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Abstract—An approach is suggested for arguing that a
system is dependable. The key idea is to structure the system
so that critical requirements are localized in small, reliable
subsets of the system’s components called trusted bases. This
paper describes an idiom for modeling systems with trusted
bases, and a technique for analyzing a dependability argument—
the argument that a trusted base is sufficient to establish a
requirement.
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I. INTRODUCTION

Traditional approaches to dependability focus on ex post
facto methods, such as verification, testing, and inspection.
Despite advances in these methods, achieving dependability
in a complex system still poses a formidable challenge. Test-
ing and inspection yield limited confidence, and verification
is too costly unless carefully focused in scope.

An alternative approach is to design the system so that
its dependability is guaranteed largely by construction, with
only a limited amount of analysis required to ensure that the
design has been faithfully realized in the code. Designs that
follow this approach use techniques such as isolating critical
components [1], employing interlocks to guard against dan-
gerous actions [2], and performing end-to-end checks [3] to
ensure data integrity. Our premise is that these techniques
have a common goal: reducing the size of a trusted base,
which comprises the parts of the system that are responsible
for fulfilling a critical requirement.

The idea of localizing critical properties for dependability
is not new. The trusted computing base (TCB) [4], [5] and
the security kernel [6] are well-known notions in the security
literature. Rushby proposed an analogous version for safety-
critical systems, called the safety kernel [7], which ensures
safety by encapsulating the control of dangerous actions.
The value of this idea has been recognized more widely [8],
beyond the realm of security. But although many software
engineers are familiar with it, few seem to apply the idea
systematically and to exploit it in all the contexts in which
it might be useful, in part due to a lack of ways to document
and reason about trusted bases.

Furthermore, existing approaches to building TCBs and
kernels focus on the design of software, and take place
after the requirements stage. Often, though, this will be

too late. The satisfaction of a requirement usually relies
on assumptions about the environment, in addition to the
behaviors of software components. The trusted components
may include not only machines (designed components, such
as software modules) but also domains (given, environmental
components, such as human operators, business processes,
and the physical world). Therefore, establishing trusted bases
for critical requirements should begin as early as the re-
quirements analysis phase. We prefer to use the term trusted
base, instead of trusted computing base, to make clear the
important role of non-computer domains in dependability.

In this paper, we propose a framework for designing a
system for dependability with trusted bases. We present
an idiom for modeling a system so that the relationships
between requirements and trusted bases are made explicit.
We describe a technique for analyzing a dependability argu-
ment—the argument that a trusted base is alone sufficient to
establish a requirement; that is, it is not missing a component
that is also necessary for the requirement to hold.

The paper begins with an outline of our proposed ap-
proach to achieving dependability with trusted bases (Sec-
tion II). We then present the idiom for modeling systems
with trusted bases (Section III), and a technique for analyz-
ing a dependability argument (Section IV). We report on a
case study of two electronic voting systems (Section V): an
optical scan system and the Scantegrity system [9], which
is intended to yield a strong guarantee that the failure
of an unreliable component (such as a scanner) does not
compromise the integrity of the election. We discuss the
related work (Section VI), and conclude (Section VII).

II. OVERVIEW OF THE APPROACH

In this section, we provide an informal discussion of our
proposed approach to achieving dependability with trusted
bases. As a running example throughout this section, we use
the problem of reliable file transfer, based on the description
in the seminal paper by Saltzer, Reed, and Clark [3]. A file
resides on the disk of a computer, which is linked to another
computer through a potentially unreliable communication
network. The requirement is to faithfully copy the file from
the sender to the receiver. The software engineer’s task is to
design a file transfer protocol (FTP) application to provide
the transfer capability.
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Figure 1. A problem diagram for a design of the file transfer system.
Striped boxes represent machines, boxes domains, and a dotted oval
a requirement. Labels on the edge between two domains or machines
represent shared phenomena; labels on the edge from a requirement to
a domain represent referenced phenomena.

We begin the section by introducing the problem
frames [10] approach as the underlying framework for
structuring a system and its requirements. We define the
notion of a trusted base, and describe a particular design of
the file transfer system, whose trusted base includes every
component in the system. We then present an alternative
design, where the trusted base no longer depends on the un-
reliable network, and therefore, is arguably more dependable
than the previous design.

A. Problem Frames

In our approach, we use Michael Jackson’s problem
frames [10] as the underlying modeling framework to ar-
ticulate the structure of a system and its relationships to
requirements. A hallmark of problem frames is the division
of the system into application domains—parts of the world
that already exist—and machines—components to be built
in order to solve the problem.

Figure 1 shows an example of a problem diagram, which
illustrates how machines interact with one or more domain to
satisfy a requirement. In this particular diagram, the two file
systems and the network are examples of domains, because
they are given as parts of the problem. Sender and receiver
FTP applications are machines that will be built to interact
with these domains in order to carry out the file transfer.

Machines and domains interact by sharing phenomena—
for example, files stored on the file systems, and data packets
that are generated by the sender application and sent over the
network. In Figure 1, the sender file system shares fileA with
the FTP application, which then splits the file into blocks
of data packets. In turn, the application shares the packets
(blocksIn) with the network by requesting their transmission.

Each domain has an associated set of assumptions. We
might assume, for example, that the read and write op-
erations on the file systems work correctly; or that the
communication channel in the network is reliable (that is,
does not corrupt or drop packets) and secure (resilient
against security attacks).

Each machine has a specification that it must fulfill.
The sender application’s specification, for example, might
dictate that it correctly read the file from the disk, split its
content into data packets, and pass them onto the network for
transmission. The receiver application’s specification might
say that it receives the packets off the network and writes
them to disk appropriately.

A requirement is a problem to be solved to satisfy the
customer. Usually, the requirement is expressed in terms of
phenomena that appear within domains. That the customer’s
requirements often exist within the environment, not within
machines, is one of the key insights of the problem frames
approach. For example, the requirement for the reliable
file transfer expresses a desired relationship between the
contents of the files on the sender and receiver file systems;
it does not mention anything about the behaviors of the file
transfer applications. It is the requirements analyst’s task to
derive machine specifications that are sufficient to establish
the requirement, in conjunction with domain assumptions1.
The specifications of the sender and receiver applications,
together with the assumptions about the file systems and the
network, must satisfy the requirement that the content of the
file on the sender matches that of the file on the receiver.

B. Trusted Bases and Dependability Arguments

A trusted base for a requirement is the set of all domains
and machines that are responsible for establishing the re-
quirement, regardless of how the components outside the
trusted base behave.

Consider the design of the file transfer system in Figure 1.
We identify the trusted base for the reliable file transfer re-
quirement as the set that consists of: the sender and receiver
file systems, the sender and receiver FTP applications, and
the network. Then, the argument for the satisfaction of the
requirement, also called the dependability argument, can be
stated as follows:

If the file operations work correctly, the network
transmission is reliable and secure, and the FTP
applications are implemented to their specifica-
tions, then the system will guarantee reliable file
transfer between the two computers.

The analysis of a dependability argument involves two
aspects of a trusted base:

1Beyond the scope of this paper, some of the techniques for deriving
specifications from requirements are discussed in [11], [12].



1) Sufficiency: The proposed trusted base must be suffi-
cient for the desired requirement; that is, if every domain in
the trusted base satisfies its assumptions, and every machine
satisfies its specification, then the requirement must hold.
This amounts to checking that the dependability argument
is valid; that is, the conjunction of its premises implies the
conclusion. Note that it also implies that failure of the other
components to fulfill their specifications or assumptions
cannot compromise the requirement.

2) Degree of Confidence: An argument is only as strong
as its weakest premise. We must show not only that the
trusted base is sufficient, but also that we can be confident
that these components will fulfill their responsibilities. This
step may involve consulting a domain expert to ensure that
each domain assumption is a reasonable characterization of
the reality. For each machine, we must provide evidence
that the machine conforms to its specification (e.g. a proof,
a testing report, etc.). If a component in the trusted base is
deemed unreliable, we must consider redesigning the system
in order to exclude the component from the trusted base.

As an example, we might evaluate our confidence in the
trusted base for the file transfer design in Figure 1 as follows:

• File systems: Can we assume that file operations are
reliable? Not necessarily. Even though file systems
have been used and tested for many years, occasional
hardware failures do occur, and we may not assume
that the stored or read data will always be consistent.

• FTP applications: Can we implement the FTP software
with high confidence? Yes. The required functionality is
arguably simple enough such that a reliable, well-tested
implementation should be manageable.

• Network: Can we rely on the network to be free of
data corruption and security bleaches? Not necessarily.
The network is susceptible to a variety of hardware and
communication failures, as well as security attacks.

Based on this assessment, we conclude that the file sys-
tems and the network undermine the confidence in the
trusted base. As one option, we may attempt to make these
components more reliable—for example, by adding extra
fault-tolerance mechanisms. But this approach is not always
feasible; the cost of these mechanisms may be prohibitive,
and a given domain may not be amenable to modification.

C. Design for small, reliable trusted bases

If the trusted base for a critical requirement contains
components that we cannot rely on with confidence, we
must rethink the design of the system. This step may
involve restructuring the system to exclude the unreliable
components from the trusted base.

An alternative design of the file transfer system follows
the end-to-end principle by Saltzer, Reed, and Clark [3].
The key idea is to regard the network and the file systems
as being inherently susceptible to failures, and embed extra
checks at the application level to detect a transfer failure.

The alternative design works as follows. After reading the
file from the disk, the sender application computes the hash
for the file, using standard algorithms such as SHA-2. Then,
it requests transfer of the file blocks along with the hash. As
in the previous design, the receiver application retrieves the
data packets from the network and writes the blocks onto the
file system. To detect a failure, the receiver reads the same
file from its file system and computes the hash for the file.
The receiver compares the two hash values—the received
and computed ones; if the two match, then it may conclude
that the file transfer was successful. If they do not match,
then the receiver reports a failure.

The consequence of the end-to-end design is that the
network and the file systems no longer belong to the trusted
base for the requirement. In other words, the two machines
that represent the FTP applications should, by themselves,
be sufficient to ensure the reliability of the transfer, despite
potential failures in the network or the file systems2.

Some caveats are worth mentioning. First, the end-to-end
design promises a weaker requirement than the original file
transfer requirement. It no longer states that the transfer is
always successful; instead, it says that either the transfer
succeeds, or if not, then the receiver application will report
an error. The full functional requirement of the system still
relies on the properties of the network and the file systems.
For example, if the network repeatedly drops packets over
multiple retries, then the transfer is unlikely to ever succeed.
In other words, the end-to-end design guarantees only that
“bad things do not happen” (i.e. a failure does not go
undetected), not that “good things happen” (i.e. transfer is
always successful).

The system is relying on mathematical properties of a
good hashing function; that is, it should be computationally
infeasible to modify a piece of data without altering its hash
or to find two different pieces of data with the same hash.
These properties ensure that an erroneous or malicious part
of the network or the file system cannot corrupt the data in
a way that would result in a hash identical to the original
hash. Also, the network should not be able to contrive the
hash such that it matches the hash of another piece of data.

Lastly, during the process of redesign, other parts of
the system—the extra logic for computing and checking
hashes—have become more complex, and will incur a cost
not only in construction but also in verification. This is part
of the cost of achieving dependability, but in general the
design aim is to keep the trusted base small enough that
the overall cost is still much lower than it would be if a
system-wide verification were called for.

III. MODELING IDIOM

Reasoning about trusted bases and dependability argu-
ments can be done informally. However, formal modeling

2As we will see in Section IV, analysis of the dependability argument
reveals that the requirement actually does depend on the sender file system.



can help the analyst to state assumptions and specifications
in an unambiguous manner, and enable rigorous analysis,
which can reveal subtle flaws in the reasoning. In this sec-
tion, we introduce our modeling idiom, which explicitly rep-
resents the relationships between requirements and trusted
bases. In Section IV, we describe analysis for checking the
validity of a dependability argument.

A. Alloy
We use Alloy [13], a modeling language based on first-

order relational logic, as the underlying formalism for our
idiom. Alloy is suitable for this purpose because: (1) its
declarative style is natural for describing relationships be-
tween domains and machines; (2) its flexibility, and lack of
built-in idioms, allows an unconventional structuring; and (3)
its analysis engine, the Alloy Analyzer, provides automated
consistency checking. But our approach does not prescribe
the use of a particular formalism, and other formalisms may
well be suitable.

B. Basic Framework
A system consists of a set of domains D, a set of machines

M, and a set of requirements R. Each one of domains,
machines, and requirements is associated with a property.
For a domain, this property is the conjunction of the as-
sumptions; for a machine, it comprises the specification;
and for a requirement, it expresses the customer’s desire.
We define a function T B : R → P(D ∪M), which maps
each requirement to the set of domains and machines that
constitute its trusted base.

These basic elements can be modeled in Alloy as follows:
abstract sig Property {}
abstract sig Domain extends Property {}
abstract sig Machine extends Property {}
abstract sig Requirement extends Property {

tb : set (Domain + Machine)
}

The Alloy keyword signature declares a set of elements, and
extend defines a subtyping relation. An abstract signature
cannot be instantiated, and must be extended by another
non-abstract signature; therefore, every element of type
Property is an element in Domain, Machine, or Requirement.
Enclosed in the declaration of Requirement, tb is a signature
field that represents the trusted base function, so that T B(r)
will be denoted in Alloy as r.tb, where r is a particular
instance of Requirement.

We introduce an additional variable OK ⊆ (D∪M∪R)
representing the set of all domains, machines, and require-
ments that satisfy their properties. In Alloy, we declare this
set to be a subset of Property using the keyword in:
abstract sig OK in Property {}

An element of type Property belongs to OK if and only if the
property of the element is satisfied. For example, a machine
M with a specification (represented by a logical formula S)
is a member of OK if and only if S holds true:

sig M extends Machine {
...

}{
// signature constraint
this in OK iff S

}

A signature constraint appears as an appendix of a signature
declaration, and is a constraint that holds for every element
in that signature; the keyword this represents the archetypal
element of the signature. So the preceding fragment of Alloy
says that the machine M is in OK if and only if it satisfies
its specification. A similar style of specification can be used
to classify domains into those that behave as expected, and
ones that misbehave; and requirements into those that are
satisfied by the system, and ones that are violated.

Having defined the set OK, we formulate a traditional
argument for the satisfaction of requirements as follows:

(D ∪M) ⊆ OK ⇒ R ⊆ OK (1)

This argument says that if all domains behave as expected
and all machines meet their specifications, the satisfaction
of desired requirements must follow.

In comparison, our proposed notion of a dependability
argument takes the following form:

∀r : R · T B(r) ⊆ OK ⇒ r ∈ OK (2)

That is, for each requirement r, if all of the assumptions
and specifications of the components in its trusted base hold,
then the requirement is satisfied, regardless of how the other
components behave. In Alloy, we use an assertion to state
the dependability argument:

assert DependabilityArgument {
all r : Requirement | r.tb in OK implies r in OK

}

The distinction between (1) and (2) has significant impli-
cations on the development process. It suggests that key de-
sign decisions should be driven with the goal of minimizing
the trusted bases for the most critical requirements. During
implementation, it may mean assigning the most competent
programmers to build the trusted machines, and using a safe
language and simple algorithms that are easy to understand
and implement. Finally, the distinction allows one to allocate
available testing and verification resources more effectively,
by focusing them on components in the trusted bases.

C. Model of the End-to-End File Transfer System

We demonstrate the usage of our idiom with a model of
the end-to-end file transfer system. We begin by modeling
phenomena, the elementary building blocks of the world.
The purpose of the system is to transfer data packets between
two computers. There are two types of packets: blocks and
file hashes. Each file consists of a set of blocks, and is
associated with a hash; we represent these two as fields of
the signature File:



abstract sig Packet {}
sig Block extends Packet {}
sig Hash extends Packet {}
sig File {

blocks : set Block,
hash : Hash

}

The file system on the sender contains a file to be sent over
the network. It interacts with the sender FTP application;
we express this relationship by declaring an element of type
SenderApp as a field of the signature SenderFileSys. The
signature constraint encodes a domain assumption that the
content of the file received by the application matches the
content in the file system; the assumption holds if and only
if the file system is OK (i.e. it successfully performs the
read operation):

sig SenderFileSys extends Machine {
file: File,
app: SenderApp

}{
this in OK iff

// read operation works correctly
app.readFile = file

}

The specification of the sender application has two as-
pects: computing the hash on the file that it reads off the
file system; and requesting transfer of the blocks to the
network:3:

sig SenderApp extends Machine {
network: Network,
readFile : File,
hash: Hash

}{
this in OK iff

// app computes the hash of the file to be sent
hash = readFile.hash and
// app requests transfer of both the file blocks & hash
network.packetsIn = readFile.blocks + hash

}

The network domain is associated with two sets of pack-
ets: the ones coming in from the sender computer, and the
ones going out to the receiver. A desirable (but perhaps too
optimistic) assumption about the network is that data transfer
is completely free of errors—i.e. every packet going into
the network arrives at the destination exactly as it is. This
assumption holds true if and only if the network is reliable:

sig Network extends Domain {
packetsIn, packetsOut : set Packet

}{
this in OK iff packetsIn = packetsOut

}

In all these descriptions, there is no commitment to
the stated property holding: instead, the model requires
that the property hold if and only if the component is
OK. The receiver application must take the data packets
off the outgoing port of the network and store them as

3In Alloy, + is the operator for set union.

a hash (receivedHash) and a file (receivedFile), which is
then written to the receiver file system. The application
reads back the same file into its memory and computes a
separate hash value (computedHash). The two hashes are
then compared against each to check whether or not the
transfer was successful:
sig ReceiverApp extends Machine {

network: Network,
receivedFile, readFile : File,
receivedHash: lone Hash,
computedHash : lone Hash

}{
this in OK iff

// app reads packets off the network & stores them
receivedFile.blocks + receivedHash = network.packetsOut and
// app computes a hash based on the file read back
computedHash = readFile.hash

}

sig ReceiverFileSys extends Machine {
file: File,
app: ReceiverApp
}{
this in OK iff

// the file received by app is written correctly
file = app.receivedFile and
// the same file is read back by the app
app.readFile = file

}

Note that this model does not describe dynamic behavior,
such as the particular sequence of file read and write
operations and the state changes they produce. Instead, as-
sumptions and specifications are written as static constraints
on the phenomena between the interacting components.
This style allows a simpler and more natural description,
corresponding, for example, to the intuition that in a reliable
network, incoming and outgoing packets match. However,
our approach does not preclude the analyst from modeling
dynamic behavior explicitly, should that seem more useful.

In order to describe hashing, we declare as an Alloy fact
some properties that are assumed always to hold4:
fact HashingProperties {

all f1, f2 : File | f1.hash = f2.hash iff f1.blocks = f2.blocks
// network cannot contrive a hash
all n : Network |

all h : Hash & n.packetsOut |
h in n.packetsIn or (no f : File | f.hash = h)

}

The first formula in the fact states that files have the
same hash if and only if their contents are equivalent. The
second formula says that every hash is transferred without
corruption, or does not match the hash of an existing file;
in other words, errors in the network should not be able to
contrive the hash in such a way that it matches the hash of
another file. We point out two caveats. First, we distinguish
these properties from a domain assumption, since they
are mathematical properties that are universally regarded
to be true, regardless of the problem context. Second, a

4In Alloy, & is the operator for set intersection.



hash function provides only a probabilistic guarantee of the
properties, but in practice stronger assumptions such as this
are always made. Vulnerabilities in cryptographic primitives
are unlikely to be the weakest link in the dependability chain
and are therefore not the focus of a system-level analysis.

The last piece of the model is the reliable file transfer re-
quirement. The two file systems and the receiver application
contain phenomena that are referenced by the requirement,
and appear as the fields of the signature ReliableTransfer-
Req5. We state that the requirement is satisfied only when the
transfer is successful, and if not, then the receiver application
is able to detect the failure by comparing the hash values:

sig ReliableTransferReq extends Requirement {
senderFileSys: SenderFileSys,
receiverFileSys: ReceiverFileSys,
receiverApp : ReceiverApp

}{
this in OK iff

// the transfer is successful or the hashes do not match
(senderFileSys.file.blocks = receiverFileSys.file.blocks or
receiverApp.receivedHash != receiverApp.computedHash)

// receiverApp is the correct instance
receiverApp = receiverFileSys.app
// the trusted base includes the two applications
tb = {senderFileSys.app + receiverFileSys.app}

}

The second signature constraint ensures that receiverApp
is the instance of type ReceiverApp that interacts with the
receiver file system. Finally, the last constraint indicates that
the trusted base for the requirement consists of the sender
and receiver applications.

The flexibility of the signature construct in Alloy allows
reification of meta-level concepts, which we heavily exploit
in our modeling idiom. These include the set Property and its
subset OK, which are used to describe and constrain behav-
iors of domains, machines, and requirements. Technically,
the set OK is not necessary for analyzing a dependability ar-
gument; we could conjoin the assumptions and specifications
of the components in the trusted base, and check whether the
resulting formula implies the desired requirement. However,
OK allows us to encode the effect on the system when
a domain or a machine fails to satisfy its property. For
example, we can generate and visualize a scenario in which
a component failure leads to the violation of a requirement,
but still preserves the satisfaction of another, more critical
requirement. We illustrate such analyses in Section IV.

IV. ANALYSIS

The Alloy Analyzer [13] is a model finder: it solves
formulas to find satisfying assignments. The standard ap-
plications are animation (generating sample scenarios) and

5One might note that the requirement references the phenomena in
ReceiverApp. To simplify our example, we departed slightly from the
standard problem frames approach, in which a requirement always ref-
erences domain (and not machine) phenomena. We could instead add a
domain TransferReport that displays whether a transfer was successful; the
requirement would then reference phenomena in this domain.

checking (generating counterexamples to a claim). In this
section, we describe how checking can be used to analyze
a dependability argument.

Recall the assertion for the generic dependability argu-
ment from the end of Section III-B:

assert DependabilityArgument {
all r : Requirement | r.tb in OK implies r in OK

}

The assertion states that as long as the components in
the trusted base for the requirement are OK, then the
requirement holds. A refutation to this assertion would be a
scenario in which the components in a trusted base behave
as expected, but the requirement fails to hold.

We use a check command in Alloy to check an assertion:

check DependabilityArgument for 5

The analysis in Alloy is automatic, and exhaustive up to
the specified bound. In this example, it is guaranteed to
find a counterexample if one exists involving at most five
objects of each signature. The absence of a counterexample
does not necessarily imply that the claim is valid, but by
increasing the scope, the analyst can gain further confidence.
Counterexamples returned by the analyzer are usually small,
making it easier to trace them back to flaws in the model.

When executed with the above check command, the Alloy
Analyzer finds a counterexample, and generates a diagram
using its built-in visualizer, as shown in Figure 2(a). This
particular counterexample illustrates a scenario in which
the sender application reads an incorrect file content (File1
instead of File0) from the unreliable file system. As a result,
the file transferred onto the receiver does not match the
content of the original file, even though all other components
behave correctly. From this observation, we conclude that the
requirement depends on the correctness of the read operation
in the sender file system, and revise its trusted base to
include the additional component:

sig ReliableTransferReq extends Requirement {
...

}{
...
// the trusted base includes the two applications as well as
// the sender file system
tb = {senderFileSys.app + receiverFileSys.app +

senderFileSys}
}

When we re-run the check command, the Alloy Analyzer
returns another counterexample, as shown in Figure 2(b).
This counterexample represents a scenario in which the the
unreliable network fails to transfer the only block (Block)
in File1. As a result, the content of the file (File0) written
onto the receiver file system is incorrect. However, when the
receiver application reads back the same file, the erroneous
read operation happens to return a file that has the same
content as the original file on the sender—highly unlikely,
but still not impossible! The hash value computed on this
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Figure 2. Counterexamples to the assertions DependabilityArgument. The components that satisfy their properties are labeled with (OK) in the visualizer.

file matches the received hash (Hash1), and the receiver ap-
plication fails to detect the network transfer error, violating
the reliability requirement.

One way to fix this problem would be to include the
receiver file system as a part of the trusted base. But
placing trust into a component must be done carefully,
as such a design-level decision can have impact on the
subsequent implementation and testing activities. We must
consider the likelihood of the failure that the counterexample
illustrates, and make a judgement on whether or not the
component needs to be trusted. In this case, we assume that
the likelihood of the file system contriving the content of a
file such that it yields a particular hash value is extremely
small, given a well-designed hash function. Then, we modify
the fact HashingProperties to include a constraint that rules
out the same class of failures:

fact HashingProperties {
all f1, f2 : File | f1.hash = f2.hash iff f1.blocks = f2.blocks
// network cannot contrive a hash
all n : Network |

all h : Hash & n.packetsOut |
h in n.packetsIn or (no f : File | f.hash = h)

// file system cannot contrive a file content for a particular hash
all fsys : ReceiverFileSys | let app = fsys.app |

fsys.file != app.readFile implies
app.readFile.hash != app.receivedHash

}

When we re-run the check command with the modified fact,
the analyzer no longer returns a counterexample. Facts are
like axioms in a proof; their validity must be discharged with
a careful examination by a domain expert, such as a designer
of a cryptographic hash function. One of the benefits of
formal analysis is that it forces their documentation, so that
they can be subject to an examination.

Let us consider another requirement for the file transfer
system, that “a mismatch between the received and com-

puted hash values on the receiver application indicates a file
transmission failure”. This requirement is desirable, since if
it does not hold, the receiver application may mistakenly
believe that the file transfer has failed, and request of the
sender a gratuitous retransmission. We initially posit that
the trusted base for ReliableTransferReq is also sufficient
to ensure HashMismatchReq, and indicate as such using a
signature constraint:
sig HashMismatchReq extends Requirement {

senderFileSys : SenderFileSys,
receiverFileSys : ReceiverFileSys,
receiverApp : ReceiverApp

}{
this in OK iff

// hash mismatch means a transmission error has occurred
(receiverApp.receivedHash != receiverApp.computedHash
implies
senderFileSys.file.blocks != receiverFileSys.file.blocks)

receiverApp = receiverFileSys.app
tb = {senderFileSys.app + receiverFileSys.app +

senderFileSys}
}

When we re-run the check command with the new re-
quirement, the Alloy Analyzer generates a counterexample,
as shown in Figure 2(c). The diagram shows a scenario
in which the two hashes on the receiver application do
not match, but File has been transferred successfully. A
close look reveals that the original hash (Hash1) has been
corrupted during the transfer. Further analysis reveals that
the trusted base needs to include both the network and the
receiver file system to establish this requirement:
sig HashMismatchReq extends Requirement {

...
}{

...
tb = {senderFileSys.app + receiverFileSys.app +

senderFileSys + receiverFileSys +
senderFileSys.app.network}

}
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Figure 3. Problem diagrams for the two electronic voting systems. The highlighted components constitute the trusted base for the requirement.

When the analyzer checks the assertion again, it no longer
returns a counterexample. This example shows that different
requirements have different trusted bases. The requirement
HashMismatchReq has a larger trusted base, extending to
the entire system. Since this requirement is less critical,
however, one would expect to devote fewer resources to this
trusted base, so identification of the smaller trusted base for
the more critical requirement still results in a cost reduction.

V. CASE STUDY: ELECTRONIC VOTING SYSTEMS

As a case study, we used our approach to construct and
analyze dependability arguments for two types of electronic
voting system: an optical scan system, which is used widely
in the U.S., and the Scantegrity system [9], one of several
proposals that employ cryptographic methods to improve
dependability. The goal of the case study was to demonstrate
how trusted bases can be used to compare two different
system designs, and argue why one is more dependable
than the other in achieving a critical requirement. Due to
limited space, we provide only an informal discussion of
the systems; the description of complete Alloy models is
available in the thesis on which this paper is based [14].

We began by building a model of an optical scan system,
based on the description of an existing system in [15].
Figure 3(a) shows the problem diagram for the optical scan
system, with the components in the trusted base highlighted.
The requirement is to ensure that the final tally of the
election match the choice of the voters for a particular
candidate6. Following our approach, we identified the trusted
base that consists of the check-in desk, voters, the optical

6Every voting system must also ensure privacy of the voters; that is, it
should not be possible to trace a marked ballot to a particular voter. For
our purpose, we omit the discussion of the privacy requirement.

scanner, and the election official. We constructed the follow-
ing dependability argument:

If each voter receives exactly one ballot at the
check-in desk, the voter casts the ballot as in-
tended, the scanner correctly records the choice
on the ballot and computes the final tally, and
the election official correctly reports the scanner’s
tally on the bulletin board, then the outcome of
the election will accurately reflect the choice of
the voters.

The argument is valid, but a major weakness lies in one of
the trusted components—in this case, the optical scanner.
Researchers have shown that existing optical scanners are
vulnerable to a range of security attacks [15], [16]. Further
compounding the problem, the software in most scanners
is proprietary, and not subject to public inspection (which
could help uncover such flaws).

Scantegrity [9] is a recently proposed design that is not
vulnerable to scanner failure; it maintains election integrity
without reliance on the scanner or election official. Fig-
ure 3(b) shows the problem diagram for Scantegrity. The
system is deployed as an add-on to an existing optical
scanner system, and includes three additional components—
the publisher, the tabulator, and the auditor.

With Scantegrity, the voter retains a ballot receipt after
casting a vote. The receipt contains a code that the voter
can enter into a website, after the election, to verify that the
vote was counted in the final tally. This step provides a way
for the voters to detect a failure in which the scanner ignores
or incorrectly records their ballots.

To support this verification, Scantegrity constructs a
switchboard, a table that maps a code on each ballot to
a corresponding candidate. All of the codes, as well as



the switchboards, are published onto the bulletin board,
following the election. Any third-party auditor can construct
tabulating software that examines the switchboard and com-
putes a tally that is independent from the scanner’s result. By
checking whether the two tallies match or not, the auditor
can detect a failure in the scanner’s computation of the tally.

The trusted base for the tally requirement in Scantegrity
includes: (1) the check-in desk, which must ensure that each
voter receive exactly one ballot, (2) the voters, who must
verify the inclusion of their ballots on the bulletin board, in
addition to casting the ballots as intended, (3) the tabulator,
which must correctly compute an independent tally using
the switchboard, and (4) the auditor, who must compare
the two independent tallies to ensure that they match. The
dependability argument says that the election outcome is
correct as long as these components satisfy their properties;
a failure in the scanner cannot give a false election outcome.
We checked the validity of the argument in Alloy, and
consulted a designer of Scantegrity to confirm that the
trusted base that we identified matched their intuition.

A quick glance at Figure 3 might give an impression that
Scantegrity is no more dependable than the optical scanner
system, because the two trusted bases have the same number
of components. But the crucial difference is the degree
of confidence in the trusted bases. We concluded that the
optical scanner system is not reliable, due to the difficulty
of achieving high confidence in the scanner. In contrast,
the trusted base in Scantegrity is supported by informal but
reasoned justifications that provide greater confidence. For
example, we feel confident in the outcome of an election
audit, because in principle, anyone (including candidates)
can act as an auditor, and the probability of all independent
auditors colluding is extremely low. Similarly, the switch-
board is publicly available, and any interested person can
write their own tabulator to compute an independent tally;
this open nature arguably leads to higher confidence in the
tabulator than in the scanner.

VI. RELATED WORK

Trusted computing bases (TCBs) [4], [5] and security
kernels [6] are well-known concepts for building a system
around a small core of software and hardware components
that are responsible for overall system security. Safety
kernels [7] are an analogous concept for safety-critical
systems. Our notion of trusted bases differs from these in
two respects. First, a trusted base exists for a particular
requirement; typically, different requirements depend on
different sets of components, and a system therefore has
multiple trusted bases. In comparison, only a single TCB
or kernel is responsible for enforcing all security or safety
policies in the system. For example, in the end-to-end file
transfer design, we saw how the reliability requirement has
a smaller trusted base than the requirement that a hash
mismatch imply a failure. Second, a trusted base need not

be encapsulated in the manner of a TCB or a kernel. A
critical requirement may be established by the cooperation
of components that are distributed throughout the system—
like, for example, the sender and receiver applications in the
trusted base for the reliability requirement.

Haley, Laney, Moffett, and Nuseibeh propose the notion
of trust assumptions to describe expected properties of
environmental components for the satisfaction of security
requirements [17]. Like us, they use problem frames to
structure a system into domains and machines, and assign
a trust assumption to each domain. One may reject a trust
assumption if it is deemed too risky or unrealistic, and add
other domains or phenomena in order to satisfy a require-
ment. Although they discuss only security requirements, it
seems that their approach can be extended to handle safety-
critical systems as well. Our approach considers a trusted
base consisting of not only domains, but machines as well,
and so the satisfaction of a requirement relies additionally
on each trusted machine satisfying its specification.

Goal-oriented approaches [18], [19], [20] treat goals as
essential part of requirements and design activities, and
advocate an explicit documentation of the structure of goal
decomposition. From one perspective, requirements in our
approach are like goals, and assumptions and specifications
are like subgoals that together imply a higher-level goal.
A goal-oriented notation might be used to crystallize the
structure of our dependability argument. We are already
exploring this synergy in ongoing work [14], [21].

Our analysis for checking the sufficiency of a trusted base
resembles obstacle analysis [22]. An obstacle is a behavior
of an environmental entity (e.g. an operator) that leads to
violation of a goal. Once found, obstacles are resolved by
various measures, such as weakening the goal or substituting
the bad entity with another; this step is similar to the activity
of redesigning a system for a more reliable trusted base.

Assurance-based development (ABD) [23] proposes the
construction of a dependability argument hand-in-hand with
the development of the system in a particular style. The argu-
ment is expressed in Goal Structuring Notation (GSN) [19].
Top-level goals are decomposed into smaller subgoals,
which are subsequently discharged using various strategies
(e.g. testing, verification, etc.). Lutz and Patterson-Hine [24]
propose an approach to building an argument that the system
is able to detect and handle safety-related contingencies.
Like ABD, the structure of their argument is based on the
GSN, but they discharge subgoals using analysis of fault
models. The focus of these two approaches is on how to
go about discharging claims in a dependability argument.
In contrast, we emphasize identifying what components are
responsible for ensuring dependability, and structuring the
system so that there are fewer such components.

Feather discusses a modeling approach in which a system
is described as being composed of interacting agents, and
introduces the notion of a responsibility as a task that



each agent must perform in order to satisfy an overall
system requirement [25]. A group of agents that are re-
sponsible for a requirement corresponds to our trusted base
for the requirement. However, our approach puts greater
emphasis on the notion of “trust”; a component can be
assigned a responsibility but still be considered unreliable,
and consequently, excluded from a trusted base for a critical
requirement.

VII. CONCLUSION

We have proposed an approach in which a system is
designed with small, reliable trusted bases that establish
its most critical requirements. Much work remains to be
done to systematize the task of designing a system to
reduce its trusted base. Our approach advocates redesign
of a system with an unreliable trusted base, but there is no
systematic way to go about such a redesign. We are currently
investigating ways to capture existing and often informal
design knowledge in a form that is suitable for reuse across
applications.
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