
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Automated Synthesis of Secure Platform Mappings

Eunsuk Kang1, Stéphane Lafortune2, and Stavros Tripakis3

1 Carnegie Mellon University eskang@cmu.edu
2 University of Michigan stephane@umich.edu

3 Northeastern University stavros@northeastern.edu

Abstract. System development often involves decisions about how a high-level
design is to be implemented using primitives from a low-level platform. Certain
decisions, however, may introduce undesirable behavior into the resulting imple-
mentation, possibly leading to a violation of a desired property that has already
been established at the design level. In this paper, we introduce the problem of
synthesizing a property-preserving platform mapping: synthesize a set of imple-
mentation decisions ensuring that a desired property is preserved from a high-
level design into a low-level platform implementation. We formalize this synthe-
sis problem and propose a technique for generating a mapping based on symbolic
constraint search. We describe our prototype implementation, and two real-world
case studies demonstrating the applicability of our technique to the synthesis of
secure mappings for the popular web authorization protocols OAuth 1.0 and 2.0.

1 Introduction

When building a complex software system, one may begin by coming up with an ab-
stract design, and then construct an implementation that conforms to this design. In
practice, there are rarely enough time and resources available to build an implementa-
tion from scratch, and so this process often involves reuse of an existing platform—a
collection of generic components, data structures, and libraries that are used to build an
application in a particular domain.

The benefits of reuse also come with potential risks. A typical platform exhibits
its own complex behavior, including subtle interactions with the environment that may
be difficult to anticipate and reason about. Typically, the developer must work with
the platform as it exists, and is rarely given the luxury of being able to modify it and
remove unwanted features. For example, when building a web application, a developer
must work with a standard browser and take into account all its features and security
vulnerabilities. As a result, achieving an implementation that perfectly conforms to the
design—in the traditional notion of behavioral refinement [20]—may be too difficult
in practice. Worse, the resulting implementation may not necessarily preserve desirable
properties that have already been established at the level of design.

These risks are especially evident in applications where security is a major con-
cern. For example, OAuth 2.0, a popular authorization protocol subjected to rigorous
and formal analysis at an abstract level [9, 33, 42], has been shown to be vulnerable to
attacks when implemented on a web browser or a mobile device [39, 41, 10]. Many of
these vulnerabilities are not due to simple programming errors: They arise from logi-
cal flaws that involve a subtle interaction between the protocol logic and the details of

2 Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

the underlying platform. Unfortunately, OAuth itself does not explicitly guard against
these flaws, since it is intended to be a generic, abstract protocol that deliberately omits
details about potential platforms. On the other hand, anticipating and mitigating against
these risks require an in-depth understanding of the platform and security expertise,
which many developers do not possess.

This paper proposes an approach to help developers overcome these risks and achieve
an implementation that preserves desired properties. In particular, we formulate this task
as the problem of automatically synthesizing a property-preserving platform mapping:
A set of implementation decisions ensuring that a desired property is preserved from a
high-level design into a low-level platform implementation.

Our approach builds on the prior work of Kang et al. [28], which proposes a mod-
eling and verification framework for reasoning about security attacks across multiple
levels of abstraction. The central notion in this framework is that of a mapping, which
captures a developer’s decisions about how abstract system entities are to be realized in
terms of their concrete counterparts. In this paper, we fix a bug in the formalization of
mapping in [28] and extend the framework of [28] with the novel problem of synthe-
sizing a property-preserving mapping. In addition, we present an algorithmic technique
for performing this synthesis task. Our technique, inspired by the highly successful
paradigms of sketching and syntax-guided synthesis [3, 38, 37, 26], takes a constraint
generalization approach to (1) quickly prune the search space and (2) produce a solu-
tion that is maximal (i.e., a largest set of mappings that preserve a given property).

We have built a prototype implementation of the synthesis technique. Our tool ac-
cepts a high-level design model, a desired system property (both specified by the devel-
oper), and a model of a low-level platform (built and maintained separately by a domain
expert). The tool then produces a maximal set of mappings (if one exists) that would
ensure that the resulting platform implementation preserves the given property. We have
successfully applied our tool to synthesize property-preserving mappings for two non-
trivial case studies: the authentication protocols OAuth 1.0 and 2.0 implemented on
top of HTTP. Our results are promising: The implementation decisions captured by
our synthesized mappings describe effective mitigations against some of the common
vulnerabilities that have been found in deployed OAuth implementations [39, 41].

The contributions of this paper include: a formal treatment of mapping, including
a correction in the original definition [28] (Section 2); a formulation of the mapping
synthesis problem, a novel approach for ensuring the preservation of a property be-
tween a high-level design and its platform implementation (Section 3); a technique for
automatically synthesizing mappings based on symbolic constraint search (Section 4);
and a prototype implementation of the synthesis technique along with a real-world case
study demonstrating the feasibility of this approach (Section 5). We conclude with a
discussion of related work (Section 6).

2 Mapping Composition

Our approach builds on the modeling and verification framework proposed by Kang
et al. [28], which is designed to allow modular reasoning about behavior of processes
across multiple abstraction layers. In this framework, a trace-based semantic model

Automated Synthesis of Secure Platform Mappings 3

{p}SenderAlice

{p.x}

{p}

{s}{s.x}

{s}

{p.x}

{s.x}{p.y}

{s.y}

{a.b.p}

{a.b.s}
{a.e.p}

E0 E1

{a.e.p}

{a.e.s}

Eve

A0 A1

X0

RecvX

S0

{u.e.s}

{u.e.p}

(a) Abstract Channel (b) Public Channel

LAlice = { a.b.p, a.b.s, a.e.p, a.e.s }
LEve = { a.e.p, a.e.s, u.e.p, u.e.s }
LSender = LRecvX =

 { p, s, p.x, s.x, p.y, s.y }

EAlice = { {a.b.p}, {a.b.s}, {a.e.p} }
EEve = { {a.e.p}, {a.e.s}, {u.e.p}, {u.e.s} }
ESender = { {p}, {s}, {p.x}, {s.x}, {p.y}, {s.y} }
ERecvX

 = { {p}, {s}, {p.x}, {s.x} }

(c) Labels and events

Fig. 1. A pair of high-level (abstract) and low-level (public) communication models. Note that
each event is a set of labels, where each label describes one possible representation of the event.

(based on CSP [21]) is extended to represent events as sets of labels, and includes a
new composition operator based on the notion of mappings, which relate event labels
from one abstraction layer to another. In this section, we present the essential elements
of this framework.

Running example. Consider a simple example involving communication of mes-
sages among a set of processes. In our modeling approach, the communication of a
message is represented by labels of the form sender.receiver.message. For example,
label a.e.p represents Alice sending Eve a public, non-secret message. Similarly, a.b.s
represents Alice sending a secret message to another process (b for Bob, for example).
In this system, Alice is unwilling to share its secret with Eve; in Figure 1(a), this is
modeled by the absence of any transition on event {a.e.s} in the Alice process.

Eve is a malicious character whose goal is to learn Alice’s secret. Beside a.e.p and
a.e.s, Eve is associated with two additional labels, u.e.p and u.e.s, which represent
receiving a public or secret message, respectively, through some unknown sender u.
Conceptually, these two latter labels can be regarded as side channels [30] that Eve
uses to obtain information.

A desirable property of this abstract communication system is that Eve should never
be able to learn Alice’s secret4. In this case, it can be easily observed that the property
holds, since Alice, by design, never sends the secret to Eve.

The model in Figure 1(b) describes communication over a low-level public channel
that is shared among all processes. A message sent over this channel may be encrypted
using a key, as captured by labels of the form message.key. For instance, p.x and s.x
represent the transmission of a public and secret message, respectively, using key x.
A message may also be sent in plaintext by omitting an encryption key (e.g., label s
represents the plaintext transmission of a secret). Each receiver on the public channel is
assumed to have knowledge of only a single key; for instance, RecvX only knows key x
and thus cannot receive messages that are encrypted using key y (i.e., labels p.y and s.y
do not appear in events of RecvX).

Suppose that we wish to reason about the behavior of the abstract communication
system from Figure 1(a) when it is implemented over the public channel in 1(b). In

4 A formalization of this property is provided later in this section.

4 Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

particular, in the low-level implementation, Eve and other processes (e.g., Bob) are re-
quired to share the same channel, no longer benefitting from the separation provided
by the abstraction in Figure 1(a). Does the property of the abstract communication hold
in every possible implementation? If not, which decisions ensure that Alice’s secret re-
mains protected from Eve? We formulate these questions as the problem of synthesizing
a property-preserving mapping between a pair of high-level and low-level models.

Events, traces, and processes. Let L be a potentially infinite set of labels. An event e
is a finite, non-empty set of labels: e ∈ E(L), where E(L) is the set of all finite subsets
of L except the empty set ∅. Let S∗ be the set of all finite sequences of elements of set S.
A trace t is a finite sequence of events: t ∈ T(L), where T(L) is the set of all traces over
L (i.e., T(L) = (E(L))∗). The empty trace is denoted by 〈〉, and the trace consisting of
a sequence of events e1, e2, ... is denoted 〈e1, e2, ...〉. If t and t′ are traces, then t · t′ is
the trace obtained by concatenating t and t′. Note that 〈〉 · t = t · 〈〉 = t for any trace t.

Let t be a trace over set of labels L, and let A ⊆ L be a subset of L. The projection
of t onto A, denoted t � A, is defined as follows:

〈〉 � A = 〈〉 (〈e〉 · t) � A =

{
〈e ∩ A〉 · (t � A) if e ∩ A 6= ∅
(t � A) otherwise

For example, if t = 〈{a}, {a, c}, {b}〉, then t � {a, b} = 〈{a}, {a}, {b}〉 and t �
{b, c} = 〈{c}, {b}〉.

A process P is defined as a triple (LP, EP, TP). The labels of process P, LP ⊆ L, is
the set of all labels appearing in P, and EP ⊆ E(L) is the set of events that may appear
in traces of P, which are denoted by TP ⊆ T(L). We assume traces in every process P
to be prefix-closed; i.e., 〈〉 ∈ TP and for every non-empty trace t′ = t · 〈e〉 ∈ TP, t ∈ TP.

Parallel composition. A pair of processes P and Q synchronize with each other by
performing events e1 and e2, respectively, if these two events share at least one label. In
their parallel composition, denoted P ‖ Q, this synchronization is represented by a new
event e′ that is constructed as the union of e1 and e2 (i.e., e′ = e1 ∪ e2).

Formally, let P = (LP, EP, TP) and Q = (LQ, EQ, TQ) be a pair of processes. Their
parallel composition is defined as follows:

EP‖Q = {e ∈ E(LP ∪ LQ) | eventCond(e,P) ∧ eventCond(e,Q) ∧ syncCond(e)}
TP‖Q = {t ∈ (EP‖Q)

∗ | (t � LP) ∈ TP ∧ (t � LQ) ∈ TQ} (Def. 1)

where LP‖Q = LP ∪ LQ, predicate eventCond is defined as

eventCond(e,P) ≡ e ∩ LP = ∅ ∨ e ∩ LP ∈ EP

and a condition on synchronization, syncCond, is defined as

syncCond(e) ≡ e ⊆ LP − LQ ∨ e ⊆ LQ − LP ∨ (∃ a ∈ e : a ∈ LP ∩ LQ) (Cond. 1)

The definition of TP‖Q states that if we take a trace t in the composite process and ignore
labels that appear only in Q, then the resulting trace must be a valid trace of P (and
symmetrically for Q). The condition (Cond. 1) is imposed on every event appearing
in TP‖Q to ensure that an event performed together by P and Q contains at least one
common label shared by both processes.

This type of parallel composition can be seen as a generalization of the parallel
composition of CSP [21], from single labels to sets of labels. That is, the CSP parallel

Automated Synthesis of Secure Platform Mappings 5

composition is the special case of the composition of Def. 1 where every event is a
singleton (i.e., it contains exactly one label). Note that if event e contains exactly one
label a, then a must belong to the alphabet of P or that of Q, which means syncCond(e)
always evaluates to true. The resulting expression in that case

TP‖Q = {t ∈ T(LP ∪ LQ) | (t � LP) ∈ TP ∧ (t � LQ) ∈ TQ}
is equivalent to the definition of parallel composition in CSP [21, Sec. 2.3.3].

Mapping composition. A mapping m over set of labels L is a partial function m :
L → L. Informally, m(a) = b stipulates that every event that contains a as a label is
to be assigned b as an additional label. We sometimes use the notations a 7→m b or
(a, b) ∈ m as alternatives to m(a) = b. When we write m(a) = b we mean that m(a)
is defined and is equal to b. The empty mapping, denoted m = ∅, is the partial function
m : L→ L which is undefined for all a ∈ L.

Mapping composition allows a pair of processes to interact with each other over dis-
tinct labels. Formally, consider two processes P = (LP, EP, TP) and Q = (LQ, EQ, TQ),
and let L = LP ∪ LQ. Given mapping m : L → L, the mapping composition P‖mQ is
defined as follows:

EP‖mQ = {e ∈ E(LP ∪ LQ) | eventCond(e,P) ∧ eventCond(e,Q) ∧
syncCond′(e) ∧ mapCond(e,m)}

TP‖mQ = {t ∈ (EP‖mQ)
∗ | (t � LP) ∈ TP ∧ (t � LQ) ∈ TQ} (Def. 2)

where LP‖mQ = LP ∪ LQ, and syncCond′(e) and mapCond(e,m) are defined as:

syncCond′(e) ≡ syncCond(e) ∨ (∃ a ∈ e ∩ LP,∃ b ∈ e ∩ LQ : m(a) = b ∨ m(b) = a)

mapCond(e,m) ≡ (∀ a ∈ e : a ∈ dom(m)⇒ m(a) ∈ e)

where dom(m) is the domain of function m. Compared to Def. 1, the additional disjunct
in syncCond′(e) allows P and Q to synchronize even when they do not share any label,
if at least one pair of their labels are mapped to each other in m. The predicate mapCond
ensures that if an event e contains a label a and m is defined over a, then e also contains
the label that a is mapped to.

Note that Def. 2 is different from the definition of mapping composition in [28],
and corrects a flaw in the latter. In particular, the definition in [28] omits condition
syncCond′, which permits the undesirable case in which events e1 and e2 from P and Q
are synchronized into union e = e1 ∪ e2 even when the events do not share any label.

Example. Let P and Q be the abstract and public channel communication models
from Figure 1(a) and (b), respectively. The property that Eve never learns Alice’s secret
can be stated as follows:

Φ ≡ ¬(∃ e ∈ E(L) : l1, l2 ∈ e : l1 = a.*.s ∧ l2 = *.e.s)

where * ∈ {a, b, e, u}. In other words, Eve should never be able to engage in an event
that involves the transmission of Alice’s secret. From Figure 1(a), it can be observed
that P = Alice‖Eve |= Φ.

Suppose that we decide on a simple implementation scheme where the abstract
messages sent by Alice are transmitted over the public channel in plaintext; this decision
can be encoded as a mapping, m1, where each abstract label (i.e., LAlice in Figure 1(c))

6 Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

is mapped to concrete label p or s as follows:

a.b.p, a.e.p, u.e.p 7→m1
p a.b.s, a.e.s, u.e.s 7→m1

s

The resulting implementation can be constructed as process Im1 ≡ (Alice‖m1Sender) ‖
(Eve‖m1

RecvX). Due to the definition of mapping composition (Def. 2), the following
event may appear in a trace of the overall composite process:

〈{a.b.s, s, a.e.s}〉 ∈ TIm1

Note that this trace is a violation of the above property (i.e., Im1 6|= Φ). This can be seen
as an example of abstraction violation: As a result of decisions in m1, a.b.s and u.e.s
now share the same underlying representation (s), and Eve is able to engage in an event
with a label (a.b.s) that was not previously available to it in the abstract model.

Properties of the mapping composition operator. Mapping composition is a gener-
alization of parallel composition: The latter is a special case of mapping composition
where the given mapping is empty:

Lemma 1. Given a pair of processes P and Q, if m = ∅ then P‖mQ = P ‖ Q.

Commutativity. The proposed mapping composition operator is commutative: i.e.,
P‖mQ = Q‖mP. This property can be inferred from the fact that Def. 2 is symmetric
with respect to P and Q. It follows that by being a special case of mapping composition,
the parallel composition operator is also commutative.

Associativity. The mapping composition operator is associative under the following
conditions on the alphabets of involved processes and mappings:

Theorem 1. Given processes P, Q, and R, let X = (P‖m1Q)‖m2R and Y = P‖m3(Q‖m4R).
If EX = EY , then X = Y.

Proof. Available in the extended version of this paper [27].

3 Synthesis Problems
The mapping verification problem is to check, given processes P and Q, mapping m, and
specification Φ, whether (P‖mQ) |= Φ. This problem was studied by Kang et al. [28].
In this paper, we introduce and study, for the first time to our knowledge, the problem
of mapping synthesis. We begin with a simple formulation of the problem and then
generalize it. We will not define what exactly the specification Φ may be, neither the
satisfaction relation |=, as the mapping synthesis problems defined below are generic
and can work with any type of specification or satisfaction relation. In Section 5.1, we
discuss how this generic framework is instantiated in our implementation.

Problem 1 (Mapping Synthesis). Given processes P and Q, and specification Φ, find,
if it exists, a mapping m such that (P‖mQ) |= Φ. We call such an m a valid mapping.

Note that if Φ is a trace property [2, 29], this problem can be stated as a ∃ ∀ problem;
that is, finding a witness m to the formula ∃m : ∀ t ∈ TP‖mQ : t ∈ Φ.

Instead of synthesizing m from scratch, the developer may wish to express their
partial system knowledge as a given constraint, and ask the synthesis tool to generate

Automated Synthesis of Secure Platform Mappings 7

a mapping that adheres to this constraint. For instance, given labels a, b, c ∈ L, one
may express a constraint that a must be mapped to either b or c as part of every valid
mapping; this gives rise to two possible candidate mappings, m1 and m2, where m1(a) =
b and m2(a) = c. Formally, let M be the set of all possible mappings between labels L.
A mapping constraint C ⊆ M is a set of mappings that are considered legal candidates
for a final, synthesized valid mapping. Then, the problem of synthesizing a mapping
given a constraint can be formulated as follows:

Problem 2 (Generalized Mapping Synthesis). Given processes P and Q, specification
Φ, and mapping constraint C, find, if it exists, a valid mapping m such that m ∈ C.

Note that Problem 1 is a special case of Problem 2 where C = M. The synthesis problem
can be further generalized to one that involves synthesizing a constraint that contains a
set of valid mappings:

Problem 3 (Mapping Constraint Synthesis). Given processes P and Q, specification Φ,
and mapping constraint C, generate, if it exists, a non-empty set of valid mappings C′

such that C′ ⊆ C. We call such a C′ valid with respect to P, Q, Φ and C.

A procedure for solving Problem 3 can be used to solve Problem 2: Having generated
constraint C′, we can pick any mapping m ∈ C′. Such an m is guaranteed to be valid
and also to belong in C.

In practice, it is desirable for C′ to be as large as possible while still being valid,
as it provides more implementation choices (i.e., possible mappings). In particular, we
say that a mapping constraint C′ is maximal with respect to P, Q, Φ, and C if and only
if (1) C′ is valid with respect to P, Q, Φ, and C, and (2) there exists no other constraint
C′′ such that C′′ is also valid w.r.t. P, Q, Φ, C, and C′ ⊆ C′′. Then, our final synthesis
problem can be stated as follows:

Problem 4 (Maximal Constraint Synthesis). Given processes P and Q, property Φ, and
constraint C, generate, if it exists, a maximal constraint C′ with respect to P, Q, Φ, C.

If found, C′ is a local optimal solution. In general, there may be multiple maximal
constraints for given P, Q, Φ, and C.

Example. Back to our running example, an alternative implementation of the abstract
communication model over the public channel involves encrypting messages sent by
Alice to Bob using a key (y) that Eve does not possess; this decision can be encoded as
the following valid mapping m2:

a.b.p 7→m2
p.y a.b.s 7→m2

s.y a.e.p 7→m2
p.x a.e.s 7→m2

s.y

Since Eve cannot read messages encrypted using key y, she is unable to obtain Al-
ice’s secret over the public channel; thus, Im2

|= Φ, where Im2
≡ (Alice‖m2

Sender) ‖
(Eve‖m2RecvX).

The following mapping, m3, which leaves non-secret messages unencrypted in the
low-level channel (as p), is also valid with respect to Φ:

a.b.p 7→m2
p a.b.s 7→m2

s.y a.e.p 7→m2
p a.e.s 7→m2

s.y

since Eve being able to read non-secret messages does not violate the property. Thus,
the developer may choose either m2 or m3 to implement the abstract channel and ensure

8 Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

that Alice’s secret remains protected from Eve. In other words, C1 = {m2,m3} is a valid
(but not necessarily maximal) mapping constraint with respect to the desired property.
Furthermore, C1 is arguably more desirable than another constraint C2 = {m2}, since
the former gives the developer more implementation choices than the latter does.

4 Synthesis Technique

Mapping representation. In our approach, mappings are represented symbolically as
logical expressions over variables that correspond to labels being mapped. The symbolic
representation has the following advantages over an explicit one (where the entries of
mapping m are enumerated explicitly): (1) it provides a succinct representation of im-
plementation decisions to the developer (which is especially important as the size of
the mapping grows large) and (2) it allows the user to specify partial implementation
decisions (i.e., given constraint C) in a declarative manner.

We adopt the symbolic representation and, inspired by SyGuS [3], use a syntactic
approach where the space of candidate mapping constraints is restricted to expressions
that can be constructed from a given grammar. Our grammar is specified as follows:

Term := Var | Const Assign := (Term = Term)

Expr := Assign | ¬Assign | Assign⇒ Assign | Expr ∧ Expr

where Var is a set of variables that represent parameters inside a label, and Const is
the set of constant values. Intuitively, this grammar captures implementation decisions
that involve assignments of parameters in an abstract label to their counterparts in a
concrete label (represented by the equality operator “=”). A logical implication is used
to construct a conditional assignment of a parameter.

A mapping constraint is symbolically represented as a set of predicates, each of
the form X (abs, conc) over symbolic labels abs and conc, where abs represents the
label being mapped to conc. The body of each predicate is constructed as an expression
from the above grammar. For example, let abs = a.b.msg be a symbolic encoding of
labels that represent Alice communicating to Eve, with variable msg corresponding to
the message being sent; similarly, let conc = msg′.key be a symbolic label in the public
channel model, where msg′ and key correspond to the message being transmitted and
the key used to encrypt it (if any). Then, the expression

X (a.b.msg,msg′.key) ≡ msg = msg′ ∧ (msg = s⇒ key = y)

states that (1) parameter msg in the abstract label must be equal to that in the concrete
label (i.e., the message being transmitted must be preserved during the mapping) and
(2) if the message is a secret, key y must be used to encrypt it in the implementation.

The set of mappings that predicate X (abs, conc) represents is defined as:

C = {m : L→ L | ∀ abs ∈ L :(abs ∈ dom(m)⇔ ∃ conc ∈ L : X (abs, conc)) ∧
(abs ∈ dom(m)⇒ X (abs,m(abs)))}

That is, a mapping m is allowed by X (abs, conc) if and only if for each label abs, (1) m
is defined over abs if and only if there exists some label conc for which X (abs, conc)
evaluates to true, and (2) m maps abs to such a label conc.

Automated Synthesis of Secure Platform Mappings 9

Algorithmic considerations. To ensure that the algorithm terminates, the set of ex-
pressions that may be constructed using the given grammar is restricted to a finite set,
by bounding the domains of data types (e.g., distinct messages and keys in our running
example) and the size of expressions. We also assume the existence of a verifier that is
capable of checking whether a candidate mapping satisfies a given specification Φ. The
verifier implements function verify(C,P,Q, Φ) which returns OK if and only if every
mapping allowed by constraint C is valid with respect to P,Q, Φ.

Generalization algorithm. Once we limit the number of candidate expressions to be
finite, we can use a brute-force algorithm to enumerate and check those candidates one
by one. However, this naive algorithm is likely to suffer from scalability issues. Thus,
we present an algorithm that takes a generalization-based approach to identify and prune
undesirable parts of the search space. A key insight is that only a few implementation
decisions—captured by some minimal subset of the entries in a mapping—may be suf-
ficient to imply that the resulting implementation will be invalid. Thus, given some
invalid mapping, the algorithm attempts to identify this minimal subset and construct a
larger constraint Cbad that is guaranteed to contain only invalid mappings.

The outline of the algorithm is shown in Figure 2. The function synthesize takes four
inputs: processes P and Q, specification Φ, and a user-specified mapping constraint C.
It also maintains a set of constraints X, which keeps track of “bad” regions of the search
space that do not contain any valid mappings.

In each iteration, the algorithm selects some mapping m from C (line 3) and checks
whether it belongs to one of the constraints in X (meaning, the mapping is guaranteed
to result in an invalid implementation). If so, it is simply discarded (lines 4-5).

Otherwise, the verifier is used to check whether m is valid with respect to Φ (line
7). If so, then generalize is invoked to produce a maximal mapping constraint Cmaximal,
which represents the largest set that contains {m}, is contained in C, and is valid with
respect to P,Q, Φ (line 9). If, on the other hand, m is invalid (i.e., it fails to preserve
Φ), then generalize is invoked to compute the largest superset Cbad of {m} that contains
only invalid mappings (i.e., those that satisfy ¬Φ). The set Cbad is then added to X and
used to prune out subsequent, invalid candidates (line 13).

Constraint generalization. The function generalize(C′,P,Q, Φ,C) computes a max-
imal set that contains C′, is contained within C, and only permits mappings that satisfy
Φ. This function is used in two different ways: (1) to identify an undesirable region of
the candidate space that should be avoided, and (2) to produce a maximal version of a
valid mapping constraint.

The procedure works by incrementally growing C′ into a larger set Crelaxed and stop-
ping when Crelaxed contains at least one mapping that violates Φ. Suppose that constraint
C′ is represented by a symbolic expression X , which itself is a conjunction of n subex-
pressions k1 ∧ k2 ∧ ... ∧ kn, where each ki for 1 ≤ i ≤ n represents a (possibly con-
ditional) assignment of a variable or a constant to some label parameter. The function
decompose(C′) takes the given constraint and returns the set of such subexpressions.
The function relax(C′, ki) then computes a new constraint by removing k from C′; this
new constraint, Crelaxed, is a larger set of mappings that subsumes C′.

The verifier is then used to check Crelaxed against Φ (line 22). If Crelaxed is still valid
with respect to Φ, then the implementation decision encoded by k is irrelevant for Φ,

10 Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis10

1 fun synthesize(P, Q, �, C)
2 X = {}
3 for m 2 C do
4 if 9Cbad 2 X : m 2 Cbad then
5 skip
6 end
7 result verify({m}, P, Q,�)
8 if result = OK then
9 Cmaximal generalize({m}, P, Q,�, C)

10 return Cmaximal

11 else
12 Cbad generalize({m}, P, Q, ¬�, C)
13 X X [{Cbad}
14 end
15 end
16 return none
17 end
18 fun generalize(C0, P, Q, �, C)
19 K decompose(C0)
20 for k 2 K do
21 Crelaxed relax(C0, k)
22 result verify(Crelaxed, P, Q,�)
23 if result = OK ^ Crelaxed ✓ C then
24 C0 Crelaxed

25 end
26 end
27 return C0

28 end
Algorithm 1: An algorithm for synthesizing a maximal mapping constraint.

The procedure works by incrementally growing C into a larger set C0 and stopping
when C0 contains at least one mapping that violates �. Suppose that constraint C is
represented by a symbolic expression X , which itself is a conjunction of n subexpres-
sions k1 ^ k2 ^ ... ^ kn, where each ki for 1 i n represents a (possibly con-
ditional) assignment of a variable or a constant to some label parameter. The function
decompose(C) takes the given constraint and returns the set of such subexpressions.
The function relax(C, ki) then computes a new constraint by removing k from C; this
new constraint, C0, is a larger set of mappings that subsumes C.

The verifier is then used to check C0 against � (line 22). If C0 is still valid with
respect to �, then the implementation decision encoded by k is irrelevant for �, mean-
ing we can safely remove k from the final synthesized constraint C (line 24). If not, k
is retained as part of C, and the algorithm moves onto the next subexpression k as a
candidate for removal (line 20). On line 23, we also make sure that C0 does not violate
the predefined user constraints C.

Example. Back to our running example, one candidate constraint C (line 3 line 3 of
what?) is represented in part by the following expression (for mappings from writeEve

10

1 fun synthesize(P, Q, �, C)
2 X = {}
3 for m 2 C do
4 if 9Cbad 2 X : m 2 Cbad then
5 skip
6 end
7 result verify({m}, P, Q,�)
8 if result = OK then
9 Cmaximal generalize({m}, P, Q,�, C)

10 return Cmaximal

11 else
12 Cbad generalize({m}, P, Q, ¬�, C)
13 X X [{Cbad}
14 end
15 end
16 return none
17 end
18 fun generalize(C0, P, Q, �, C)
19 K decompose(C0)
20 for k 2 K do
21 Crelaxed relax(C0, k)
22 result verify(Crelaxed, P, Q,�)
23 if result = OK ^ Crelaxed ✓ C then
24 C0 Crelaxed

25 end
26 end
27 return C0

28 end
Algorithm 1: An algorithm for synthesizing a maximal mapping constraint.

The procedure works by incrementally growing C into a larger set C0 and stopping
when C0 contains at least one mapping that violates �. Suppose that constraint C is
represented by a symbolic expression X , which itself is a conjunction of n subexpres-
sions k1 ^ k2 ^ ... ^ kn, where each ki for 1 i n represents a (possibly con-
ditional) assignment of a variable or a constant to some label parameter. The function
decompose(C) takes the given constraint and returns the set of such subexpressions.
The function relax(C, ki) then computes a new constraint by removing k from C; this
new constraint, C0, is a larger set of mappings that subsumes C.

The verifier is then used to check C0 against � (line 22). If C0 is still valid with
respect to �, then the implementation decision encoded by k is irrelevant for �, mean-
ing we can safely remove k from the final synthesized constraint C (line 24). If not, k
is retained as part of C, and the algorithm moves onto the next subexpression k as a
candidate for removal (line 20). On line 23, we also make sure that C0 does not violate
the predefined user constraints C.

Example. Back to our running example, one candidate constraint C (line 3 line 3 of
what?) is represented in part by the following expression (for mappings from writeEve

Fig. 2. An algorithm for synthesizing a maximal mapping constraint.

meaning we can safely remove k from the final synthesized constraint C′ (line 24). If
not, k is retained as part of C′, and the algorithm moves onto the next subexpression k
as a candidate for removal (line 20). On line 23, we also make sure that Crelaxed does not
violate the predefined user constraints C.

Example. Let abs = a.e.msg be a symbolic label that represents Alice sending a
message (msg) to Eve, and conc = msg′.key be its corresponding label in the public
channel model. Then, one candidate constraint C′ for mappings from the high-level to
low-level labels can be specified using the following expression:

X (a.e.msg,msg′.key) ≡ msg = msg′ ∧ (msg = s⇒ key = y) ∧ (msg = p⇒ key = x)

Suppose that this constraint C′ has been verified to be valid with respect to P, Q and
Φ. Next, the generalization procedure removes the subexpression k1 ≡ (msg = p ⇒
key = x) from C′, resulting in constraint Crelaxed that is represented as:

X (a.e.msg,msg′.key) ≡ msg = msg′ ∧ (msg = s⇒ key = y)

When checked by the verifier (line 22), C′ is still considered valid, meaning that the
decision encoded by k1 is irrelevant to the property; thus, k1 can be safely removed.

However, removing k2 ≡ (msg = s⇒ key = y) results in a violation of the property.
Thus, k2 is kept as part of the final maximal constraint expression.

5 Implementation and Case Studies

5.1 Implementation

We have built a prototype implementation5 of the synthesis algorithm described in Sec-
tion 4. Our tool uses the Alloy Analyzer [25] as the underlying modeling and verifi-
cation engine. Alloy’s flexible, declarative relational logic is convenient for encoding
the semantics of the mapping composition as well as specifying mapping constraints.

5 The tool, along with the models used in our case studies, is available at https://github.
com/eskang/MappingSynthesisTool.

Automated Synthesis of Secure Platform Mappings 11

AuthServerClient

User (Alice or Eve)
1 2

3

4 1. initiate(ret_session)
2. authorize(userid, pwd,
 ret_code)
3. forward(code, session)
4. getToken(code, ret_token)

AuthServerClient

User
1

2

3

4

5 1. initiate(ret_session,
 ret_reqToken)
2. getReqToken(ret_reqToken)
3. authorize(userid, pwd,
 reqToken)
4. notify(reqToken)
5. getAccessToken(reqToken,
 ret_accessToken)

(a) OAuth 2.0 (b) OAuth 1.0

Fig. 3. A high-level overview of the two OAuth protocols, with a sequence of event labels that de-
scribe protocol steps in the typical order that they occur. Each arrowed edge indicates the direction
of the communication. Variables inside labels with the prefix ret represent return parameters.
For example, in Step 2 of OAuth 2.0, User passes their user ID and password as arguments to
AuthServer, which returns ret code back to User in response.

The analysis engine for Alloy uses an off-the-shelf SAT solver to perform bounded
verification [25]. In particular, our current prototype is capable of synthesizing map-
pings to preserve the following types of properties: reachability and safety properties,
which can be expressed in either of the forms ∃ t : t ∈ TP ∧ t ∈ φ (reachability) and
¬∃ t : t ∈ TP ∧ t 6∈ φ (safety) for some process P and property φ.

However, our synthesis approach does not prescribe the use of a particular modeling
and verification engine, and can be implemented using other tools as well (such as an
SMT solver [11, 12]).

5.2 Case Studies: OAuth Protocols

As two major case studies, we took on the problem of synthesizing valid mappings
for OAuth 1.0 and OAuth 2.0, two real-world protocols used for third-party authoriza-
tion [24]. The purpose of the OAuth protocol family in general is to allow an application
(called a client in the OAuth terminology) to access a resource from another applica-
tion (an authorization server) without needing the credentials of the resource owner
(a user). For example, a gaming application may initiate an OAuth process to obtain
a list of friends from a particular user’s Facebook account, provided that the user has
authorized Facebook to release this resource to the client.

OAuth 2.0 is the newer version of the protocol, while OAuth 1.0 is an older version.
Although OAuth 2.0 is intended to be a replacement for OAuth 1.0, there has been much
contention within the developer community about whether it actually improves over its
predecessor in terms of security [17]. Since both protocols are designed to provide the
same security guarantees (i.e., both share common properties), our goal was to apply
our synthesis approach to systematically compare what developers would be required
to do in order to construct secure web-based implementations of the two.

5.3 Formal Modeling

For our case studies, we constructed the following set of Alloy models: (1) model P1.0

representing OAuth 1.0; (2) model P2.0 representing OAuth 2.0; (3) model Q represent-
ing generic HTTP interactions between a browser and a server, as well as the behavior of
a web-based attacker; (4) specification Φ describing desired protocol properties (same
for both OAuth 1.0 and 2.0); and (5) mapping constraints C1.0 and C2.0 representing
initial, user-specified partial mappings for OAuth 1.0 and 2.0, respectively. The com-
plete models are approximately 1800 lines of Alloy code in total, and took around 4

12 Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

man-months to build. These models were then provided as inputs to our tool to solve
two instances of Problem 4 from Section 3. In particular, we synthesized a maximal
mapping constraint C′1.0 such that every m ∈ C′1.0 ensures that P1.0‖mQ |= Φ. and a
maximal mapping constraint C′2.0 such that every m ∈ C′2.0 ensures that P2.0‖mQ |= Φ.

OAuth models (P1.0, P2.0). We constructed Alloy models of OAuth 1.0 and 2.0 based
on the official protocol specifications [23, 24]. Due to limited space, we give only a brief
overview of the models. Each model consists of four processes: Client, AuthServer, and
two users, Alice and Eve (the latter with a malicious intent to access Alice’s resources).

A typical OAuth 2.0 workflow, shown in Figure 3(a), begins with a user (Alice or
Eve) initiating a new protocol session with Client (initiate). The user is then asked to
prove their own identity to AuthServer (by providing a user ID and a password) and
officially authorize the client to access their resources (authorize). Given the user’s au-
thorization, the server then allocates a unique code for the user, and then redirects their
back to the client. The user forwards the code to the client (forward), which then can
exchange the code for an access token to their resources (getToken).

Like in OAuth 2.0, a typical workflow in OAuth 1.0 (depicted in Figure 3(b)) be-
gins with a user initiating a new session with Client (initiate). Instead of immediately
directing the user to AuthServer, however, Client first obtains a request token from Auth-
Server and associates it with the current session (getReqToken). The user is then asked
to present the same request token to AuthServer and authorize Client to access their
resources (authorize). Once notified by the user that the authorization step has taken
place (notify), Client exchanges the request token for an access token that can be used
subsequently to access their resources (getAccessToken).

Specification (Φ). There are two desirable properties of OAuth protocols in general:
(1) Authenticity: When the client receives an access token, it must correspond to the
user who initiated the current protocol session. (2) Completion: There exists at least
one trace in which the protocol interactions are carried out to completion in the or-
der of steps described in Figure 3. Authenticity is a safety property while completion
is a reachability property. The input specification Φ consists of these two properties.
Completion is essential for ruling out mappings that over-constrain the resulting imple-
mentation and prevent certain steps of the protocol from being performed.

HTTP platform model (Q). Our goal was to explore and synthesize web-based im-
plementations of OAuth. For this purpose, we constructed a formal model depicting
interactions between a generic HTTP server and web browser. The model contains two
types of processes, Server and Browser (which may be instantiated into multiple pro-
cesses representing different servers and browsers). They interact with each other over
HTTP requests, which share the following signature:

req(method : Method, url : URL, headers : List[Header], body : Body, ret resp : Resp)

The parameters of an HTTP request have their own internal structures, each consisting
of its own parameters as follows:

url(host : Host, path : Path, queries : List[Query]) header(name : Name, val : Value)

resp(status : Status, headers : List[Header], body : Body)

Automated Synthesis of Secure Platform Mappings 13

initiate(ret_session) ⟼
req(GET, http://client.com/initiate?queries, headers,
 body, ret_resp(OK, [set-cookie: ret_session], body))

authorize(userid, pwd, ret_code) ⟼
req(POST, http://server.com/authorize?queries, headers,
 body, ret_resp(Redirect, headers, body))

forward(code, session) ⟼
req(POST, http://client.com/forward?queries, headers,
 body, ret_resp(OK, [], body))

getToken(code, ret_token) ⟼
req(GET, http://client.com/getToken?[code], headers,
 body, ret_resp(OK, [], ret_token))

Fig. 4. User-specified partial mappings from OAuth 2.0 to HTTP. Terms highlighted in blue and
red are variables that represent the parameters inside OAuth and HTTP labels, respectively. For
example, in forward, the abstract parameters code and session may be transmitted as part of an
URL query, a header, or the request body, although its URL is fixed to http://client.com/forward.

Our model describes generic, application-independent HTTP interactions. In particu-
lar, each Browser process is a machine that constructs, at each communication step with
Server, an arbitrary HTTP request by non-deterministically selecting a value for each
parameter of the request. The processes, however, follow a platform-specific logic; for
instance, when given a response from Server that instructs a browser cookie to be stored
at a particular URL, Browser will include this cookie along with every subsequent re-
quest directed at that URL. In addition, the model includes a process that depicts the
behavior of a web attacker, who may operate their own malicious server and exploit
weaknesses in a browser to manipulate the user into sending certain HTTP requests.

Mapping Constraint (C1.0,C2.0). Building a web-based implementation of OAuth
involves decisions about how abstract protocol operations are to be realized in terms of
HTTP requests. As an input to the synthesizer, we specified an initial set of constraints
that describe partial implementation decisions for both OAuth protocols; the ones for
OAuth 2.0 are shown in Figure 4. These decisions include a designation of fixed host
and path names inside URLs for various OAuth operations (e.g., http:/client.com/initiate
for the OAuth initiate event), and how certain parameters are transmitted as part of an
HTTP request (ret session as a return cookie in initiate). It is reasonable to treat these
constraints as given, since they describe decisions that are common across typical web-
based OAuth implementations.

Insecure mapping for OAuth 2.0. Let us now give an example of an insecure map-
ping that satisfies the user-given constraint in Figure 4 but could introduce a security
vulnerability into the resulting implementation. Later in Section 5.4, we describe how
our tool can be used to synthesize a secure mapping that prevents this vulnerability.

Consider the OAuth 2.0 workflow from Figure 3(a). In order to implement the for-
ward operation, for instance, the developer must determine how the parameters code
and session of the abstract event label are encoded using their concrete counterparts in
an HTTP request. A number of choices is available. In one possible implementation,
the authorization code may be transmitted as a query parameter inside the URL, and the
session as a browser cookie, as described by the following constraint expression, X1:

X1(a,b) ≡ (b.method = POST) ∧ (b.url.host = client.com) ∧
(b.url.path = forward) ∧ (b.url.queries[0] = a.code) ∧
(b.headers[0].name = cookie) ∧ (b.headers[0].value = a.session)

where POST, client.com, forward, and cookie are predefined constants; and l[i] refers to
i-th element of list l.

14 Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

This constraint, however, allows a vulnerable implementation where malicious user
Eve performs the first two steps of the workflow in Figure 3(a) using her own creden-
tials, and obtains a unique code (codeEve) from the authorization server. Instead of for-
warding this to Client (as she is expected to), Eve keeps the code herself, and crafts their
own web page that triggers the visiting browser to send the following HTTP request:

req(POST, http://client.com/forward?codeEve, ...)

Suppose that Alice is a naive browser user who may occasionally be enticed or tricked
into visiting malicious web sites. When Alice visits the page set up by Eve, Alice’s
browser automatically generates the above HTTP request, which, given the decisions in
X1, corresponds to a valid forward event:

forward(codeEve, sessionAlice) 7→
req(POST, http://client.com/forward?codeEve, [(cookie, sessionAlice)], ...)

Due to the standard browser logic, the cookie corresponding to sessionAlice is included
in every request to client.com. As a result, Client mistakenly accepts codeEve as the one
for Alice, even though it belongs to Eve, violating the authenticity property of OAuth
(this attack is also called session swapping [39]).

5.4 Results

Our synthesis tool was able to generate valid mapping constraints for both OAuth pro-
tocols. In particular, the constraints describe mitigations against attacks that exploit an
interaction between the OAuth logic and security vulnerabilities in a web browser.

OAuth 2.0. The synthesized symbolic mapping constraint for OAuth 2.0 consists of
39 conjuncts in total, each capturing a (conditional) assignment of a concrete HTTP pa-
rameter to a constant (e.g., b.url.path = forward) or an abstract OAuth parameter (e.g.,
b.url.queries[0] = a.code). In particular, the constraint captures mitigations against ses-
sion swapping [39] and covert redirect [16]. Due to limited space, we omit the full con-
straint, but instead describe how the vulnerability described at the end of Section 5.3
can be mitigated by our synthesized mapping.

Consider the insecure mapping expression X1 from Section 5.3. The mapping con-
straint synthesized by our tool, X2, fixes the major problem of X1; namely, that in a
browser-based implementation, the client cannot trust an authorization code as having
originated from a particular user (e.g., Alice), since the code may be intercepted or in-
terjected by an attacker (Eve) while in transit through a browser. A possible solution is
to explicitly identify the origin of the code by requiring an additional piece of track-
ing information to be provided in each forward request. The mapping expression X2

synthesized by our tool encodes one form of this solution:

X2(a, b) ≡ X1(a, b) ∧ (a.session = sessionAlice ⇒ b.url.queries[1] = nonce0) ∧
(a.session = sessionEve ⇒ b.url.queries[1] = nonce1)

where nonceo, nonce1 ∈ Nonce are constants defined in the HTTP model6. In partic-
ular, X2 stipulates that every forward request must include an additional value (nonce)
as an argument besides the code and the session, and that this nonce be unique for

6 A nonce is a unique piece of string intended to be used once in communication.

Automated Synthesis of Secure Platform Mappings 15

total
candidates

explored # verified # skipped Avg. verif.

time

OAuth 1.0 79200 2465 281 2184 2.01

OAuth 2.0 29400 1453 161 1292 1.88

Verif. time Gen.
time

Total
time

Naive alg.
time

Speed up
(x)

OAuth 1.0 566.05 490.84 1056.89 4732.63 4.48

OAuth 2.0 302.76 1138.85 1441.60 2717.41 1.88

total
candidates

explored # verified # skipped Avg. verif.

time

OAuth 1.0 79200 2465 281 2184 2.01

OAuth 2.0 29400 1453 161 1292 1.88

Verif. time Gen.
time

Total
time

Naive alg.
time

Speed up
(x)

OAuth 1.0 566.05 490.84 1056.89 4732.63 4.48

OAuth 2.0 302.76 1138.85 1441.60 2717.41 1.88

General.Generali-
zation

Verification
(total)Avg. Total

Verification

Fig. 5. Experimental results (all times in seconds). “# total candidates” is the total number of
possible symbolic mapping expressions; “# explored” is the number of iterations taken by the
main synthesis loop (lines 3-15, Figure 2) before a solution was found. Out of these iterations,
“# verified” mappings were verified (line 7), while the rest were identified as invalid and skipped
(line 5). “Total time” the sum of the Total Verification and Generalization columns) refers to the
time spent by the tool to synthesize a maximal constraint.

each session value. X2 ensures that the resulting implementation satisfies the desired
properties of OAuth 2.

OAuth 1.0. The synthesized symbolic mapping constraint for OAuth 1.0 consists of
48 conjuncts in total, capturing how the abstract parameters of the five OAuth 1.0 oper-
ations are related to concrete HTTP parameters. The constraint synthesized by our tool
for OAuth 1.0 encodes a mitigation against the session fixation [15] attack; in short,
this mitigation involves strengthening the notify operation with unique nonces (similar
to the way the forward operation in OAuth 2.0 was fixed above) to prevent the attacker
from violating the authenticity property.

Performance. Figure 5 shows experimental results for the two OAuth protocols7.
Overall, the synthesizer took approximately 17.6 and 24.0 minutes to synthesize the
constraints for 1.0 and 2.0, respectively. In both cases, the tool spent a considerable
amount of time on the generalization step to learn the invalid regions of the search space.
Note that generalization is effective at identifying and discarding a very large number
of invalid candidates; it was able to skip 2184 out of 2465 candidates for OAuth 1.0
(≈ 88.6%) and 1292 out of 1453 for OAuth 2.0 (≈ 88.9%). Our generalization tech-
nique was particularly effective for the OAuth protocols, since a significant percentage
of the candidate constraints would result in an implementation that violates the com-
pletion property (i.e., it prevents Alice or Eve from completing a protocol session in an
expected order). Often, the decisions contributing to this violation could be localized to
a small subset of entries in a mapping (for example, attempting to send a cookie to a
mismatched URL, which is inconsistent with the behavior of the browser process). By
identifying this subset, our algorithm was able to discover and eliminate a large number
of invalid mappings.

6 Related Work
Our approach has been inspired by the success of recent synthesis paradigms such
as sketching [38, 37, 36], oracle-guided synthesis [26] and syntax-guided synthesis [3].
Our technique shares many similarities with these approaches in that (1) it allows the
user to provide a partial specification of the artifact to be synthesized (in the form of
constraints or examples), therefore having the underlying engine complete the remain-
ing parts; (2) it relies on an interaction between the verifier, which checks candidate

7 The experiments were performed on a Mac OS X 2.7 GHz laptop with 8G RAM and Min-
iSat [13] as the underlying SAT solver employed by the Alloy Analyzer.

16 Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

solutions, and the synthesizer, which prunes that search space based on previous invalid
candidates. Our work also differs in a number of aspects. First, we synthesize mappings
from high-level models to low-level execution platforms, which to our knowledge has
not been considered before. Second, our approach leverages constraint generalization
to not only prune the search space, but also to produce a constraint capturing a (locally)
maximal set of valid mappings. Third, our application domain is in security protocols.

A large body of literature exists on refinement-based methods to system construc-
tion [20, 4]. These approaches involve building an implementation Q that is a behavioral
refinement of P; such Q, by construction, would satisfy the properties of P. In compari-
son, we start with an assumption that Q is a given platform, and that the developer may
not have the luxury of being able to modify or build Q from scratch. Thus, instead of
behavioral refinement (which may be too challenging to achieve), we aim to preserve
some critical property φ when P is implemented using Q.

The task of synthesizing a valid mapping can be seen as a type of the model merging
problem [8]. This problem has been studied in various contexts, including architectural
views [31], behavioral models [32, 6, 40], and database schemas [34]. Among these, our
work is most closely related to merging of partial behavioral models [6, 40]. In these
works, given a pair of models M1 and M2, the goal is to construct M′ that is a behavioral
refinement of both M1 and M2. The approach proposed in this paper differs in that (1)
the mapping composition involves merging a pair of events with distinct alphabet labels
into a single event that retains all of those labels, and (2) the composed process (P‖mQ)
need not be a behavioral refinement of P or Q, as long as it satisfies property φ.

Bhargavan and his colleagues presents a compiler that takes a high-level program
written using session types [22] and automatically generates a low-level implementa-
tion [7]. This technique is closer to compilation than to synthesis in that it uses a fixed
translation scheme from high-level to low-level operations in a specific language en-
vironment (.NET), without searching a space of possible translations. Synthesizing a
low-level implementation from a high-level specification has also been studied in the
context of data structures [18, 19], although their underlying representation (relational
algebra for data schema specification) is very different from ours (process algebra).

A significant contribution of our work is the production of formal models for real-
world protocols such as OAuth and HTTP. There have been similar efforts by other
researchers in building reusable models of the web for security analysis [1, 5, 14]. As
far as we know, however, none of these models has been used for synthesis.

7 Conclusions

In this paper, we have proposed a novel system design methodology centered around
the notion of mappings. We have presented novel mapping synthesis problems and an
algorithm for efficiently synthesizing symbolic maximal valid mappings. In addition,
we have validated our approach on realistic case studies involving the OAuth protocols.

Future directions include performance improvements (e.g., exploiting the fact that
our generalization-based algorithm is easily parallelizable), combining our generalization-
based synthesis method with a counter-example guided approach, and application of
our synthesis approach to other domains beside security (e.g., platform-based design
and embedded systems [35]).

Automated Synthesis of Secure Platform Mappings 17

References

1. Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn Song. Towards
a formal foundation of web security. In CSF, pages 290–304, 2010.

2. Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,
1985.

3. Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. Syntax-guided synthesis. In FMCAD, pages 1–8, 2013.

4. Ralph-Johan Back. A calculus of refinements for program derivations. Acta Inf., 25(6):593–
624, 1988.

5. Chetan Bansal, Karthikeyan Bhargavan, and Sergio Maffeis. Discovering concrete attacks
on website authorization by formal analysis. In CSF, pages 247–262, 2012.

6. Shoham Ben-David, Marsha Chechik, and Sebastián Uchitel. Merging partial behaviour
models with different vocabularies. In CONCUR, pages 91–105, 2013.

7. Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, and James J.
Leifer. Cryptographic protocol synthesis and verification for multiparty sessions. In CSF,
pages 124–140, 2009.

8. Greg Brunet, Marsha Chechik, Steve Easterbrook, Shiva Nejati, Nan Niu, and Mehrdad Sa-
betzadeh. A manifesto for model merging. In Proceedings of the 2006 International Work-
shop on Global Integrated Model Management, pages 5–12, 2006.

9. Suresh Chari, Charanjit S Jutla, and Arnab Roy. Universally Composable Security Analysis
of OAuth v2.0. IACR Cryptology ePrint Archive, 2011:526, 2011.

10. Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick Tague. OAuth
Demystified for Mobile Application Developers. In CCS, pages 892–903, 2014.

11. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS, volume
4963 of lncs, pages 337–340. Springer, 2008.

12. Bruno Dutertre. Yices 2.2. In CAV, pages 737–744, 2014.
13. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT, pages 502–518, 2003.
14. Daniel Fett, Ralf Küsters, and Guido Schmitz. An expressive model for the web infrastruc-

ture: Definition and application to the browser ID SSO system. In 2014 IEEE Symposium on
Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 673–688, 2014.

15. OAuth Working Group. OAuth Security Advisory: 2009.1 “Session Fixation”. https:
//oauth.net/advisories/2009-1, 2009.

16. OAuth Working Group. OAuth Security Advisory: 2014.1 “Covert Redirect”. https:
//oauth.net/advisories/2014-1-covert-redirect, 2014.

17. Eran Hanmer. OAuth 2.0 and the Road to Hell. https://hueniverse.com/2012/
07/26/oauth-2-0-and-the-road-to-hell, 2012.

18. Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and Mooly Sagiv. Data
representation synthesis. In PLDI, pages 38–49, 2011.

19. Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin C. Rinard, and Mooly Sagiv. Concurrent
data representation synthesis. In PLDI, pages 417–428, 2012.

20. C. A. R. Hoare. Proof of correctness of data representations. Acta Inf., 1:271–281, 1972.
21. C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,

1978.
22. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.

In POPL, pages 273–284, 2008.
23. Internet Engineering Task Force. The OAuth 1.0 Protocol. https://tools.ietf.org/html/rfc5849,

2010.

18 Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

24. Internet Engineering Task Force. OAuth Authorization Framework.
http://tools.ietf.org/html/rfc6749, 2014.

25. Daniel Jackson. Software Abstractions: Logic, language, and analysis. MIT Press, 2006.
26. Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided component-

based program synthesis. In ICSE, pages 215–224, 2010.
27. Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis. Synthesis of property-preserving

mappings. CoRR, abs/1705.03618, 2017.
28. Eunsuk Kang, Aleksandar Milicevic, and Daniel Jackson. Multi-Representational Security

Analysis. In FSE, 2016.
29. Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software

Eng., 3(2):125–143, 1977.
30. Butler W. Lampson. A note on the confinement problem. Commun. ACM, 16(10):613–615,

1973.
31. Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of component and con-

nector models from crosscutting structural views. In ESEC/FSE, pages 444–454, 2013.
32. Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve M. Easterbrook, and Pamela

Zave. Matching and merging of statecharts specifications. In ICSE, pages 54–64, 2007.
33. Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M Pai, and Sanjay Singh. Formal verification

of OAuth 2.0 using Alloy framework. In Communication Systems and Network Technologies
(CSNT), pages 655–659. IEEE, 2011.

34. Rachel Pottinger and Philip A. Bernstein. Merging models based on given correspondences.
In VLDB, pages 826–873, 2003.

35. Alberto L. Sangiovanni-Vincentelli and Grant Martin. Platform-based design and software
design methodology for embedded systems. IEEE Design & Test of Computers, 18(6):23–33,
2001.

36. Armando Solar-Lezama. The sketching approach to program synthesis. In Proceedings
of the 7th Asian Symposium on Programming Languages and Systems, APLAS ’09, pages
4–13. Springer, 2009.

37. Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodı́k, and Kemal Ebcioğlu. Program-
ming by sketching for bit-streaming programs. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’05, pages 281–
294. ACM, 2005.

38. Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A. Seshia, and Vijay A.
Saraswat. Combinatorial sketching for finite programs. In ASPLOS, pages 404–415, 2006.

39. San-Tsai Sun and Konstantin Beznosov. The devil is in the (implementation) details: an
empirical analysis of OAuth SSO systems. In CCS, pages 378–390, 2012.

40. Sebastián Uchitel and Marsha Chechik. Merging partial behavioural models. In SIGSOFT
FSE, pages 43–52, 2004.

41. Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing Me onto Your Accounts through Face-
book and Google: A Traffic-Guided Security Study of Commercially Deployed Single-Sign-
On Web Services. In IEEE Symposium on Security and Privacy, pages 365–379, 2012.

42. Xingdong Xu, Leyuan Niu, and Bo Meng. Automatic verification of security properties
of OAuth 2.0 protocol with cryptoverif in computational model. Information Technology
Journal, 12(12):2273, 2013.

