
Formal Modeling and Analysis of a Flash
Filesystem in Alloy

Eunsuk Kang and Daniel Jackson

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA. U.S.A.
{eskang,dnj}@mit.edu

Abstract. This paper describes the formal modeling and analysis of a
design for a flash-based filesystem in Alloy. We model the basic opera-
tions of a filesystem as well as features that are crucial to NAND flash
hardware, such as wear-leveling and erase-unit reclamation. In addition,
we address the issue of fault tolerance by modeling a mechanism for re-
covery from interrupted filesystem operations due to unexpected power
loss. We analyze the correctness of our flash filesystem model by checking
trace inclusion against a POSIX-compliant abstract filesystem, in which
a file is modeled simply as an array of data elements. The analysis is
fully automatic and complete within a finite scope.

1 Introduction

Flash memory is becoming an increasingly popular choice of medium for non-
volatile data storage. Among a wide range of applications, flash memory has
been used by NASA for on-board storage in planetary rovers. In one well known
incident, Spirit, a Mars Exploration Rover, suffered a major system failure that
resulted in 10 days of lost scientific activity [19]. The cause of the failure was
later determined to be a flaw in the flash filesystem software. On investigation,
it turned out that the failure scenario was neglected during testing because the
development team considered it to be an “unanticipated behaviour.”

Testing is an essential part of any software development process, but cannot
alone ensure the reliability of software. Formal methods can mitigate the weak-
ness of testing by allowing an exhaustive analysis. However, applying formal
methods to a poorly designed piece of code in an after-the-fact, ad hoc fash-
ion is impractical, and rarely yields high confidence for reliability. Instead, by
formalizing important aspects of a design and analyzing them early in a devel-
opment process, software engineers can identify key reliability issues and address
them in the simpler context of the design, where they can be resolved before the
complexities of implementation are introduced.

This paper describes the formal modeling and analysis of a design for a
flash filesystem in Alloy [16]. Our model addresses three primary aspects of a
flash filesystem: (1) The underlying flash hardware, (2) filesystem software with
basic file operations such as read and write, and (3) a fault-tolerance mechanism



2

for handling unexpected hardware failures. Unlike disk-based storage devices,
flash memory suffers from a major limitation in that blocks can be written only
a limited number of times. In order to address this issue, our model includes
techniques for efficiently managing block erasures, such as wear-leveling and
erase-unit reclamation [10].

Alloy provides completely automatic (but bounded) analysis of a model, given
a property and a scope for the size of each domain in the model. In order to
verify the correctness of the filesystem design, we used a simplified version of
the POSIX standard as a reference model. Then, we checked trace inclusion
of the concrete flash filesystem against the reference model using backwards
simulation [24]. To our knowledge, this is the first fully automatic analysis of a
design for a flash filesystem.

The paper presents the POSIX reference model (Section 2), a model of the
underlying flash hardware (3), and then a design of a flash filesystem that uses
the flash hardware and is intended to conform to the reference model (4). Unlike
the first two models, this design does not formalize existing descriptions, but it
incorporates a variety of mechanisms that have appeared in the literature [10,
15]. Subsequent sections describe the analysis that was performed (5), relate our
approach to others (6), and discuss the challenges faced during this project (7)
and plans for future work (8).

2 Abstract POSIX Filesystem

POSIX (Portable Operating System Interface) [21] is an international standard
that specifies the function signatures and expected behaviours of a set of filesys-
tem operations. The widespread adoption of POSIX by many popular operating
systems, such as UNIX and Mac OS X, makes it an attractive choice as a ref-
erence model for a flash filesystem. A specification for a UNIX filesystem was
formalized in the Z notation [20] by Morgan et al. [18] and served as a starting
point for our work.

Alloy [16] is a declarative modeling language based on first-order logic with
transitive closure. The origin of Alloy is rooted in Z, drawing on the latter’s
simple and intuitive semantics that is well suited for object and data modeling.
For example, a file with an array of data elements can be declared as follows1:

sig File { contents : seq Data }

sig Data {}

Then, an entire filesystem may be viewed as a container for a relation that maps
each file identifier to zero or one file2:

sig AbsFsys { fileMap : FID -> lone File }

sig FID {} // File identifier

1 In Alloy, the keyword sig S declares a set of atoms of type S, and seq T constructs
a sequence whose elements are of type T.

2 The keyword lone imposes a cardinality constraint of “less than or equal to one”.



3

The basic operations of the filesystem—reading from and writing to a file—
are modeled using functions and predicates. The read operation, as defined by
POSIX, takes three arguments—a file identifier, an offset, and a size—and re-
turns a data sequence of the specified size, starting at the offset within the file:

fun readAbs[fsys: AbsFsys, fid: FID, offset, size: Int]: seq Data {

let file = fsys.fileMap[fid] |

// subseq[m,n] returns a subsequence between m and n, inclusively

(file.contents).subseq[offset, offset + size - 1]

}

Like Z, Alloy does not support the notion of an implicit global state. Thus,
readAbs explicitly takes an instance of AbsFsys as an argument.

The write operation takes a file identifier, an offset, a size, and a buffer
containing the input data, and writes a data sequence of the specified size from
the buffer into the file, starting at the offset3:

pred writeAbs[fsys, fsys’: AbsFsys, fid: FID, buffer: seq Data,

offset, size: Int] {

let buffer’ = buffer.subseq[0, size - 1],

file = fsys.fileMap[fid], file’ = fsys’.fileMap[fid] {

(#buffer’ = 0) => file’ = file

(#buffer’ != 0) =>

file’.contents =

(zeros[offset] ++ file.contents) ++ shift[buffer’, offset]

promote[fsys, fsys’, file, file’, fid]

}

}

Sequences are represented, as in Z, by functions from integers to values. The ex-
pression zeros[n] gives a sequence of zeros of length n, and is used for padding;
shift[s,i] gives a function like the sequence s but with the index of each ele-
ment shifted by i. Unlike readAbs, writeAbs is expressed as a predicate (rather
than a function) because it may modify the state of the filesystem.

There are three distinct cases to consider in this operation. First, if the input
buffer is empty, writeAbs does not modify the contents of the file. If the offset is
located within the file, writeAbs overrides the existing data in the overlapping
positions with the input data. Lastly, if the offset is greater than the file size,
writeAbs fills the gap between the end of the file and the offset with zeros.

Changes in the state of the filesystem are modeled using an explicit constraint
between a pair of pre- and post- states (fsys and fsys’). It is also necessary
to ensure that the operation does not affect any other files. This style of mod-
eling changes in system state is called promotion [24]. The following predicate
“promotes” a change in the contents of a file to a change in the entire filesystem:

pred promote[fsys, fsys’: AbsFsys, file, file’: File, fid: FID] {

file = fsys.fileMap[fid]

fsys’.fileMap = fsys.fileMap ++ (fid -> file’)

}

3 The cardinality operator # returns the length of a sequence, and ++ is the operator
for relational override.



4

3 NAND Flash Memory

Two types of flash memory are currently in widespread use: NOR and NAND.
Although NOR allows random access and is easier to program, the higher den-
sity and performance of NAND makes the latter more suitable as a storage
device. Our model of the flash hardware is based on Open NAND Flash In-
terface (ONFi), an industry-wide standard for the specification of NAND flash
memory [14]. However, it is important to note that the focus of our work is on
the design of a filesystem, not a flash device. Therefore, our hardware model
includes only the minimum amount of detail necessary for modeling basic flash
operations, erase-unit reclamation, and fault tolerance.

3.1 Memory Hierarchy

The smallest unit for reading or programming flash memory is called a page; it
consists of a fixed number of data elements4:

sig Page { data : seq Data } { #data = PAGE_SIZE }

In addition, each page is associated with one of four status constants:

abstract sig PageStatus {}

one sig Free, // Erased and ready to be programmed

Allocated, // Allocated for a file write operation

Valid, // Contains valid data in a file

Invalid extends PageStatus {} // Contains obsolete data

A block, also called an erase-unit, contains an array of pages and is the smallest
unit for erase operations. A logical unit (LUN) is the minimum independent
entity that receives and executes a flash command5:

sig Block { pages : seq Page } { #pages = BLOCK_SIZE }

sig LUN { blocks : seq Block } { #blocks = LUN_SIZE }

Two forms of addresses are used during flash operations: the row address and
the column address. A row address is used to access a particular page:

sig RowAddr { lunIndex, blockIndex, pageIndex : Int }

A column address, simply of type Int, identifies the position of a data element
within a page.

Finally, a flash device is the top-level component that directly communicates
with the host filesystem:

4 A formula F in sig A {...}{F} is a constraint that applies to every atom of type A.
5 ONFi defines another level of hierarchy—called targets—above LUNs. To simplify

our analysis, we abstract away this detail from our model.



5

sig Device {

luns : seq LUN,

pageStatusMap : RowAddr -> one PageStatus,

eraseCountMap : RowAddr -> one Int,

reserveBlock : RowAddr

}{ #luns = DEVICE_SIZE }

The three fields pageStatusMap, eraseCountMap, and reserveBlock are aux-
iliary data structures used for erase-unit reclamation and fault tolerance6. The
pageStatusMap associates each page in the device with its current status. The
eraseCountMap associates each block with the number of times it has been
erased; erase counts play a crucial role in wear-leveling. Lastly, reserveBlock
holds the address of a block that temporarily stores valid pages during erase-unit
reclamation. The usage of these data structures is further discussed in Section 4.

3.2 Flash API Functions

During a file operation, the host filesystem may make one or more calls to three
flash API functions: read, program, and erase. Due to limited space, we present
only the interface declarations of these operations:

// Reads data from the page at "rowAddr", starting at the index "colAddr"

fun fRead[d: Device, colAddr: Int, rowAddr: RowAddr] : seq Data { ... }

// Programs (i.e. writes) "newData" into the page at "rowAddr", starting at

// the index "colAddr", and sets the status of the page to "Allocated"

pred fProgram[d,d’: Device, colAddr: Int, rowAddr: RowAddr,

newData: seq Data] { ... }

// Erases the entire block that contains the page at "rowAddr", increments

// its erase count, and sets the status of every page within the block to "Free"

pred fErase[d,d’: Device, rowAddr: RowAddr] { ... }

Note that fProgram and fErase are expressed as constraints between two device
states (d and d’) since these operations may modify the state of the device.

4 Flash Filesystem

Given the model for the underlying hardware, we now describe a concrete filesys-
tem that communicates with the flash device to perform file operations. This
concrete model is not based on one particular flash filesystem; rather, our design
incorporates a variety of mechanisms that have appeared in literature. Namely,
we adopted the techniques for wear-leveling and erase-unit reclamation from Gal
and Toledo’s survey paper on flash memory algorithms [10]. The division of the
write operation into separate phases and the mechanism for power-loss recovery
6 ONFi does not explicitly mention these data structures. On an actual device, they

would be scattered across the flash memory using sophisticated techniques, but this
detail is not suitable for the level of modeling abstraction in this work.



6

were modeled after the Intel Flash File System Specification [15]. It is impor-
tant to note that in our modeling task, we were primarily concerned with the
correctness of the design, not its performance. Thus, when multiple techniques
were available, we adopted the alternative that we considered to be the simplest.

A file, represented by an Inode, consists of a list of virtual blocks (VBlock),
each of which points to a particular page on the flash device:

sig Inode { blockList : seq VBlock }

sig VBlock {}

Like its abstract counterpart, the concrete filesystem contains a relation that
maps each file identifier to at most one inode. In addition, the filesystem contains
a bijective map from a virtual block to a row address:

sig ConcFsys {

inodeMap : FID -> lone Inode,

blockMap : VBlock one -> one RowAddr

}

Rather than being a fixed map, blockMap is dynamically updated during write
operations, and plays a crucial role in wear-leveling, as discussed below.

4.1 Concrete Operations

The two basic file operations that we describe here—read and write—are sub-
stantially more complex than their counterparts in the abstract filesystem. A
concrete operation involves multiple calls to the flash API functions, since an
inode consists of a number of fixed-size pages. Due to limited space, we focus on
the most distinctive aspects of the operations.

Concrete Read Like readAbs, the readConc operation (Fig. 1) accepts three
arguments—fid, offset, and size. In addition, readConc requires a ConcFsys
and a Device, which together represent a particular state of the filesystem. Note
that unlike readAbs, readConc is a predicate (not a function) that constrains
buffer to be the result of the operation7.

The core part of readConc (shown in Fig. 1) involves reading each of the
virtual blocks in the inode and storing the output into a single, contiguous
buffer. Prior to line 4, blocksToRead is constrained to be a sequence of virtual
blocks to be read, based on offset and size. For each index i in this sequence,
readConc retrieves the address of the page to which the virtual block at i is
mapped (line 6), invokes fRead (line 9), and stores the page data into a buffer
slot between two indices, from and to. After line 9, buffer contains all of the
data from blocksToRead in the order that they appear within the inode.

7 Sometimes, it is more natural to describe a result implicitly rather than to construct
it explicitly using a function with the formula as the body of a set comprehension.



7

1: pred readConc[fsys: ConcFsys, d: Device, fid: FID, offset, size: Int,

2: buffer: seq Data] {

3: ...

4: all idx : blocksToRead.inds | // "inds" returns the set of all indices

5: let vblock = blocksToRead[idx],

6: rowAddr = fsys.blockMap[vblock],

7: from = PAGE_SIZE * idx, to = from + PAGE_SIZE - 1 |

8: // Read a flash page and store data into correct buffer slot

9: buffer.subseq[from,to] = fRead[d, 0, rowAddr]

10: ...

11: } // 90 LOC in total, including comments

1: pred writeConc[fsys, fsys’: ConcFsys, d, d’: Device, fid: FID,

2: buffer: seq Data, offset, size: Int] {

3: ...

4: some stateSeq : seq TranscState, interDev : Device {

5: // Phase 1: Program pages

6: stateSeqConds[d, interDev, stateSeq, numPagesToProgram]

7: all idx : stateSeq.butlast.inds {

8: let inode = fsys.inodeMap[fid],

9: from = PAGE_SIZE * idx, to = from + PAGE_SIZE - 1,

10: dataFragment = buffer.subseq[from, to],

11: vblock = inode.blockList[startBlkIndex + idx],

12: rowAddr = fsys.blockMap[vblock]

13: preState = stateSeq[idx], postState = stateSeq[idx + 1] |

14: // Program one page worth of data into the flash

15: programVBlock[preState, postState, rowAddr, dataFragment]

16: }

17: // Phase 2: Invalidate/validate old/new pages

18: updatePageStatuses[interDev, d’]

19: // Update virtual-block-to-page mapping and the list of inode blocks

20: updateFsysInfo[fsys, fsys’, fid, stateSeq.last]

21: }

22: ...

23: } // 549 LOC in total, including comments

Fig. 1. Concrete Operations

Wear-Leveling and Erase-Unit Reclamation Unlike sectors in a traditional
disk-based filesystem, flash pages must be completely erased before they can be
rewritten. One major limitation of flash memory is that each block can be erased
only a finite number of times. Thus, a wear-leveling technique that distributes
erasures evenly across flash memory is essential in any flash filesystem.

Using an example, let us illustrate the standard wear-leveling technique [10]
that is adopted by most flash filesystem, including our design. Suppose an inode
n consists of a list of virtual blocks, one of which (vblk) is mapped to a physical
flash page p1. A client sends a request to the filesystem to overwrite the existing
data, including vblk, in the inode. A simple approach would be to erase the
physical flash block fblk that contains p1 and then program new data into p1.
However, if operations involving n were frequent, then fblk would wear out much



8

more quickly than others. Thus, rather than erasing p1, we instead program the
new data into a free, available page p2. In addition, we mark the data in p1 as
obsolete by modifying the page status to Invalid. Lastly, we update blockMap
in ConcFsys to indicate that vblk is now mapped to p2.

Over time, the flash device accumulates obsolete data and eventually runs
out of free pages. In order to free up space for new program operations, the
filesystem carries out a procedure called erase-unit reclamation. A reclamation
procedure involves the following steps:

1. Search for all blocks that contain obsolete data. Among these blocks, select
the one with the lowest erase count by checking eraseCountMap in Device.

2. Relocate all valid pages in the selected block. This block (call it dirtyBlock)
may still contain one or more pages that hold valid data. For the purpose
of relocation, the filesystem keeps one completely erased block as a spare
(reserveBlock in Device). Each valid page is relocated from dirtyBlock
to the corresponding position in reserveBlock.

3. Erase dirtyBlock using the fErase command. This block becomes the new
reserve block for the filesystem.

After Step 3, all pages within the old reserveBlock that do not hold the relo-
cated data from dirtyBlock are free and available for programming.

Concrete Write The writeConc operation (Fig. 1) is expressed as a constraint
between two pairs of ConcFsys and Device atoms. The pair (fsys, d) represents
the state of the filesystem at the beginning of the operation, and (fsys’, d’)
represents the state at the end. At the filesystem client level, writeConc is a
single-step transition between fsys and fsys’, modifying the filesystem in the
following ways: 1) If writeConc involves overwriting existing data in the inode,
then it updates fsys.blockMap with a new virtual-block-to-page mapping, and
2) if writeConc involves writing data beyond the current end of the inode, then
it appends one or more virtual blocks to inode.blockList.

At the flash device level, writeConc makes a sequence of calls to the flash
command fProgram, depending on the size of the input data and PAGE SIZE. In
order to model the flash operations closely to ONFi, we explicitly introduce a
sequence of intermediate device states between d and d’; each pair of adjacent
states in this sequence corresponds to a pair of pre- and post- states that are
passed as arguments to fProgram. After each step along the sequence, writeConc
maintains information about allocated-to-obsolete-page pairs and a list of new
pages to be added to the inode; this auxiliary information is used to update
fsys.blockMap and inode.blockList at the end of the operation. The signature
TranscState encapsulates all of the stateful information:

sig TranscState {

dev : Device, // Current device state

allocToObsoletePagePairs : RowAddr -> lone RowAddr, // New-old page pairs

newPageList : seq RowAddr // List of new pages to be added to inode

}



9

Then, we can model a sequence of flash-level transitions using a sequence of
TranscState’s, with additional constraints as follows:

pred stateSeqConds[init, final: Device, stateSeq: seq TranscState, length: Int]{

stateSeq.first.dev = init // Beginning of trace is initial device state

stateSeq.last.dev = final // End of trace is final device state

#stateSeq = length + 1 // Constrain the length of sequence

no stateSeq.first.allocToObsoletePagePairs // Initially empty pairs

no stateSeq.first.newPageList // Initially empty list

}

Fig. 1 shows a core snippet from a simplified version of the full writeConc
model. Based on the Intel specification (Section 2.5) [15], we divide the operation
into two distinct phases. Phase 1 (lines 6-16) involves partitioning the input
buffer into fixed-size fragments and programming them into the flash memory.
For each i, which corresponds to the ith transition in stateSeq, writeConc
extracts a data fragment of length PAGE SIZE from the buffer (lines 9-10). Next,
writeConc retrieves the row address of the virtual block that will be overwritten
with this fragment (lines 11-12). Finally, in line 15, the predicate programVBlock
programs the data fragment into the virtual block (which will be mapped to a
new flash page) by executing fProgram and adds a (new, old) row address pair
to preState.allocToObsoletePagePairs.

If the expression (startBlkIndex + i) evaluates to an index beyond the end
of inode.blockList, then both vblock and rowAddr will be empty expressions
(lines 11 and 12). The predicate programVBlock handles this case by appending
a page to preState.newPageList. In addition, if the device is out of free pages,
programVBlock performs erase-reclamation before programming a page.

In Phase 2, we invalidate the pages that contain obsolete data and then
validate all of the pages that were allocated during Phase 1; for simplicity, we
present this phase as being carried out inside the predicate updatePageStatuses
(line 18). The quantified variable interDev, introduced in line 4, acts as an
intermediate device state that joins the two phases together.

Lastly, after all of the flash-level transitions have been completed, writeConc
updates fsys.blockMap and inode.blockList using the information accumu-
lated up to the last TranscState in the state sequence (line 20).

4.2 Fault Tolerance Mechanism

Over the course of its lifetime, a flash device is susceptible to a variety of un-
expected hardware failures. Therefore, one crucial aspect of designing a flash
filesystem is its robustness in recovering from such failures. After recovery, the
filesystem must be either in a state as if an operation has never begun, or in
a state where the operation has been successfully completed. In this work, we
modeled one particular type of fault-tolerance mechanism—recovery from power
loss in the middle of a write operation. Our model is based on the mechanism
that is described in the Intel specification (Section 2.5) [15].

A power failure can occur during either Phase 1 or Phase 2 of the write
operation. We give a high-level description of the fault-tolerance mechanism in



10

pred alpha[asys: AbsFsys, csys: ConcFsys, d: Device] {

all fid : FID |

let file = asys.fileMap[fid], inode = csys.inodeMap[fid],

vblocks = inode.blockList {

#file.contents = #vblocks * PAGE_SIZE

(all i : vblocks.inds |

let vblock = vblocks[i],

from = i * PAGE_SIZE, to = from + PAGE_SIZE - 1,

absDataFrag = file.contents.subseq[from,to],

concDataFrag = findPageData[vblock,csys,d] |

absDataFrag = concDataFrag)

}

}

assert WriteRefinement {

all csys, csys’: ConcFsys, asys, asys’: AbsFsys, d, d’: Device,

fid: FID, buffer: seq Data, offset,size : Int |

concInvariant[csys, d] and

writeConc[csys, csys’, d, d’, fid, buffer, offset, size] and

alpha[asys, csys, d] and

alpha[asys’, csys’, d’]

=> writeAbs[asys, asys’, fid, buffer, offset, size]

}

Fig. 2. Abstract Relation and Refinement Property for Write

these two distinct cases:
Phase 1: At the point of the failure, one or more pages have been programmed
and their statuses have been modified to Allocated. To recover from this failure,
we set the status of every allocated page to Invalid. After recovery, the device
contains extra invalid pages, but to a filesystem client, the inode appears to have
the same data as it did at the beginning of the operation.
Phase 2: To recover from power loss during this phase, we first invalidate every
page p1 that is paired with an allocated page p2 (i.e. p2 is the replacement for
p1). Then, we validate every such p2 by setting its status to Valid. In essence,
the recovery process is here equivalent to completing the rest of Phase 2 that was
interrupted by the power failure. At the end of the recovery, the inode contains
the input data as expected by the caller of writeConc.

5 Analysis

Given the models for the abstract and concrete filesystems, we used the Alloy
Analyzer to check refinement properties for read and write operations. First, we
defined an abstraction relation alpha that maps a concrete state (represented by
a pair of ConcFsys and Device atoms) to an abstract state (represented by an
AbsFsys atom). The relation is expressed as a predicate (Fig. 2) that states that
for every file in the abstract filesystem, the concrete state includes an inode with



11

a correctly ordered sequence of virtual blocks containing the same data elements
as in the abstract file8.

The assertion WriteRefinement posits a backwards simulation for the write
operation9. We performed backwards (rather than forwards) simulation since
alpha maps a concrete state “upwards” to an abstract state. The predicate
concInvariant defines a valid state in the concrete filesystem—for example,
that every free page in the flash device must be completely erased—and its
preservation is checked independently. When the Alloy Analyzer finds a scenario
that violates the assertion within a specified scope, it graphically displays the
counterexample using its built-in visualizer. In the final version of the model, the
analyzer returned no counterexamples for the assertion. We used a scope of 5 for
every signature in the model, with 6 flash pages, each of which was constrained
to contain 4 data elements. The total size of the filesystem was therefore 24 data
elements. The property was checked on a 3.6 GHz Pentium 4 machine with 3GB
RAM in approximately 8 hours.

Even though the size of the filesystem that we checked is too small to rep-
resent a realistic system, we were able to find over 20 non-trivial bugs over the
entire course of our design process. These bugs were removed from the model
throughout the various iterations of our modeling task. In a typical filesystem,
many types of errors occur in “boundary cases”, which involve only a small num-
ber of components (i.e. pages, blocks, etc.). For example, consider the model for
the readConc operation in Fig. 1. As currently shown, this operation is buggy
in the following two ways: (1) If offset is not a multiple of PAGE SIZE, then
the length of the first slot in the output buffer must be less than PAGE SIZE, and
similarly, (2) if the expression (offset + size) is not a multiple of PAGE SIZE,
then the length of the last slot in the buffer must also be adjusted accordingly. An
instance of a filesystem state with two pages is sufficient to generate a counterex-
ample that demonstrates both of these bugs; increasing the scope to a higher
value would not reveal any useful information about bugs of a similar nature.

6 Related Work

Our work is a contribution to the second pilot project in the Verified Software
Repository (VSR) [3]. The idea of verifying a flash filesystem as a mini-challenge
was suggested by Joshi et al. [17], and several groups are now actively working
on this project [5, 7, 9, 13].

Filesystems were an early target for case studies in formal methods. As a his-
torically significant example, Morgan and Sufrin first formalized a specification
for a UNIX filesystem in Z [18]. Freitas and his colleagues refined an abstract
POSIX filesystem to a concrete implementation and proved the refinement re-
lation using Z/Eves [8]. Similarly, Arkoudas et al. proved a refinement relation
between an abstract filesystem and a disk-based implementation in the Athena
8 For simplicity, we restrict the size of every abstract file as shown in Fig. 2 to be a

multiple of PAGE SIZE. The complete version on the web is free of this restriction.
9 We can obtain ReadRefinement by replacing the write predicates with read.



12

theorem prover [2]. In comparison to previous two works, which employ theorem
proving, the analysis in Alloy is fully automatic, but it guarantees the correctness
of the refinement relation only up to a finite bound.

Butterfield et al. formalized NAND flash memory in Z [6], following the ONFi
specification, which formed a basis for our hardware model as well. Ferreira and
their colleagues also formalized the ONFi specification and a POSIX filesystem
in VDM++ [7]. They performed the analysis of the filesystem using the HOL
theorem prover [12] and Alloy. They used the Alloy Analyzer primarily for finding
a counterexample to proof obligations that could not be automatically discharged
by HOL, whereas we used the analyzer to perform the analysis in its entirety.

Groce et al. performed randomized testing on a POSIX filesystem implemen-
tation that is based on NAND flash memory [13]. Yang et al. used model checking
to find errors in existing filesystem implementations [25]. Although their work
is not flash-specific, the nature of their analysis is similar to ours; they deliber-
ately scaled down the size of the filesystem for increased tractability of analysis
but were still able to find numerous bugs, many of which were due to complex
interactions among a small number of components.

7 Discussion

In this project, we have shown that we were able use Alloy to successfully model
and analyze the types of complexity that arise in a flash filesystem design. We
believe that the scope we used in the final analysis was sufficient to ensure that
the refinement relation is sound, but we currently cannot justify our intuition rig-
orously. It is also possible, as it would be even if theorem proving were used, that
the concrete model harbours unintentional overconstraints that slipped through
our analysis unnoticed.

Our experience has raised a number of interesting questions about the Al-
loy language and the analyzer. First of all, due to the declarative nature of
the language, modeling multi-step operations in Alloy is not always straight-
forward. Although the language is expressive enough for describing such oper-
ations, writing certain types of control constructs (such as loops) in Alloy can
be cumbersome, since it does not support a built-in notion of an implicit global
state. In particular, in order to model changes to the device after each call to
fProgram in writeConc, we explicitly introduced a sequence of state atoms and
imposed a constraint between each pair of adjacent states. A language such as
ASM [4]—with the notion of an implicit global state—may be more suitable for
this particular aspect of the filesystem model. We are currently investigating
an extension to Alloy that will provide the user with control constructs, while
maintaining the declarative power of the language.

Our filesystem model, as one of the largest case studies that we have done
to date, has pushed the boundary of Alloy’s scalability. The analyzer uses as its
backend a relational model finder called Kodkod [23] that translates an Alloy
model to a CNF formula, which can then be handled by powerful SAT solvers.
Although checking the refinement relation in our latest model took several hours



13

to complete, the analyzer is fully automatic, and so we were able to leave the
analyzer running unattended overnight. On the other hand, due to the exponen-
tial nature of SAT, the duration of the analysis can grow rapidly as the scope is
incremented or as additional layers of complexity are added to the model. Kod-
kod already employs a variety of techniques to reduce the size of a SAT problem,
such as symmetry breaking and sharing detection [23]; we are looking into fur-
ther opportunities for an improved scalability by leveraging available techniques
(e.g. additional decision procedures [11]).

Another useful feature of the Alloy Analyzer is the extraction of an unsatis-
fiable core [22], which highlights top-level constraints in a model that are used
to establish the correctness of an assertion. In some cases, an overconstraint
may cause an assertion to be vacuously true; the user can usually tell when this
has happened by noticing that formulas that were expected to be highlighted as
part of the core were not. The unsatisfiable core facility was very useful in this
project, and did indeed expose overconstraints on several occasions. However,
the granularity of the core can sometimes be too coarse to be useful to the user.
In particular, a top-level formula that is existentially quantified over a conjunc-
tion of sub-constraints is treated as a single constraint in the core; this grouping
might suppress potentially useful information. We are currently implementing a
mechanism that will overcome this problem and extract a finer-grained unsatis-
fiable core.

8 Future Work

While formalizing and analyzing a design model are useful exercises on their
own, one interesting question is whether the usage of the model can be extended
beyond the design into the implementation and testing phases. We are looking
into possible uses of the flash filesystem model. For example, by mapping our
model to an existing flash filesystem implementation (such as YAFFS [1]), we
can leverage the power of the Alloy Analyzer as a model finder to automatically
generate a large set of test cases. Other research questions that we are planning
to explore include simulation, model-based diagnosis, and code generation.

The current functionality of our filesystem is rather limited. For future work,
we plan to include a larger set of POSIX file operations, such as creat, open,
and close, and the support for directories. We also plan to model recovery
mechanisms for other types of failures (besides power loss), such as bad blocks
and bit corruption.

Complete versions of all Alloy models that appear in this paper are available
at http://sdg.csail.mit.edu/projects/flash.

Acknowledgements We are grateful to Felix Chang, Greg Dennis, Vijay Ganesh,
Derek Rayside, Sivan Toledo, and Emina Torlak for helpful discussions and feed-
back. This research was supported by the National Science Foundation under
Grant Nos. 0541183 and 0438897, and by the Nokia Corporation as part of a col-
laboration between Nokia Research and MIT’s Computer Science and Artificial
Intelligence Lab.



14

References

1. Aleph One. YAFFS: A flash file system for embedded use. http://www.yaffs.net.
2. K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. On verifying a file system imple-

mentation. In: 6th ICFEM, pp. 373-390 (2004).
3. J. Bicarregui, C. A. R. Hoare, and J. Woodcock. The verified software repository:

a step towards the verifying compiler. Formal Aspects of Computing, 18:143-151
(2006).

4. E. Borger and R. F. Start. Abstract State Machines: A method for high-level system
design and analysis. Springer-Verlag, New York (2003).

5. M. Butler, K. Damchoom, and J-R. Abrial. Some filestore developments with Event-
B and Rodin. Verifiable File Store Mini-Challenge Workshop, co-located with the
9th ICFEM (2007).

6. A. Butterfield and J. Woodcock. Formalizing flash memory: First steps. In: 12th
ICECCS, pp. 251-260 (2007).

7. M. A. Ferreira, S. S. Silva, and J. N. Oliveira Verifying Intel flash file system core
specification. In: 4th VDM-Overture Workshop, FM ’08 (2008).

8. L. Freitas, Z. Fu, and J. Woodcock. POSIX file store in Z/Eves: an experiment in
the verified software repository. In: 12th ICECCS, pp. 3-14 (2007).

9. L. Freitas, J. Woodcock, and A. Butterfield. POSIX and the Verification Grand
Challenge: a roadmap. In: 13th ICECCS, pp. 153, 162 (2008).

10. E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM
Computing Surveys, 37:138-163 (2005).

11. V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In: 19th
CAV, pp.519-531 (2007).

12. M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, New York (1993).

13. A. Groce, G. J. Holzmann, and R. Joshi. Randomized differential testing as a
prelude to formal verification. In: 29th ICSE, pp. 621-631 (2007).

14. Hynix Semiconductor et al. Open NAND Flash Interface Specification. Technical
Report Revision 1.0. ONFi Workgroup, http://www.onfi.org (2006).

15. Intel. Flash File System Core Reference Guide. Technical Report 304436001. Intel
Corporation (2004).

16. D. Jackson. Software Abstractions. MIT Press, Cambridge, MA (2006).
17. R. Joshi and G. J. Holzmann. A mini challenge: Build a verifiable filesystem. In:

Verified Software: Theories, Tools, Experiments (2005).
18. C. Morgan and B. Sufrin. Specification of the UNIX filing system. In: IEEE Trans-

actions on Software Engineering, 10:128-142 (1984).
19. G. Reeves and T. Neilson. The Mars Rover Spirit FLASH Anomaly. In: IEEE

Aerospace Conference (2005).
20. J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, NJ (1998).
21. The Open Group. The POSIX 1003.1, 2003 Edition Specification.

http://www.opengroup.org/certification/idx/posix.html.
22. E. Torlak, F. S-H. Chang, D. Jackson. Finding minimal unsatisfiable cores of declar-

ative specifications. In: 15th FM, pp. 326-341 (2008).
23. E. Torlak and D. Jackson. Kodkod: A relational model finder. In: 13th TACAS,

pp. 632-647 (2007).
24. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.

Prentice-Hall, NJ (1996).
25. J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking to find

serious file system errors. In: 6th OSDI, pp. 273-288 (2004).


