Zhang, C., Garlan, D., Kang, E.: A behavioral notion of robustness for software
systems. In: Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE 2020), pp. 1–12. Association for Computing Machinery (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/EuroSP48549.2020.00014
https://doi.org/10.1109/EuroSP48549.2020.00014
https://doi.org/10.1109/RE48521.2020.00023
https://doi.org/10.1109/RE48521.2020.00023
http://creativecommons.org/licenses/by/4.0/

	Safe Environmental Envelopes of Discrete Systems
	1 Introduction
	2 Motivating Example
	3 Modeling Formalism
	4 Robustness Against Environmental Deviations
	4.1 Deviations
	4.2 Comparing Deviations
	4.3 Robustness
	4.4 Problem Statement
	4.5 Comparing Robustness

	5 Computing Robustness
	5.1 Brute-Force Algorithm
	5.2 Controlling the Deviations Without Environmental Constraints
	5.3 Controlling the Deviations with Environmental Constraints

	6 Case Studies
	6.1 Implementation
	6.2 Therac-25
	6.3 Voting
	6.4 Oyster
	6.5 PCA Pump
	6.6 Results and Discussion

	7 Related Work
	8 Conclusion
	References

