
Synthesis-Based Resolution of Feature Interactions in
Cyber-Physical Systems

Benjamin Gafford
Institute for Software Research
Carnegie Mellon University

gafford@cmu.edu

Tobias Dürschmid
Institute for Software Research
Carnegie Mellon University

duerschmid@cmu.edu

Gabriel A. Moreno
Software Engineering Institute
Carnegie Mellon University
gmoreno@sei.cmu.edu

Eunsuk Kang
Institute for Software Research
Carnegie Mellon University

eskang@cmu.edu

ABSTRACT
The feature interaction problem arises when two or more indepen-
dent features interact with each other in an undesirable manner.
Feature interactions remain a challenging and important problem
in emerging domains of cyber-physical systems (CPS), such as intel-
ligent vehicles, unmanned aerial vehicles (UAVs) and the Internet of
Things (IoT), where the outcome of an unexpected interaction may
result in a safety failure. Existing approaches to resolving feature
interactions rely on priority lists or fixed strategies, but may not be
effective in scenarios where none of the competing feature actions
are satisfactory with respect to system requirements. This paper
proposes a novel synthesis-based approach to resolution, where a
conflict among features is resolved by synthesizing an action that
best satisfies the specification of desirable system behaviors in the
given environmental context. Unlike existing resolution methods,
our approach is capable of producing a desirable system outcome
even when none of the conflicting actions are satisfactory. The
effectiveness of the proposed approach is demonstrated using a
case study involving interactions among safety-critical features in
an autonomous drone.
ACM Reference Format:
Benjamin Gafford, Tobias Dürschmid, Gabriel A. Moreno, and Eunsuk Kang.
2020. Synthesis-Based Resolution of Feature Interactions in Cyber-Physical
Systems. In 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3324884.3416630

1 INTRODUCTION
The feature interaction problem occurs when two or more indepen-
dent features interact with each other in unanticipated ways, pos-
sibly leading to an undesirable system outcome. Although feature
interactions have been long studied by the software engineering
community [11, 35, 48], they remain a challenging and important

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416630

problem in emerging domains of cyber-physical systems (CPS),
such as intelligent vehicles, unmanned aerial vehicles (UAVs) and
the Internet of Things (IoT), where the outcome of an unexpected
interaction may result in a safety failure [20, 32, 47]. For example,
unexpected interactions between a pair of braking features has
been found to be one of the contributing factors to the incidents
involving unintended acceleration on Toyota vehicles [45].

Managing feature interactions typically involve two tasks: de-
tection and resolution. In this paper, we specifically focus on the
problem of resolution at the run time. Once a conflict among fea-
tures is detected during the execution of a system, the goal of a
run-time resolution method is to select the most desirable out of
the actions proposed by the competing features.

A major challenge in designing effective resolution mechanisms
is defining what it means for an action to be more desirable than
others. Existing approaches to resolution rely on some notion of pri-
orities [12, 13, 27, 50] (e.g., emergency braking should always be se-
lected over other features) or variable-specific strategies [9, 49] (e.g.,
the feature that results in the lowest acceleration output is consid-
ered safest and thus should be selected). Both types of approaches,
however, face limitations when managing feature interactions in
modern CPS with a highly dynamic, unpredictable environment.

First, the desirability of a feature actionmay be context-dependent;
i.e., whether or not one action is more desirable than the others
depends on the current conditions of the environment. For example,
although decreasing the speed of a vehicle is often associated with
reducing the risk of a collision, in certain traffic scenarios, it may
actually be safer to accelerate (e.g., when another vehicle is trailing
within an unsafe distance). Since it is difficult to predict these types
of scenarios at design-time, a resolution method that uses a priority
list or fixed strategy may sometimes fail to produce a desirable
system behavior.

Second, in certain situations, none of the competing feature
actions may be desirable with respect to the system requirements.
This is a fundamental challenge with resolution: When a pair of
features have conflicting objectives, being forced to select one over
the other means temporarily sacrificing the objective of the latter
feature. However, when both of these features perform critical tasks
(e.g., safety functions), this “winner-takes-all” approach may cause
a negative impact on the system (e.g., a safety violation) regardless
of which feature is selected.

https://doi.org/10.1145/3324884.3416630
https://doi.org/10.1145/3324884.3416630

ASE ’20, September 21–25, 2020, Virtual Event, Australia Benjamin Gafford, Tobias Dürschmid, Gabriel A. Moreno, and Eunsuk Kang

To address these challenges, this paper proposes a synthesis-
based approach for resolving unexpected feature interactions that
arise in CPS. In this approach, the desirability of a feature action is
defined in terms of how well the system would satisfy its desired re-
quirements if that particular action were to be executed in the given
environment. In particular, we leverage a formal specification nota-
tion called signal temporal logic (STL) [31]—an extension of linear
temporal logic that is well-suited for describing behaviors of CPS—
along with the notion of robustness of property satisfaction [24] to
precisely define the desirability of an action as a quantitative metric.
This enables a formulation of resolution as an optimization problem:
Given a specification of desired system behaviors (specified as STL
properties) and competing actions in a given context, the goal is
to select the action that achieves the highest level of satisfaction.
Furthermore, our approach explores actions beyond the given ones
and resolves a conflict by synthesizing a new action that is more
desirable than any of the given actions.

We have implemented a prototype of our resolution method
as part of the flight control software for autonomous drones (in
particular, using PX4 [23], a popular open source flight control soft-
ware for drones). To demonstrate the effectiveness of our method,
we performed simulations of an autonomous drone with four ac-
tive features that perform distinct but sometimes conflicting safety
tasks. Our evaluation shows that compared to existing methods,
our resolution approach is significantly better at satisfying multi-
dimensional objectives, avoiding the violation of safety require-
ments, and producing smoother and more stable action sequences.

The contributions of this paper are as follows:
• A synthesis-based approach to feature interaction resolution,
where the problem of selecting themost desirable action is formu-
lated as synthesizing the action that best satisfies the objectives
of the competing features,

• A system architecture and an algorithm for synthesizing actions,
and a prototype implementation on a control system for real-
world autonomous drones,

• A case study that demonstrates the effectiveness of the proposed
approach on an autonomous drone with four safety features.

The rest of the paper is structured as follows. We first introduce a
running example involving an autonomous drone that illustrates
the challenges with existing methods for resolution and how our ap-
proach addresses them (Section 2). Then, we describe the concepts
of STL and robustness of property satisfaction (Section 3), which
serves as the theoretical basis for our resolution method (Section 4).
We then describe an evaluation of our approach using a case study
involving simulations of an autonomous drone (Section 5). Finally,
we discuss related works (Section 6) and conclude with a discussion
of the scope and limitations of our approach and future directions
(Section 7).

2 EXAMPLE
Consider an autonomous drone (shown in Figure 1) that is con-
trolled by on-board autopilot software, which periodically generates
a command to update the velocity and direction of its movement.
The ego drone (i.e., the drone being controlled) has two safety
features installed: (1) the boundary enforcer, which monitors and
overrides the autopilot command (when necessary) to prevent the

Unsafe
region

arun

abound

aresolve

chaser

ego

Figure 1: A scenario where two safety features on the ego
drone are activated at the same time and generate conflict-
ing commands (abound and arun).

drone from flying into an unsafe region, and (2) the runaway en-
forcer, which monitors the movement of a trailing drone (e.g., chaser
in Figure 1) and attempts to maneuver the ego drone away from
the former. As the ego drone moves closer to the boundary while
being chased by another drone, both features become triggered and
generate conflicting commands: The boundary enforcer generates
an action (abound in Figure 1) to move the ego away from the unsafe
region, while the action from the runaway enforcer (arun) pushes
the ego towards the boundary in attempt to distance it from the
chaser. The goal of resolution is to determine the final action to be
performed by the system given such a conflict among the features.
Existing methods. One possible approach to resolving this con-
flict is to use some notion of priorities among features. The drone
operator, for example, may designate the runaway enforcer as hav-
ing a higher priority, and the software controller may be configured
to disregard the actions from other features (including the boundary
enforcer). This decision results in system behaviors that attempt to
satisfy the requirement of the highest-ranked feature while disre-
garding those of the lower-ranked ones.

This type of “winner-takes-all” approach, however, may not be
suitable in situations where such a strict ordering among features
does not exist, or all of the conflicting features play a critical role in
maintaining the system safety and performance. For instance, when
the runaway enforcer is always favored, the ego drone may end up
flying outside the safe boundary in order to evade the chaser. Amore
desirable outcome would be one where the ego drone behaves in a
manner that attempts to satisfy the requirements of both features
by evading the chaser while staying within the boundary.
Proposedmethod. Our resolution approach, in comparison, takes
into account the requirements of all conflicting features and pro-
duces an action that is satisfactory with respect to all of them.
The key idea is to (1) make explicit the desirable system behaviors
that the features are designed to produce and (2) allow the sys-
tem designer to specify the overall specification of the system as a
combination of the requirements of individual features.

For instance, suppose that the two safety enforcers on the drone
are designed to achieve the following requirements:
• Boundary enforcer: “Maintain minimum time-to-intercept Tmin
seconds away from the boundary.”

• Runaway enforcer: “Maintain minimum safe distance Dmin me-
ters between the ego drone and another, trailing drone.”

Given feature requirements in a formal specification notation (in
our case, STL), our resolution method attempts to synthesize an
action that best achieves all of these requirements. In the scenario
depicted in Figure 1, neither of the two given actions arun and abound

Synthesis-Based Resolution of Feature Interactions in Cyber-Physical Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

is satisfactory; moving away from the boundary will increase the
chance of being intercepted by the chaser, and vice-versa. However,
instead of taking either one of these actions, our controller synthe-
sizes a new action, aresolve, that moves the drone in a way that is
consistent with both requirements.

Since our approach does not use a priority list or fixed strategies,
it can handle conflict scenarios where the desirability of one feature
changes dynamically depending on its satisfaction of the system
specification in the current environmental context. In addition,
by considering actions beyond those generated by the features,
our approach is capable of resolving conflicts and maintaining a
desirable system outcome even when none of the competing actions
are satisfactory with respect to the specification.

3 PRELIMINARIES
Signals. In our approach, the behavior of a system is modeled
using the concept of a signal. A signal over domain D is a function
s : T → D, where time domain T is a possibly infinite set of real
numbers that represent points in time (T ⊆ R≥0). The value of a
signal is a tuple of k real numbers that correspond to different state
variables; i.e., D ⊆ Rk and s(t) = (v1, ...,vk). As a shorthand, the
subscript notation si (t) denotes the i-th component of the signal at
time t (for 1 ≤ i ≤ k).
Signal Temporal Logic. STL [31] is an extension of linear tem-
poral logic (LTL) [38] with an ability to specify system states as
real-valued signals evolving over time. Since CPS requirements typ-
ically involve timing properties (e.g., “the drone must re-enter the
safe region within the next 3 seconds”) as well as continuous state
variables (e.g., drone speed), STL is well-suited for specifying CPS
behaviors. An STL formula takes the following form:

φ := u | ¬φ | φ1 ∧ φ2 | φ1U[a,b]φ2

where a < b for a,b ∈ Q≥0, and u is a predicate of the form
fu (s1(t), ..., sk (t)) ≥ 0 for a k-tuple signal s = (s1, ..., sk) at time t .
Informally, φ1U[a,b]φ2 means that φ1 must hold until φ2 becomes
true within the interval [t+a, t+b]. The until operatorU can be used
to express two other common temporal operators—eventually (F)
and always (G): F[a,b]φ = TrueU[a,b]φ and G[a,b]φ = ¬F[a,b]¬φ.
Robustness. In a typical verification process, a specification lan-
guage such as LTL is used to define a desired property of a system,
and a tool is used to check whether the system satisfies the property.
In addition to this binary notion of satisfaction, it is useful to be able
to reason about how “close” the system is from satisfying or violat-
ing a property. To support such a quantitative notion of satisfaction,
STL has been extended with the concept of robustness [22, 24].

Informally, the robustness of signal swith respect to STL formula
φ at time t , denoted ρ(φ, s, t), is a value that represents the difference
between the actual signal value and the threshold at which the
system violates φ. For example, given property φ that says “the
distance between the drone and the boundary to an unsafe region
must be at least 3.0 meters”, ρ(φ, s, t) represents how far beyond
3.0 meters the drone is able to maintain its distance.

Robustness can be used to compare different executions of a
system in terms of their desirability. Suppose that we are given
two signals s1 and s2 (representing two distinct system executions)
such that ρ(φ, s1, t) = 1.0m and ρ(φ, s2, t) = 2.0m. Arguably, the

execution represented by s2 is a safer, more desirable scenario, since
the system maintains a greater distance to the boundary.

Formally, robustness is defined over STL formulas as follows:

ρ(u, s, t) = fu (s1(t), ..., sk (t))
ρ(¬φ, s, t) = −ρ(φ, s, t)

ρ(φ1 ∧ φ2, s, t) = min(ρ(φ1, s, t), ρ(φ2, s, t))
ρ(G[a,b]φ, s, t) = inf t′∈[t+a,t+b] ρ(φ, s, t

′)

ρ(F[a,b]φ, s, t) = supt′∈[t+a,t+b] ρ(φ, s, t
′)

where infx ∈X f (x) is the greatest lower bound of some function f
over domain X (and sup the least upper bound). Since each pred-
icate in STL is of the form u ≡ fu (s1(t), ..., sk (t)) > 0, robustness
intuitively captures how far the signal deviates above (or below) 0.
Robustness for G[a,b]φ represents the value within interval [a,b]
at which the system is the furthest away from satisfying φ (or clos-
est to violating it). Similarly, robustness for F[a,b]φ represents the
value at the time between [a,b] at which the system achieves the
highest satisfaction of φ.
Example. Suppose that the objective of the boundary enforcer is
to fulfill the following safety requirement: “The time before the ego
drone crosses the boundary of a safe region must be at least some
minimum threshold Tmin seconds for the next 3 time units”. This
specification can be written as STL propertyφ ≡ G[0,3](tti−Tmin ≥

0), where tti is a state variable that stores the current time-to-
intercept (TTI); i.e., the time before crossing the boundary.

One possible execution of the drone is represented by the fol-
lowing signal: sA = {(0, (4.0)), (1, (3.5)), (2, (4.0)), (3, (4.5))} (note
that sA here is a single-tuple signal with only one state variable
tti = sA1 (t); in practice, a signal would have a number of other
variables, such as the drone coordinates, velocity, and acceleration).
In particular, this signal depicts the behavior of the drone where
its TTI approaches 3.5s (at time step 1) before pulling away to 4.5s
(at time step 4). Suppose that Tmin = 2.5s . Then, the robustness of
signal sA with respect to the above property at the beginning of
the execution, denoted by ρ(φ, sA, 0), can be computed as 1.0 (= 3.5
- Tmin). Intuitively, this robustness value quantifies how close the
system comes to violating the property.

Consider an alternative execution, represented by signal sB =
{(0, (5.2)), (1, (2.9)), (2, (3.7)), (3, (4.7))}, where ρ(φ, sB , 0) = 0.4. Al-
though the property holds over both executions (robustness values
are positive for both), sA represents arguably the safer and more
desirable behavior, since the drone does not come as close to cross-
ing the boundary as it does in sB . This example demonstrates how
the concept of robustness in STL can be used to distinguish system
behaviors that would be considered equivalent under the binary
notion of satisfaction (as in LTL, for example). As described in the
following section, this quantitative notion of satisfaction plays a
key role in our resolution mechanism.

4 RESOLUTION APPROACH
A high-level overview of the proposed framework for feature inter-
action resolution is shown in Figure 2. In our modeling approach,
a system consists of a controller that interacts with the environ-
ment. The controller contains one or more features, each of which
receives information about the environment from various sensors

ASE ’20, September 21–25, 2020, Virtual Event, Australia Benjamin Gafford, Tobias Dürschmid, Gabriel A. Moreno, and Eunsuk Kang

ResolverDetector

Feature1

Feature2

Featuren

Conflict
Actions...

Synthesized
Action

System
Specification

ActuatorsSensors Environment

a1

a2

an

ControllerEnvironment
Model

Figure 2: Overview of the proposed resolution framework.

and generates an action to influence the latter through an actuator.
For instance, a feature in an autonomous drone may be a safety
enforcer (e.g., the boundary enforcer from Section 2) that is ac-
tivated under certain environment conditions and generates an
action needed to fulfill a requirement (e.g., keep the drone within
the safe region). The detector component in the controller monitors
the actions generated by the features and determines the subset of
the actions that are potentially in conflict with each other. These
conflict actions are then passed onto the resolver.

The resolver is configured with two types of information: the
system specification that describes the requirements of the features
(expressed in STL), and the environment model, which is used by the
resolver to predict how the environment evolves over time given a
particular system action. During resolution, the resolver generates a
space of candidate actions and evaluates each of them in terms of its
robustness (i.e., how well it would satisfy the specification if it were
to be executed on the environment). The action with the highest
robustness value is selected and fed to the actuator, which then
performs the corresponding control action on the environment.
Detection. Detecting feature conflicts is an important part of
feature interactions management, but is not the focus of this paper
and thus omitted from discussion. Briefly, we use the variable-
specific method proposed in the prior works ([9, 49]), where a pair
of features that involve inconsistent modifications to the same
actuator variable (e.g., acceleration) is considered to be in a conflict.

4.1 Environment Model
A key element of our approach is an executable model of the en-
vironment that is used to evaluate each candidate action in terms
of how well it would satisfy the given specification if it were to
be selected as the final action. In particular, the environment is
modeled as a transition systemM = (Q,A,δ ,Qo), where:

• Q ⊆ Rk is the set of states, each representing one possible
configuration of a k-tuple signal (i.e., q = (v1, ...,vk) for some
q ∈ Q and v1, ...,vk ∈ R),

• A is the set of controller actions,
• δ : Q × A → Q is the transition function that describes how
the system moves from one state to another by performing an
action, and

• Q0 ⊆ Q is the set of initial states.

In our running example, the environment model describes how
the state of the ego drone (i.e., its location, direction, and velocity)
changes in response to a flight control action. More precisely, each
state q can be represented as tuple (locx , locy , locz ,velx ,vely ,velz)

where locx,y,z ∈ R encodes the x, y, z coordinates of the ego drone,
and velx,y,z ∈ R encodes the current velocity of the drone.

One type of action performed by the controller is setVelocity(vx ,
vy , vz), which sets the new target velocity of the drone to vx , vy ,
and vz (for x, y, z components, respectively). Then, the transition
function δ is defined such that for any state q′ = δ (q,a) and a =
setVelocity(vx , vy , vz):

q′ = (q.locx + q.velx ,q.locy + q.vely ,q.locz + q.velz ,

q.velx + ax ,q.vely + ay ,q.velz + az)

where ax is the amount of acceleration that is applied to bring
q.velx to vx (and similarly for ay and az).

Conceptually, an environment model can be regarded as a ma-
chine that generates different signals based on the actions per-
formed by the controller. In particular, an execution traceq0,q1, ...,ql
can be converted into signal s, where for each t ≤ l , s(t) = qt .

4.2 System Specification
To recall, one of the major challenges in resolution is that some
of the features are designed to fulfill requirements that inevitably
conflict with each other in certain situations (e.g., the scenario in
Figure 1). One approach is to select one of these conflicting fea-
tures as the “winner” and disable the rest; however, this effectively
amounts to disregarding the requirements of the “losing” features.
Instead, our goal is to consider all of the (possibly conflicting) re-
quirements and synthesize an action that satisfies them as much
as possible. To support this type of resolution, we allow the over-
all system specification to be expressed as a combination of the
requirements of individual features.

More precisely, a feature f ∈ F is modeled as a function that takes
a set of observable variables and produce an action. Each feature is
associated with a requirement Rf that describes the objective that
the feature is designed to achieve. For instance, the requirement of
the boundary enforcer may be stated as “Maintain a safe minimum
distance Dmin to the designated boundary”. In our approach, each
feature requirement is specified as an STL formula (e.g., Rboundary ≡

G[0,3](tti −Tmin ≥ 0)).
Then, given n features f1, f2, ..., fn , the overall system specifica-

tion is defined as a set of weighted feature requirements, as follows:

Rsys = {(w1,R1), (w2,R2), ..., (wn ,Rn)}

where w1,w2, ...,wn ∈ R≥0 are weighting factors that together
add up to 1.0. The weights allow the system engineer to specify
the relative importance of the feature requirements. For example,
assigning equal weights will intuitively configure the system to
resolve a conflict by selecting an action that attempts to satisfy
all of the feature requirements. Similarly, if desired, the engineer
could assign a weight of 1.0 to one of the requirements, effectively
turning our resolver into a priority-based one. The weights could
also be modified at runtime, allowing the engineer to dynamically
adjust the importance of requirements as needed over time.

4.3 Synthesis-Based Resolution
4.3.1 Resolution as Optimization. The goal of resolution is to re-
solve feature conflicts in a way to ensure that the resulting system
behavior is desirable with respect to the feature requirements. To

Synthesis-Based Resolution of Feature Interactions in Cyber-Physical Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

define desirability as a metric, we leverage the notion of robustness
introduced in Section 3. Formally, given a set of feature require-
ments, R1,R2, ...,Rn as STL formulas, the overall desirability of a
system behavior (represented as signal s) is the weighted sum of
the robustness of the individual requirements:

ρsys = w1ρ(R1, s, t) +w2ρ(R2, s, t) + ... +wnρ(Rn , s, t)

We call ρsys the global robustness of the system.
For action a ∈ A and signal scurr that describes the execution

of the system up to the present point in time, let sa be the signal
that results from performing a for the next k steps of the system
execution (i.e., sa is an extension of scurr). Then, the problem of
synthesizing an action for resolution can be formulated as follows:

argmax
a∈A

(
w1ρ(R1, sa , t) +w2ρ(R2, sa , t) + ... +wnρ(Rn , sa , t)

)
In other words, the resolution task involves finding action a that
would result in a signal that maximizes the global robustness.

4.3.2 Normalization. Computing ρsys by simply adding robust-
ness values for different requirements, as stated above, is not se-
mantically valid, due to the following reasons. First, recall from
Section 3 that the robustness for STL expression φ is computed
based on the atomic functions over signal values (i.e., ρ(u, s, t) =
fu (s1(t), .., sk (t))). Since different feature requirements are gen-
erally expressed over different signal functions, their robustness
values cannot be directly compared or combined. Second, although
robustness values are real numbers, operations over them (e.g., ad-
dition and subtraction) may not be semantically meaningful. For
example, the robustness value of -1, signifying that the associated
STL formula φ is violated by the margin of -1, may not be as “bad”
as ρ = 1 is “good”.

Before computing the global robustness as a sum of robustness
for individual feature requirements, we first perform normalization
of these values into a common, semantically meaningful domain.
In particular, our normalization method is designed to achieve the
following list of desiderata:
• The same robustness value produced by two different signal func-
tions should have roughly the same magnitude: i.e., ρ(u1, s1, t) ∼
ρ(u2, s2, t) ∼ ... ∼ ρ(uk , sk , t).

• Addition and subtraction of robustness values should also be
meaningful; e.g., (−1) + 1 ≈ 0, which represents the threshold at
which the system satisfies a STL formula.
To enable normalization, our resolution framework is configured

at design time with a pair of robustness bounds, ρmax and ρmin ,
for each signal function; i.e.; for some ρ(u, s, t) = fu (s1(t), .., sk (t))
and any pair of signal s and time t ,

ρmin ≤ ρ(u, s, t) ≤ ρmax

Intuitively, ρmin represents the amount of violation that the sys-
tem may be willing to tolerate and recover from (i.e., below this
robustness threshold, the system behavior may be considered un-
acceptable or invalid); similarly, ρmax represents the maximum
degree of property satisfaction that is meaningful. These lower and
upper robustness values are highly application-specific and thus
are provided by the system engineer (an example of these values
will be discussed in Section 4.3.4).

Given these ρmax and ρmin values, original robustness x is trans-
formed into a normalized value within [−1, 1] using the following
min-max scaling function:

scale(x) =


x − ρmin

−ρmin
− 1 x < 0

x

ρmax
x ≥ 0

Based on our experience, however, we found this scaling alone
insufficient for encoding the desirability of system behaviors. In
most CPS systems, bringing the system from the state of violating a
requirement (i.e., negative ρ) to satisfying it (i.e., positive ρ) is more
important than improving the degree of satisfaction (i.e., further
increase ρ that is already positive). To drive the resolver towards
making decisions that mitigate violations, we further improve our
normalization so that (1) negative robustness values are weighted
more than positive ones, and (2) major requirement violations are
treated exponentially worse than minor violations. In particular,
we map the scaled robustness values from [−1, 1] to [−2, 1] using
the following function, which penalizes violations of a property
while maintaining linearity for positive robustness values:

penalize(x) =


x −

α−x − 1
α − 1

x < 0

x x ≥ 0

where α is some constant greater than 1. Higher α values result
in steeper exponential curves; for our case study discussed in Sec-
tion 5, we used α = 32, to create a sufficiently exponential curve
that severely penalizes increasing requirements violations with-
out overpenalizing minor requirements violations. Such a curve
improves the resolution system’s ability to minimally violate cer-
tain requirements in order to prevent extreme violations of other
requirements.

Then, fully normalized robustness values for atomic STL expres-
sions are computed as follows:

ρ(u, s, t) = penalize(scale(fu (s1(t), .., sk (t))))

Robustness for other types of STL expressions (e.g., ∧, ∨, G, F) are
computed the usual way as described in Section 3. Then, normalized
robustness values for different feature requirements can be added
to compute the global robustness ρsys .

4.3.3 Algorithm. The resolution algorithm (Algorithm 1) takes
four inputs: the set of conflicting actions, Ac , the system spec-
ification, Rsys = {(w1,R1), (w2,R2), ..., (wn ,Rn)}, a model of the
environment, M , and a signal s that describes the history of the
system execution up to the current time.
Search space and sampling. The first step of the algorithm is
to identify a finite set of candidate actions to be evaluated (line 3).
This involves two tasks: (1) defining the search space given the set
of conflicting actions and (2) sampling the elements of this space
to be included in the candidate set Acand .

SinceA may contain a large (possibly infinite) number of actions,
it is infeasible to search this entire space. Instead, to bound the
search space, we apply a heuristic based on the following idea:
Given action ai generated by some feature fi (for 1 ≤ i ≤ n), actions
that are “closer” to ai are more likely to fulfill the requirement of fi
than those that are further away from it. For example, given action

ASE ’20, September 21–25, 2020, Virtual Event, Australia Benjamin Gafford, Tobias Dürschmid, Gabriel A. Moreno, and Eunsuk Kang

Input: Ac := conflicting actions; Rsys := system specification;
M := environment model; s := current signal

1 fun resolve(Ac ,Rsys ,M, s)
2 ρopt := −∞,aopt := none
3 Acand := дenCandidateActions(Ac ,G)

4 for a ∈ Acand do
5 sa := execute(M,a, s,window(Rsys))

6 ρa := computeGlobalRubustness(Rsys , sa)
7 if aopt = none ∨ ρa > ρopt then
8 aopt := a

9 ρopt := ρa
10 end
11 end
12 return aopt
13 end

Algorithm 1: Synthesis-based resolution algorithm.

a from the boundary enforcer that moves the drone in a particular
direction, other actions that have the similar velocity vector as a are
more likely to keep the drone within the safe region. Building on
this idea, our heuristic is to narrow the search space to those actions
that are located between the actions in Ac—thus, minimizing the
sum of distances to the actions generated by the features.

More formally, we assume that the set of actions A can be rep-
resented by a metric space (M,d) where M is an ordered set of
elements in A and d : M × M → R is a metric function that
computes a non-negative distance between any pair of elements
inM . This assumption is reasonable in the context of CPS, where
actions are typically used to manipulate continuous variables (e.g.,
velocity vector, steering angle, acceleration). Let amin and amax
be the smallest and largest elements, respectively, in the given set
of conflicting actions, Ac . Then, the space of candidate actions is
defined as the set of all actions between the amin and amax :

Aspace = {a ∈ A | amin ≤ a ≤ amax }

This set, in general, may be infinite, and thus we further per-
form a sampling of this space to select a finite number of candidate
solutions to evaluate. There are a number of different methods of
sampling, and our approach does not prescribe a particular method.
However, since resolution is performed during runtime, one im-
portant consideration is the number of the sampled actions: The
overhead caused by robustness evaluation may interfere with sys-
tem operations, depending on the timing properties of the controller
(e.g., how frequent the controller issues an actuator command).

In our approach, we allow the system engineer to control the
number of the sampled actions by providing an integer value for
the sampling granularity (input G on line 3), which represents the
number of samples per unit distance. Given this value, our sampling
method partitions Aspace into equally sized sets and samples one
solution from each, resulting in |Acand | = G ∗ (amax − amin).
The more fine-grained the sampling is, the more likely that the
search will find the best solution in Aspace ; the engineer may
adjust G depending on the amount of overhead that is acceptable
to a particular application.
Signal estimation. Each of the candidate actions, a ∈ Acand , is
then evaluated for its global robustness as defined by Rsys . To do
this, the environment model is executed to extend s to a new signal,

sa , which describes the estimated evolution of the system state
assuming that action a is executed for some number of steps (line
5). The length of execution, also called the window of execution, is
the minimum length of a signal needed to evaluate the robustness of
a STL formula. To compute this, we adopt the method from a prior
work ([39]) that analyzes the structure of formula φ to determine
its window (ω), as follows:

ω(u) = 1 ω(¬φ) = ω(φ)

ω(φ1 ∧ φ2) = max(ω(φ1),ω(φ2))
ω(φ1U[a,b]φ2) = max(ω(φ1) + b − 1,ω(φ2) + b)

In particular,window(Rsys) on line 5 is determined as the maximum
of the windows of the STL formulas that describe the individual
feature requirements.

Given the estimated signal sa , the global robustness ρa is com-
puted and then compared against those of the other actions (lines 6
to 7). After evaluating Acand , the resolution algorithm terminates
by returning an action that yields the highest global robustness
value (line 12) among the candidate actions.

4.3.4 Example. In our running example, the overall action spaceA
is defined as the set of all possible instances of action setVelocity(vx ,
vy , vz) with concrete values for vx , vy , and vz (which corresponds
to the x, y, z components of the velocity vector, respectively). The
distance between a pair of actions is defined as the Euclidean dis-
tance between the two vectors. We assume that the maximum speed
of a drone is 2 m/s (i.e.,

√
v2x +v

2
y +v

2
z ≤ 2.0).

Suppose that the ego drone periodically keeps track of its own
location and velocity as well as those of another non-friendly (“en-
emy”) drone in its vicinity, as represented by the following signal:

s(t) = (loceдo , locenemy ,veleдo ,velenemy)

where loceдo itself is a 3-tuple that contains the x, y, z coordinates
of the ego drone (and similarly for other elements of the signal).

The drone is configured with two safety features: the boundary
and runaway enforcers, as introduced in Section 2. The require-
ments of the two features are specified in STL as follows:

Rb : G[0,1](timeToIntercept(s(t)) − 1.5 ≥ 0)
Rr : G[0,1](distanceToEnemy(s(t)) − 4.0 ≥ 0)

where timeToIntercept is a function that returns the time (in sec-
onds) before the ego drone crosses a designated boundary into an
unsafe region, and distanceToEnemy returns the distance between
the ego and the enemy drone. We assume that the features are
assigned equal weights (wb =wr = 0.5).

Informally, Rb states that for the following 1 second after the
controller issues a new actuator command1, the drone must main-
tain at least a minimum time-to-intercept (TTI) of 1.5 seconds to the
boundary. To normalize the robustness value ρb for requirement
Rb , we use ρbmax =1.5, and ρbmin=−2.5. The upper bound of 1.5
signifies that being 3.0s (= 1.5 + 1.5) away from the boundary is
sufficiently far enough that increasing the TTI even further is not
critical for the boundary enforcer. On the other hand, once TTI
falls below -1.0s (= -2.5 + 1.5), then the drone has already veered
1Since the controller is executed periodically at a much higher than 1 second, this
window is sufficient to ensure that the safety property is maintained continuously
throughout the entire drone mission.

Synthesis-Based Resolution of Feature Interactions in Cyber-Physical Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

deep into the unsafe region and should be considered as being in
the least desirable state possible.

Similarly, the requirement for the runaway enforcer states that
the ego drone must maintain a distance of at least 4.0 meters away
from the enemy drone. We use ρrmax =4.0, and ρrmin=−4.0 as the
upper and lower bounds on the robustness of the requirement Rr .

Suppose that the current state of the ego drone is as follows:

s(t) =
(
(8, 8, 10), (5.5, 5.5, 10), (1.2, 1.2, 0), (1.41, 1.41, 0)

)
This signal shows that the ego drone is being chased by the enemy
drone towards the top-right corner of the boundary. At this point,
both enforcers become activated and generate actions to fulfill their
individual requirements. In particular, the boundary enforcer gen-
erates setVelocity(−1.41, −1.41, 0), which would instruct the ego
drone to fly towards the origin (0,0,0) at the maximum velocity of 2
meters per second. On the other hand, the runaway enforcer gen-
erates action setVelocity(1.41, 1.41, 0), intended to further distance
the ego from the enemy drone.

Given this pair of conflicting actions, our resolver attempts to
synthesize a new action that satisfies the requirements of both
features, as described in Algorithm 1. The set of candidate ac-
tions Acand are sampled from the space between the two con-
flicting actions: amin = setVelocity(−1.41, −1.41, 0) and amax =
setVelocity(1.41, 1.41, 0). With G = 10 and the z-component fixed
to 0, this would result in around 660 sampled actions. The resolver
then evaluates each of these actions by executing it under envi-
ronment model M , which estimates how the location and velocity
of the ego drone evolves over time given the new velocity vector;
the enemy drone is modeled as constantly updating its velocity in
order to minimize its distance with the ego drone.

Executing the environment model for the window of execution
(in this case, 1 second) with setVelocity(−2, 0, 0) generates a new
estimated signal with the following values:

s(t + 1) =
(
(6, 8, 10), (6.91, 6.91, 10), (−2, 0, 0), (−1.28, 1.54, 0)

)
Evaluating the normalized robustness values over this signal results
in ρr = −0.92 and ρb = 1, which is combined using the given
weights to yield ρsys = 0.04. After evaluating all of the sampled
candidates, our resolver determines that setVelocity(−2, 0, 0) yields
the highest ρsys and thus returns it as the final action to be executed
by the flight controller.

5 EVALUATION
In this section, we describe the evaluation of our proposed reso-
lution method. In particular, our goal is to answer the following
research question: Does the proposed synthesis-based approach to
resolution result in more desirable system behaviors compared to ex-
isting methods? We first describe a prototype implementation of
our method as part of the flight control software for an autonomous
drone, and then discuss a set of simulation-based experiments that
demonstrate the effectiveness of our approach.

The code for our implementation and evaluation is available at:
https://github.com/cps-sei/cps-synth-resolultion

5.1 Implementation
We implemented a prototype of our resolution framework on top of
PX4, an open source flight control software in C++ used for a wide

range of drones [23]. To run our experiments, we used the jMAVSim
simulator (part of PX4), which simulates the physical dynamics of
a drone as it reacts to commands from the flight control software.
Simulated scenarios. On top of PX4, we implemented themission-
level control logic that instructs the ego drone to perform the fol-
lowing mission: Fly to a number of waypoints, perform a reconnais-
sance task at each point, and return to the starting coordinate. A
reconnaissance task involves dropping to some predefined altitude
and flying in a figure-8 about the waypoint. To command the drone,
the mission control software sends a velocity vector to the low-level
flight control at a frequency of approximately 16.7Hz.

The environment model used for signal estimation was imple-
mented as a C++ program that (1) takes the current signal and
controller action as inputs and (2) produces a new set of signal
values that describe how the environment evolves given this action
(e.g., changes to the location and velocity of the enemy drone).
Features. Various safety features of the drone are implemented
as components called enforcers, which are interposed between the
mission controller and the low-level flight controller. Each enforcer
monitors the action generated by the mission control for a potential
safety violation (e.g., approaching the boundary within an unsafe
distance) and if necessarily, overrides it with its own action that is
intended to maneuver the drone to safety.

We implemented four safety features to test as part of our evalu-
ation. Each feature is associated with certain operating conditions
under which it becomes active and begins to generate actions that
override those from the mission control. For instance, the boundary
enforcer from the running example is activated when the distance
between the drone and the boundary drops below a certain thresh-
old. The following features were implemented:

• Boundary enforcer ensures that the drone stays within a pre-
defined boundary, with its robustness value calculated based on
signal function timeToIntercept.

• Runaway enforcer ensures that the drone maintains a mini-
mum distance from a trailing drone, with its robustness calcu-
lated based on signal function distanceToEnemy.

• Stealth enforcer ensures that the drone stays above some min-
imum altitude ALstealth when flying through predefined re-
gions, with its robustness calculated based on signal function
distanceToAltitude, which measures the distance between
the ego vehicle and some target altitude along the z-axis.

• Flight enforcer ensures that the drone does not crash into the
ground by staying above minimum altitude ALдround , with its
robustness calculated based on function distanceToAltitude.

These features were chosen because they correspond to realistic
features in autonomous drones and based on their requirements,
could lead to interesting interactions.

5.2 Experimental Design
To evaluate our approach, we compared our resolution method
(whichwe call synthesis-based, or SynthR for short) to the following
two methods: (1) priority-based resolution (PriorR), which uses
a fixed total ordering among the features to decide which one of
the competing actions should be selected, and (2) property-based
resolution (PropR), which evaluates each of the given conflicting

https://github.com/cps-sei/cps-synth-resolultion

ASE ’20, September 21–25, 2020, Virtual Event, Australia Benjamin Gafford, Tobias Dürschmid, Gabriel A. Moreno, and Eunsuk Kang

1.5 1.0 0.5 0.0 0.5 1.0
0

50

100

150
Boundary Feature

Priority-based
Property-based
Synthesis-based

0.8 0.6 0.4 0.2 0.0 0.2
0

50

100

150

Runaway Feature
Priority-based
Property-based
Synthesis-based

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
0

50

100

150

200 Stealth Feature
Priority-based
Property-based
Synthesis-based

0.2 0.4 0.6 0.8 1.0
0

20

40

60

80 Flight Feature
Priority-based
Property-based
Synthesis-based

Figure 3: Histogram of robustness values for each resolution strategy. The X-axis represents the average robustness values for
each run with the corresponding feature. The Y-axis represents the frequencies of those robustness values. Larger robustness
values mean higher satisfaction of the feature requirement.

actions for global robustness ρsys and selects the one with the
highest value, but does not involve synthesizing a new action.

To evaluate our approach, we devised the following hypotheses:

H1: SynthR leads to a higher satisfaction of the feature
requirements than PriorR.
H2: SynthR method leads to a higher satisfaction of
the feature requirements than PropR.

To test these hypotheses, we conducted 1500 controlled experi-
ments. To avoid a selection bias, we randomly sampled 500 starting
conditions (e.g., locations of the waypoints and the starting posi-
tions of the ego and enemy drones). For each of them, we executed
the drone mission under all three resolution methods.

One risk to consider was that environment variables, such as the
enemy drone speed or the size of the boundary, might implicitly
change the importance of each feature, which could introduce a
situational bias to one method over the other. For example, a faster
enemy drone might lead to persistent violations of the runaway fea-
ture. A method that optimizes for the runaway feature will perform
very well in this specific case, however may perform poorly in other
feature interactions. On the other hand, decreasing the boundary
size might cause the boundary feature to become the limiting factor,
biasing the results towards an implementation that is optimized for
this situation. Since the hypothesis to test in this evaluation is about
the general techniques instead of specific application-dependent
situations, we created a large space of environment variables and
controlled for them to introduce the least possible situational bias.

In addition, to avoid a predominant order between features, we
also randomly modified the weights of the features between the

runs. For the priority method, the total ordering between the fea-
tures were determined from their weights. To bound the number
of candidate actions evaluated by SynthR, we used a granularity
of 10 samples per unit. For example, for the range of [-1, 1] in the
x-component of the velocity vector, this would result in 20 candi-
date solutions being sampled uniformly across this space (and if the
same range was set for all x, y, z-components, 203 = 8000 samples).
Data collection. For each run, we measured the robustness of
the feature requirements every 0.06 seconds. We also collected the
number of feature interactions (i.e., the occurrence of a conflict
between at least two features), allowing us to later compare the
effectiveness of the methods with and without conflict.

5.3 Experimental Results
We evaluated and compared the effectiveness of the resolutionmeth-
ods in terms of the robustness that they were able to achieve during
the simulated runs. Figure 3 shows the results of our experiments.

To evaluate the significance of the results, we used a t-test, which
determines whether there is a statistically significant difference be-
tween the means of two distributions (in this case, the distribution
of average robustness values collected over the simulation runs).
Once an effect is determined by the t-test to be statistically signifi-
cant, the practically more relevant metric is effect size, since it states
how large the difference between a pair of methods is. In particular,
we used Cohen’s D [16], one of the most common ways to measure
effect size. Cohen’s D describes the difference between two means
in terms of the standard deviation of the overall distribution.2 For
2A value of approx. 0.2 is considered a small effect size. 0.5 is considered a medium
effect size and 0.8 is considered a large effect size [16].

Synthesis-Based Resolution of Feature Interactions in Cyber-Physical Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

all measurements, we also built a regression model that controls for
the starting conditions. Since both analysis methods resulted in the
same conclusions, we focus on the results of the more intuitively
understandable t-test as well as Cohen’s D as effect size measure.

5.3.1 SynthR vs. PriorR. The data analysis results show that the
SynthRmethod is significantly better at satisfying the requirements
of multiple features and avoiding their violations than the PriorR
method. This subsection will discuss this in more detail.

When comparing the weighted sum of the robustness values
of all four features (i.e., global robustness), our results show that
SynthR is significantly better than PriorR (Cohen’s D = 0.403 with
p < 0.001, meaning that the global robustness achieved by SynthR
is almost 0.403 standard deviations larger).

One noteworthy observation, which can be seen in Figure 3,
is that PriorR tends to result in negative robustness values more
frequently. For example, note how the requirement of the boundary
feature is often violated under PriorR, whereas SynthR rarely results
in a violation. This is a consequence of the “winner-takes-all” nature
of PriorR, which simply disregards the requirements of the lower-
priority features and thus results in their violations.

Looking at the robustness of individual feature requirements,
we observe that SynthR is significantly better than PriorR for both
the boundary with medium to large effect size (Cohen’s D = 0.737
medium to large effect size, p < 0.001) and runaway feature with
a medium effect size (Cohen’s D = 0.573, p < 0.001). This was a
surprising outcome, since we had expected that for individual fea-
tures, PriorR would perform just as well (if not better) than SynthR.
This can be attributed to the fact that SynthR, by design, values the
improvement of negative robustness values more than the improve-
ment of positive robustness values in order to avoid requirement
violations. So it trades off the improvement of a potentially violated
requirements (in this case, boundary and runaway) with the a small
compromise with an already highly satisfied requirement (in this
case, flight).

The stealth feature shows no significant effect size for a dif-
ference between between the two resolution strategies (Cohen’s
D = −0.053, p = 0.425). For the flight feature, SynthR performs
significantly worse with a small to medium negative effect size
(Cohen’s D = −0.43, p < 0.001). This can be attributed to the fact
that conflicts involving these features are relatively rare, and in
such cases, optimizing for one particular feature (as done by PriorR)
may overall be just as effective as, if not better than, SynthR.

The larger effect size for the improvement in the boundary fea-
ture and runway outweighs the smaller effect size for a decrease in
the flight feature. So we can conclude that, in our case study, SynthR
shows a better satisfaction of the multi-dimensional requirements
than PriorR. This leads us to accepting hypothesis H1.

5.3.2 SynthR vs. PropR. Our results show that SynthR is signifi-
cantly better than PropR while feature interactions are occurring,
but only insignificantly better outside of these time periods.

To be more specific, when comparing PropR with SynthR with
respect to global robustness, the difference is not statistically sig-
nificant (Cohen’s D = 0.12, p = 0.07). The primary reason for this is
that during the parts of execution in which no feature conflict ex-
ists, all feature requirements are satisfied regardless of the selected
resolution method. It is only during the period of interactions in

which SynthR can be shown to achieve higher global robustness
than PropR. This can be seen by conducting a time series analysis
of the global robustness over each run.

We conducted a regression discontinuity analysis [8, 17, 44] to
compare PropR with SynthR by evaluating how the level and slope
of the global robustness time series of the two methods change
over time. In this analysis, each individual mission is modelled as
a time series with a data point for each time tick. All data points
of the 1500 time series are then analyzed in one regression model
that enables us to statistically compare the slopes of the robustness
values during the presence of a feature interaction versus not. The
resulting regression equation is:

ρsys ≈Intervention + Synth ∗ Intervention +Time+

TimeAf terIntervention + Synth ∗TimeAf terIntervention+

ENEMY_DRONE_SPEED + BOUNDARY_SIZE

Intervention is a Boolean indicating whether a conflict is taking
place; Synth is a Boolean for whether the experiment was con-
ducted with SynthR or not; Time is the number of ticks passed
since the start of the mission; TimeAf terIntervention is the num-
ber of ticks after a conflict started, and ENEMY_DRONE_SPEED
and BOUNDARY_SIZE are the control variables for environment
configurations. Intervention tells us the average change in robust-
ness values during the presence of a feature interaction versus not.
Synth ∗ Intervention tells us the difference in change in robustness
when using SynthR versus not.TimeAf terIntervention tells us the
average change in the slope of robustness when a conflict is taking
place. Similarly, Synth ∗ TimeAf terIntervention constitutes the
average difference in robustness slope for SynthR.

The entire regression model explains 30.1 % of the variance. The
results are shown in Figure 4. All independent variables are statis-
tically significant (p < 0.001 for each). Overall, the improvement
achieved by SynthR is 0.077 robustness units (95 % confidence inter-
val (CI) [0.064, 0.089]) when controlling for the mentioned variables.
So there is a small improvement overall when using SynthR, if we
disregard the presence or absence of feature interactions.

When a conflict occurs, the global robustness is reduced on
average by 1.469 robustness units (CI [1.485, 1.454]), which is a
significant difference. The average robustness difference for SynthR
is 0.29 robustness units smaller (CI [0.267, 0.313]) than for PropR,
which is about 20 % of the overall difference. Hence, we can conclude
that SynthR performs significantly better in achieving higher global
robustness than PropR when the system is encountering a conflict.

Furthermore, as shown in Figure 5, SynthR results in a smoother
andmore stable path with less extreme changes, which is a desirable
property in a cyber-physical system.

In conclusion, in our case study, there is a large effect size for
improvements achieved by SynthR during the presence of feature
interactions, while there is relatively a small effect size during their
absence. This leads us to accepting hypothesis H2.

5.4 Performance Overhead
Although our results suggest that SynthR can achieve higher global
robustness, it also involves more computation in comparison to
the other two methods, mainly due to the evaluation of additional
actions. Since PX4 requires the velocity vector to be updated at

ASE ’20, September 21–25, 2020, Virtual Event, Australia Benjamin Gafford, Tobias Dürschmid, Gabriel A. Moreno, and Eunsuk Kang

coeff. std err. R2

Intercept 6.1152∗∗∗ 0.028 -
Intervention −1.4694∗∗∗ 0.008 25.523 %
ENEMY_DRONE_SPEED −0.6874∗∗∗ 0.020 0.293 %
BOUNDARY_SIZE 0.0372∗∗∗ 0.000 1.845 %
Synth 0.0767∗∗∗ 0.007 0.349 %
Synth:Intervention 0.2900∗∗∗ 0.012 0.133 %
TimeAfterInterv. −0.0069∗∗∗ 8.46e-05 1.642 %
Synth:TimeAfterInterv. −0.0096∗∗∗ 0.000 0.265 %
Time 0.0002∗∗∗ 1.84e-05 0.029 %

∗∗∗p < 0.001 N = 409512 R2 = 30.1 %

Figure 4: Results for the regression discontinuity analysis.
The intervention is defined as the time frame in which fea-
ture interactions are happening. The synthesis-based resolu-
tion leads to higher satisfaction of the requirements, in par-
ticular during the time while feature interactions are hap-
pening.

(a) Synthesis-based resolution (b) Property-based resolution

Figure 5: Time-spatial visualization of a representative run
for bothmethods. Orange lines represent the flight path and
the big blue dots represent the the points at which a conflict
takes place. SynthR results in a smoother path.

least 2Hz, the operation of the drone may be affected negatively if
resolution takes longer than the maximum allowed time between
controller updates (i.e., 0.5 seconds). To test this, we measured the
duration of each resolution task and checked whether this exceeded
the maximum cycle length3. In summary, with the granularity of
sampling used for our case study, we did not observe any overhead
that was significant enough to violate the timing requirement on
controller updates and negatively impact the drone operation.

In practice, to deploy our resolution method, the system engi-
neer would take into account the hardware capacity and timing
properties of the controller system, and would adjust the sampling
granularity to ensure that resolution does not interfere with the
drone operation.

5.5 Threats to Validity
Construct validity. When measuring properties of CPS, simula-
tions are often the only practical evaluation technique. This con-
stitutes a threat to construct validity, since every simulation omits
3The performance measurements were made on an iMac with an 3.8GHz Intel Core
i5 CPU and 16GB RAM

some properties of the real world. However, the asserted safety
properties measure execution logic instead of accuracy of physics.
Further, any imprecision applies to all experiment instances to the
same extent. So while our measurements might include a small
error, it should not bias the results towards a particular conclusion
of H1 or H2.
Internal validity. The practical constraint of partially sampling
a space of configurations (i.e., actions) poses a threat to internal
validity since the possibility of sampling exceptional cases can
never be ruled out. This threat was addressed by sampling a large
number of different cases and by paying close attention to statistical
significance. However, the concrete numbers for effect sizes should
not be over-interpreted, but rather only used to get an overall
impression of how large the difference can be.
External validity. The performance measurements of the run
time overhead are application-specific and hardware-dependent.
On other hardware and for other applications the results may vary
greatly. So with more restricted hardware and more complex com-
putation, the implementation would need more performance tuning
than our prototypical implementation. However, we believe in the
conclusion that in most cases the improved ability to resolve feature
conflicts outweighs the insignificant increase in computation.

Furthermore, the results of the case study might not necessarily
generalize to other potential use cases of the presented approach.
Although we believe that the presented case study embodies com-
mon characteristics of CPS, the results might differ for other kinds
of CPS, features, or use case scenarios. The main claim of this
evaluation is that the presented approach is able to significantly
outperform existing work. The empirical evaluation explicitly does
not make any claim about whether the measured effect sizes apply
to other cases, or whether H1 and H2 hold true for a majority of
CPS. However, since the proposed approach is also supported by a
theoretical framework that outlines its advantages, we expect it to
perform well on many other CPS that have to deal with conflicting
features that need to be resolved during run-time.

6 RELATEDWORK
Feature interactions. Feature interaction problems have been
studied extensively by the software engineering community [3–
7, 9, 11, 15, 35, 41, 42, 48, 49]. There are two major sub-problems
in feature interactions: detection and resolution. Here, we mainly
focus on the prior approaches to resolution.

Raghavan et al. [39] proposed a property-driven approach to res-
olution, where they also use the notion of robustness in STL to
resolve conflicts between a set of competing feature actions. Our
work improves on theirs in the following ways: (1) our approach al-
lows a specification to be expressed as a weighted sum of robustness
of properties that describe the requirements of conflicting features,
whereas their approach is limited to a single global property (that is
not tied to a particular feature), and (2) our approach is capable of
synthesizing a new action, while their approach is limited to select-
ing one of the given feature actions. Thus, as demonstrated in our
study, our approach is more effective at producing desirable system
behaviors when there is no clear priority among the features, and
all of their requirements are critical to system operation.

Synthesis-Based Resolution of Feature Interactions in Cyber-Physical Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

Another related approach is the negotiation-based approach to
run-time resolution [26], where a central mediator is used to re-
solve conflicts among multiple system agents. Their approach is
similar in that the goal of negotiation is to devise actions that are
considered acceptable to all agents involved (similar to how we
attempt to synthesize an action that satisfies the requirements of
the conflicting features). However, our approach significantly dif-
fers in the type of specifications used to describe desired system
behaviors (constraint-based policies that describe acceptable system
operations in their approach versus CPS properties in ours).

Our work is also related to the variable-specific approach intro-
duced in [9, 49], where each actuator variable (e.g., acceleration)
is associated with a resolution strategy that is designed to resolve
conflicts over that variable (e.g., “select the action that results in
the smallest acceleration value”). However, it may be difficult for
the system engineer to anticipate all possible interaction scenar-
ios (e.g., especially less common ones, like those in Figure 1) and
devise a strategy that can produce a desirable system outcome un-
der them. In comparison, since our approach does not rely on a
fixed, design-time strategy, it is capable of handling scenarios that
are unanticipated by the engineer (as long as the the model of the
environment is general enough to cover those scenarios).

Prior approaches to resolution that use a priority or precedence
ordering ([12, 13, 27, 34, 50]) are not effective for resolving interac-
tions in systems where the desirability of a feature action is highly
context-dependent (e.g., the runaway enforcer, normally the top-
priority feature, may be of lower importance when the drone is
about to cross the boundary into an unsafe region).
Runtime monitoring and verification. STL and other similar
specification formalisms (e.g., metric temporal logic, or MTL [29])
has been used for online monitoring of system properties [18, 19,
21, 43]. Runtime techniques have also been developed for enforcing
a desirable property by observing and possibly modifying system
actions [1, 25, 37, 46]. However, these prior works focus on evalu-
ating a single execution trace for property satisfaction, and do not
involve a comparison of multiple actions or traces.
Self-adaptive systems. Self-adaptive systems is an active area of
research on designing systems to be capable of adjusting to changes
in their operating environment [10, 14, 30, 36, 40]. Our proposed
resolution framework shares some of the common characteristics of
a self-adaptive system, in that it relies on information collected by
monitoring the state of the system and its environment to determine
if it is necessary to take an action to maintain system requirements
and to plan what action to take. In addition, it shares the use of a
predictive model as in model-based approaches to proactive self-
adaptation [2, 33] to evaluate the effect of candidate actions over
the near future. Our approach supports the formal specification of
the desired properties to be maintained using STL and provides a
resolution approach when there are conflicts between them.

7 DISCUSSIONS AND FUTUREWORK
Role of existing features. Since our resolver works by effectively
overriding the actions of the existing features, one may wonder
whether there is any need for the existing features at all. One could,
for example, conceive of a system architecture where a controller
based on our synthesis method is used at all times to generate an

action that is optimal with respect to a set of requirements. How-
ever, the synthesis procedure can be computationally expensive,
and thus our method is likely to be more cost-effective in systems
where conflicts are rare rather than being common events. In these
systems, the existing features implementations will still be needed
to control the behavior of the system as desired. Additionally, struc-
turing the system as set of independent features, instead of having a
single, monolithic controller that synthesizes actions, allows for the
benefits of modularity as system requirements change over time.
Optimality of the approach. Since we randomly sample from
the (possibly infinite) search space, our current method does not
provide any theoretical guarantees about the optimality of the syn-
thesized action, but only that it results in a higher global robustness
than the given conflicting actions (assuming the accuracy of the
environmental model used for signal estimation). However, our
method may be augmented with search techniques such as sto-
chastic gradient descent or simulated annealing to more efficiently
explore the space and converge to an approximate global optimum.
Generality. Our approach makes several assumptions regarding
the system that may not hold in general. We assume the environ-
ment can be effectively modeled within some prediction window,
and that this prediction window is sufficient for approximating an
optimal action. Additionally, designers must be able to determine a
fixed maximum violation and satisfaction for each property. Future
work could improve the normalization method to automate finding
these parameters or better account for the different rates of change
of robustness values across properties. Applying an exponential
penalty to violations generalizes to any system where further vio-
lation of one property is worse than further satisfaction of another.
When any violation constitutes a maximum violation, this can be
captured by setting the maximum violation accordingly.

Some specifics of our case study do not generalize to other do-
mains. Our method of determining a search space is specific to
our case study because all of our actions are defined by 3D veloc-
ity vectors, and we use this knowledge to define our search space.
Different CPS with different action spaces may require different
methods to define or search for actions, but the details of these
methods are orthogonal to our high-level approach and remain as
future work. In addition, the naive sample-and-test method used
for action synthesis generalizes to any CPS. However, such a naive
search method requires a greater number of candidate actions to
be tested and therefore would be infeasible in domains where eval-
uating a candidate action is computationally expensive. As future
work, leveraging optimal control theory [28] could more efficiently
identify Pareto-optimal actions, and could potentially do so offline
without needing to discretize and search the action space.

ACKNOWLEDGMENTS
This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software En-
gineering Institute, a federally funded research and development
center, by Toyota Motor North America, Inc., and NSF Award No.
1852260: CMU REU Site in Software Engineering (REUSE). DM20-
0193

ASE ’20, September 21–25, 2020, Virtual Event, Australia Benjamin Gafford, Tobias Dürschmid, Gabriel A. Moreno, and Eunsuk Kang

REFERENCES
[1] Björn Andersson, Sagar Chaki, and Dionisio de Niz. 2017. Combining Sym-

bolic Runtime Enforcers for Cyber-Physical Systems. In Runtime Verification -
17th International Conference, RV 2017, Seattle, WA, USA, September 13-16, 2017,
Proceedings. 68–84.

[2] K. Angelopoulos, A. V. Papadopoulos, V. E. S. Souza, and J. Mylopoulos. 2016.
Model Predictive Control for Software Systems with CobRA. In 2016 IEEE/ACM
11th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). 35–46. https://doi.org/10.1109/SEAMS.2016.012

[3] Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kästner. 2010.
Detecting Dependences and Interactions in Feature-Oriented Design. In IEEE
21st International Symposium on Software Reliability Engineering, ISSRE 2010, San
Jose, CA, USA, 1-4 November 2010. 161–170.

[4] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk
Beyer. 2011. Detection of feature interactions using feature-aware verification.
In 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011), Lawrence, KS, USA, November 6-10, 2011. 372–375.

[5] Sven Apel, Alexander von Rhein, Thomas Thüm, and Christian Kästner. 2013.
Feature-interaction detection based on feature-based specifications. Computer
Networks 57, 12 (2013), 2399–2409.

[6] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk
Beyer. 2013. Strategies for product-line verification: case studies and experiments.
In 35th International Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013. 482–491.

[7] Joanne M. Atlee, Uli Fahrenberg, and Axel Legay. 2015. Measuring Behaviour
Interactions between Product-Line Features. In 3rd IEEE/ACM FME Workshop on
Formal Methods in Software Engineering, FormaliSE 2015, Florence, Italy, May 18,
2015. 20–25.

[8] Howard S. Bloom. 2012. Modern Regression Discontinuity Analysis. Journal of
Research on Educational Effectiveness 5, 1 (2012), 43–82. https://doi.org/10.1080/
19345747.2011.578707

[9] Cecylia Bocovich and Joanne M. Atlee. 2014. Variable-specific resolutions for
feature interactions. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, (FSE-22), Hong Kong, China, No-
vember 16 - 22, 2014. 553–563.

[10] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. 2009. Engi-
neering self-adaptive systems through feedback loops. In Software engineering
for self-adaptive systems. Springer, 48–70.

[11] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. 2003.
Feature interaction: a critical review and considered forecast. Computer Networks
41, 1 (2003), 115–141.

[12] A. Chavan, L. Yang, K. Ramachandran, and W. H. Leung. 2007. Resolving Feature
Interaction with Precedence Lists in the Feature Language Extensions. In Feature
Interactions in Software and Communication Systems IX, International Co nference
on Feature Interactions in Software and Communication Systems, ICFI 2007, 3-5
September 2007, Grenoble, France. 114–128.

[13] Yi-Liang Chen, Stéphane Lafortune, and Feng Lin. 1997. Resolving Feature Inter-
actions Using Modular Supervisory Control with Priorities. In Feature Interactions
in Telecommunications Networks IV, June 17-19, 1997, Montréal, Canada. 108–122.

[14] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee,
Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Gio-
vanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina
Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer,
Marin Litoiu, Sam Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park,
Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle.
2009. Software Engineering for Self-Adaptive Systems: A Research Roadmap. In
Dagstuhl Seminar Report. 1–26.

[15] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-François Raskin. 2010. Model checking lots of systems: efficient verification
of temporal properties in software product lines. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010,
Cape Town, South Africa, 1-8 May 2010. 335–344.

[16] Jacob Cohen. 1977. . Academic Press. https://doi.org/10.1016/B978-0-12-179060-
8.50011-6

[17] Thomas D Cook and Donald T Campbell. 1979. The design and conduct of
true experiments and quasi-experiments in field settings. In Reproduced in
part in Research in Organizations: Issues and Controversies. Goodyear Publishing
Company.

[18] JyotirmoyV. Deshmukh, Alexandre Donzé, ShromonaGhosh, Xiaoqing Jin, Garvit
Juniwal, and Sanjit A. Seshia. 2017. Robust online monitoring of signal temporal
logic. Formal Methods in System Design 51, 1 (2017), 5–30.

[19] Adel Dokhanchi, Bardh Hoxha, and Georgios E. Fainekos. 2014. On-Line Moni-
toring for Temporal Logic Robustness. In Runtime Verification - 5th International
Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings.
231–246.

[20] Alma L. Juarez Dominguez, Nancy A. Day, and Jeffrey J. Joyce. 2008. Modelling
feature interactions in the automotive domain. In International Workshop on
Modeling in Software Engineering (MiSE). 45–50.

[21] Alexandre Donzé, Thomas Ferrère, and Oded Maler. 2013. Efficient Robust
Monitoring for STL. In Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. 264–279.

[22] Alexandre Donzé and Oded Maler. 2010. Robust Satisfaction of Temporal Logic
over Real-Valued Signals. In Formal Modeling and Analysis of Timed Systems - 8th
International Conference, FORMATS 2010, Klosterneuburg, Austria, September 8-10,
2010. Proceedings. 92–106.

[23] Dronecode Project. 2020. PX4 autopilot. https://px4.io.
[24] Georgios E. Fainekos and George J. Pappas. 2006. Robustness of Temporal Logic

Specifications. In Formal Approaches to Software Testing and Runtime Verification,
First Combined International Workshops, FATES 2006 and RV 2006, Seattle, WA,
USA, August 15-16, 2006, Revised Selected Papers. 178–192.

[25] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier.
2011. Runtime enforcement monitors: composition, synthesis, and enforcement
abilities. Formal Methods in System Design 38, 3 (2011), 223–262.

[26] Nancy D. Griffeth and Hugo Velthuijsen. 1994. The negotiating agents approach
to runtime feature interaction resolution. In Feature Interactions in Telecommuni-
cations Systems, May 8-10, 1994, Amsterdam, The Netherlands. 217–235.

[27] Jonathan D. Hay and Joanne M. Atlee. 2000. Composing features and resolving
interactions. In ACM SIGSOFT Symposium on Foundations of Software Engineering,
an Diego, California, USA, November 6-10, 2000, Proceedings. 110–119.

[28] D.E. Kirk. 2004. Optimal Control Theory: An Introduction. Dover Publications.
https://books.google.com/books?id=fCh2SAtWIdwC

[29] Ron Koymans. 1990. Specifying real-time properties with metric temporal logic.
Real-time systems 2, 4 (1990), 255–299.

[30] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. 2015. A survey on engineering approaches for self-adaptive
systems. Pervasive and Mobile Computing 17 (2015), 184–206.

[31] Oded Maler and Dejan Nickovic. 2004. Monitoring Temporal Properties of
Continuous Signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer Berlin Heidelberg, 152–166.

[32] Andreas Metzger. 2004. Feature interactions in embedded control systems. Com-
puter Networks 45, 5 (2004), 625–644.

[33] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015.
Proactive Self-Adaptation under Uncertainty: A Probabilistic Model Checking
Approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). https://doi.org/10.1145/2786805.2786853

[34] Masahide Nakamura, Hiroshi Igaki, Yuhei Yoshimura, and Kousuke Ikegami. 2009.
Considering Online Feature Interaction Detection and Resolution for Integrated
Services in Home Network System. In ICFI. IOS Press, 191–206.

[35] Armstrong Nhlabatsi, Robin Laney, and Bashar Nuseibeh. 2008. Feature interac-
tion: The security threat from within software systems. Progress in Informatics 5
(2008), 75–89.

[36] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner,
Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and
Alexander L. Wolf. 1999. An Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems 14, 3 (May 1999), 54–62.

[37] Srinivas Pinisetty, Partha S. Roop, Steven Smyth, Stavros Tripakis, and Rein-
hard von Hanxleden. 2017. Runtime enforcement of reactive systems using
synchronous enforcers. In Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July
10-14, 2017. 80–89.

[38] Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. 46–57.

[39] Santhana Gopalan Raghavan, Kosuke Watanabe, Eunsuk Kang, Chung-Wei Lin,
Zhihao Jiang, and Shinichi Shiraishi. 2018. Property-Driven Runtime Resolution
of Feature Interactions. In Runtime Verification - 18th International Conference,
RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings. 316–333.

[40] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape
and research challenges. TAAS 4, 2 (2009), 14:1–14:42.

[41] Wolfgang Scholz, Thomas Thüm, Sven Apel, and Christian Lengauer. 2011. Au-
tomatic detection of feature interactions using the Java modeling language: an
experience report. In Software Product Lines - 15th International Conference, SPLC
2011, Munich, Germany, August 22-26, 2011. Workshop Proceedings (Volume 2). 7.

[42] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel, Don S.
Batory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting performance
via automated feature-interaction detection. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 167–177.

[43] Prasanna Thati and Grigore Rosu. 2005. Monitoring Algorithms for Metric
Temporal Logic Specifications. Electr. Notes Theor. Comput. Sci. 113 (2005), 145–
162.

[44] Donald L Thistlethwaite and Donald T Campbell. 1960. Regression-discontinuity
analysis: An alternative to the ex post facto experiment. Journal of Educational
psychology 51, 6 (1960), 309. https://doi.org/10.1037/h0044319

https://doi.org/10.1109/SEAMS.2016.012
https://doi.org/10.1080/19345747.2011.578707
https://doi.org/10.1080/19345747.2011.578707
https://doi.org/10.1016/B978-0-12-179060-8.50011-6
https://doi.org/10.1016/B978-0-12-179060-8.50011-6
https://px4.io
https://books.google.com/books?id=fCh2SAtWIdwC
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1037/h0044319

Synthesis-Based Resolution of Feature Interactions in Cyber-Physical Systems ASE ’20, September 21–25, 2020, Virtual Event, Australia

[45] US NHTSA. 2010. ABS ECU Programming, 2010 Toyota Prius Recalls. https:
//www.nhtsa.gov/vehicle/2010/TOYOTA/PRIUS/4%252520DR/FWD#recalls.

[46] MengWu, Haibo Zeng, ChaoWang, andHuafeng Yu. 2017. Safety Guard: Runtime
Enforcement for Safety-Critical Cyber-Physical Systems: Invited. In Proceedings
of the 54th Annual Design Automation Conference, DAC 2017, Austin, TX, USA,
June 18-22, 2017. 84:1–84:6.

[47] Lana Yarosh and Pamela Zave. 2017. Locked or Not?: Mental Models of IoT
Feature Interaction. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, Denver, CO, USA, May 06-11, 2017. 2993–2997.

[48] Pamela Zave. 1993. Feature Interactions and Formal Specifications in Telecom-
munications. IEEE Computer 26, 8 (1993), 20–30.

[49] MohammadHadi Zibaeenejad, Chi Zhang, and JoanneM. Atlee. 2017. Continuous
variable-specific resolutions of feature interactions. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017. 408–418.

[50] P. Ann Zimmer and Joanne M. Atlee. 2012. Ordering features by category. Journal
of Systems and Software 85, 8 (2012), 1782–1800. https://doi.org/10.1016/j.jss.
2012.03.025

https://www.nhtsa.gov/vehicle/2010/TOYOTA/PRIUS/4%252520DR/FWD#recalls
https://www.nhtsa.gov/vehicle/2010/TOYOTA/PRIUS/4%252520DR/FWD#recalls
https://doi.org/10.1016/j.jss.2012.03.025
https://doi.org/10.1016/j.jss.2012.03.025

