844 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 55, NO. 5, OCTOBER 2025

Validation of a Formal Method for Human Error Rate
Prediction With Negative Transfer

Yeonbin Son

Abstract—Human error is often associated with system failures.
The complexity of human-automation interaction can make it diffi-
cult to anticipate what errors can occur and how they contribute to
failures. Previous research has shown that task analytic behavior
modeling with the enhanced operator function model and the
cognitive reliability analysis method (CREAM) can be combined
with statistical model checking to make predictions about human
error rates, their stochasticimpact on system failures, and the effect
of negative transfer of design changes on these predictions. These
efforts were successful, but the validation studies used artificial
examples with limited data. Predictions also slightly overestimated
error rates. This article addresses these deficiencies by conducting
a validation study based on the prescription order entry interface
of the OpenEMR electronic medical record. As part of this, we
explored how prediction accuracy for the OpenEMR application
changed based on the inclusion/exclusion of planning errors: errors
based on people’s ability to formulate task plans, which we hypoth-
esized contributed to error rate overestimation. Results found that
our method’s predictions aligned with those observed in the exper-
iment, especially when planning errors were excluded. Negative
transfer conditions did not manifest significant differences in error
rates experimentally or in model predictions. These results suggest
that negative transfer’s impact on human-computer interaction
may be overstated in the literature. Finally, higher error rates
were observed between the original OpenEMR prescription order
entry interface compared to an alternative that we tested. We highly
suggest that OpenEMR adopt the alternative.

Index Terms—Human error, human reliability, model checking,
negative transfer.

Received 22 August 2024; revised 9 May 2025 and 11 July 2025; accepted
24 July 2025. Date of publication 25 August 2025; date of current version 23
October 2025. This work was supported by the National Science Foundation,
USA under Grant 2219041, Grant 1918314, and Grant 1918140. This article
was recommended by Associate Editor C. Lv. (Corresponding author: Matthew
L. Bolton.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by the
University of Virginia Institutional Review Board for the Social and Behavioral
Sciences under Application No. 5064 and performed in line with the Declaration
of Helsinki.

Yeonbin Son, Matthew L. Bolton, and Hannah Palmer are with the De-
partment of Systems and Information Engineering, University of Virginia,
Charlottesville, VA 22903 USA (e-mail: mlb4b@virginia.edu).

Emma Crooks is with US Army Corps of Engineers, Buffalo, NY 14207 USA.

Eunsuk Kang is with Software and Societal Systems Department, Carnegie
Mellon University, Pittsburgh, PA 15213 USA.

Christopher Daly is with Department of Pharmacy Practice, University at
Buffalo, Buffalo, NY 14214 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/THMS.2025.3593085.

Digital Object Identifier 10.1109/THMS.2025.3593085

, Graduate Student Member, IEEE, Matthew L. Bolton
Hannah Palmer, Eunsuk Kang

, Senior Member, IEEE, Emma Crooks,
, and Christopher Daly

I. INTRODUCTION

UMAN error is often cited as a major factor in com-

plex system failure [1], [2], [3]. It contributes to ap-
proximately 50% of commercial aviation accidents and 75%
in general aviation [4], [5]; at least a third of unmanned aerial
system (UAS) accidents [6]; and between 44 000 and 98 000
deaths in medicine annually [7], [8]. These errors often occur
because of systemic issues, where engineers do not account
for humans in their designs or the impact that human errors
can have. However, modern system complexity can make it
extremely challenging for engineering to account for all the
human-automation interactions (HAIs) and errors that need to
be considered. Thus, one way researchers have attempted to
address this is by exploring how formal methods (techniques for
proving properties about system models) can be used to evaluate
and engineer complex, human-interactive systems [9], [10], [11],
[12], [13]. The research presented here specifically focuses on
methods that combine models of human task behavior with
models of the automation’s behavior. When this is done, formal
verification/proof determines if included behavior (inclusive of
normative human behavior and unexpected human errors) can
contribute to a violation of system safety [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28].

These techniques are particularly good at discovering when
and how HAI design flaws can be problematic, but with limita-
tions. For example, such analyses are traditionally performed
with deterministic or non-deterministic models. This allows
them to account for various behaviors, interactions, and perfor-
mance options, but without considering probabilities. As aresult,
decision-makers must use their intuition and domain knowledge
to determine if discovered failure sequences are worthy of inter-
vention. Furthermore, attempting to fix design flaws or errors can
be fraught. This is because any system change could introduce
unforeseen errors or confuse expert human operators [29]. New
tasks can be more error-prone than those replaced [1], [18], [30],
[31]. Changes can also create negative transfer [32], [33], where
a human’s skill in the old task encourages erroneous behavior
with the new design [34].

In previous work, we introduced a method that combined
human reliability analysis (HRA) with task-based erroneous
behavior generation and formal verification with probabilistic
and statistical model checking: tools for automatically proving
properties about stochastic systems (based on the model or
traces through the model, respectively) [35]. When used together
in our method, we can make probabilistic predictions about
human error and system failures [36]. We extended this method
to account for the effects of negative transfer (of learning)
using cognitive similarity theory [37]. While these efforts were

2168-2291 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0009-1298-1794
https://orcid.org/0000-0002-7943-0497
https://orcid.org/0000-0001-7891-6885
https://orcid.org/0000-0003-3111-787X
mailto:mlb4b@virginia.edu
https://doi.org/10.1109/THMS.2025.3593085

SON et al.: VALIDATION OF A FORMAL METHOD FOR HUMAN ERROR RATE PREDICTION 845

successful, the applications used to validate findings were based
on artificial examples with limited data. Additionally, the er-
ror rates predicted (while completely reasonable) tended to be
higher than those in human data.

To address these deficiencies, this research conducted a hu-
man subjects experiment, based on a human—machine interface
from the OpenEMR electronic medical record system, that
sought to validate the error rate predictions of our method, both
with and without negative transfer. As part of this, we also
explored whether removing planning errors from model com-
putations would improve error rate predictions. In what follows,
we present the necessary background for understanding our
research. This includes a thorough description of our method.
This is followed by a more precise description of the research’s
objectives. We then describe the human subjects experiment and
modeling effort that were used to evaluate our method. After
presenting our results, we discuss them and use this as the basis
for suggesting future research directions.

II. BACKGROUND

There is a vast literature on human error as well as design
and analysis methods for addressing it. Below, we focus on
that which is critical to our research. This includes work on
formal verification with task models and human error, as well
as extensions that make probabilistic predictions about human
error and the modeling of negative transfer.

A. Formal Verification With Task Behavior and Human Errors

Task analysis is a systematic process that describes how
humans normatively achieve goals with a system [38]. This
is commonly documented as a hierarchical task model. Task
models can be interpreted formally. This allows them to be
included in a larger formal model that contains descriptions of
other relevant system behaviors. Formal verification, like model
checking, evaluates modeled behavior (including human errors
generated in the task model) on system performance and safety
(see [9] for a review). One of the most advanced formal task
modeling languages (and the one used in this research) is the
enhanced operator function model (EOFM).

EOFM [17], [39] is an XML-based task modeling formalism.
EOFMs represent tasks as a hierarchy of goal-directed activities
that ultimately decompose into actions. A decomposition oper-
ator specifies the temporal and cardinal relationships between
decomposed acts: sequential or parallel execution, execution
order, and how many can execute. Two of EOFM’s nine de-
composition operators are presented in this work. xor indicates
that exactly one subact can execute. ord indicates that all must
execute, one at a time, in their presented order. EOFMs also
express task strategic knowledge explicitly as Boolean logical
conditions on activities. These assert what must be true to
start (preconditions), repeat (repeat conditions), and complete
(completion conditions) execution.

Critically, EOFMs have formal semantics that enable their
inclusion in formal verification. For model checking, an auto-
mated translator [17] uses EOFM’s formal semantics to convert
a given task’s XML into the model checker language. This
treats each activity and action as a state machine that transitions
between ready, executing, and done states. Transitions are based
on Boolean conditions created using act strategic knowledge
(the pre-, repeat, and completion conditions); the execution

TABLE I
EQUATION (1) PARAMETERS FOR DIFFERENT COGNITIVE FUNCTIONS [44]

Cognitive Function

Parameter ~ Observation Interpretation Planning Execution
a 0.0055 0.0041 0.0052 0.0065
b -0.2458 -0.2046 -0.2828 -0.2860
c 0.2840 0.2244 0.4019 0.4079
d -2.0775 -1.3495 -2.0000 -2.4120

state of parent, sibling, and child acts; and the relationships
between these as required by the act’s position in the task and its
parent’s decomposition operators. This task state machine model
is composed with formal models of the system automation for
end-to-end behavioral verification [16].

When erroneous behavior generation is used with EOFM, a
version of the formal model is created that enables task formal
semantics to be violated in accordance with different theories
of human error [20], [21], [40]. This allows model checking to
discover how human errors could cause failures.

B. Accounting for Probabilities of Human Errors

Researchers have extended formal human reliability analy-
ses [36], [41], [42], [43] to show that task models can be used
with human error rate predictions. The method we focus on
here [36] uses a variant [44] of the cognitive reliability error anal-
ysis method (CREAM) [45] to dynamically make predictions
about human error rates and their impact on system performance.
In this, each task (or task part) has an analyst-specified CPCSum.
This value, derived from a subject-matter expert, indicates how
well the environment supports the human based on common per-
formance conditions (CPCs): quality of the organization, work
conditions, human—machine support, procedures, simultaneous
goals, time availability, time of day, work experience, and team
collaboration. Each of these is rated as improving (1), reducing
(-1), or not affecting (0) human performance. The CPCSum is
the sum of these ratings. Then, based on a regression model fitted
to a large human performance database, human error rates are
predicted by Bedford et al. [44]

PyymanError =].O(a‘CPC;"“%Fb‘ CPCS""]+C+d) . (1)

The a, b, and ¢ parameters are determined by the cogni-
tive function of the task, and d is the log;, of the nominal
error probability. Importantly, this makes predictions for four
cognitive functions (Table I): observation (functions related to
noticing and perceiving events), interpretation (understanding
the meaning of the observations as it relates to the current
situation), planning (formulating a plan or task to address the
current situation), and execution (executing the task). These are
used in different parts of task execution and associated with
different human errors [36], [44], [45].

When used with EOFM [36], our automatic translator con-
verts an EOFM into a formal model in the input language
of PRISM, a state-of-the-art probabilistic and statistical model
checker [35]. The formal model was based on the architecture
in Fig. 1 (an extension of the one introduced in [16]), where
the human task model interacts with the formal representation
of the other system elements, which are manually created by

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

846 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 55, NO. 5, OCTOBER 2025

,—CPCSum Formal Other
Observation EOFM System

> Observation Error » Elements

Function . Human Actions

Interpretation N Mission

» Interpretation Error >

Function .

Planning Task Displayand | | ENvironment

Planning Error Environmental

> Function Ll Information Automation
Execution <

Execution Error
> - >

Function Task System

: : State State
; Planning
Planning Error’ OldTask Similarity
Function’ Part Computation
AdjustedCPCSum
SimilarityScore

CPC |,
Adjustment /™

Fig. 1. Architecture used for supporting the prediction of probabilities of hu-
man error with EOFM in formal methods analyses. Rounded rectangles describe
different model state machines. Parallelograms are formulas that compute values
from model variables during execution. Elements in gray show the architecture
for the original method [36]. The parts in black show how this architecture was
extended to account for negative transfer [37]. Ellipses (0) are used to show
that there can be additional cognitive functions in a given model, which could
be included to influence the execution of different parts of a task. These also
signify the possibility of multiple old task parts and associated primed planning
functions.

the analyst. Importantly, the formal task drew inputs from con-
current, synchronously composed cognitive function models.
These, using a CPCSum and (1), indicate if an error in each
function can occur (a Boolean variable that becomes true based
on the computed probability) in each modeled step. The task
model would see these inputs and, if the current part of task exe-
cution was associated with a given cognitive function, use them
to determine whether to execute that part of the task normatively
or erroneously. The erroneous behavior options were generated
based on the task-based taxonomy of human error [30], in
accordance with the generation strategy from [40], a generic
error generation approach that can encompass deviations from
task behavior, including genotypes [1] and phenotypes [2] of
human error. Observation function errors would cause inputs to
the task model from the other system elements to be perceived
incorrectly. Interpretation function errors cause incorrect inter-
pretation of strategic knowledge that dictates when activities
execute. Planning function errors result in incorrect execution
of task plans (as if the modeled person did not know or properly
formulate the task). Finally, execution errors result in the human
model omitting, intruding, repeating, or incorrectly performing
actions (see details in [36]).

Models created in this way can then be checked to produce
probabilistic predictions about error rates and different system
outcomes. This approach was able to accurately predict the
probability of post-completion errors for different versions of
an automated teller machine interface [36] (albeit on the high
side of acceptability). However, the method could not account
for negative transfer that can occur during a design change.

C. Accounting for Negative Transfer

Negative transfer occurs in a design change when the modi-
fications allow for the old (familiar) behavior to execute under
conditions when that execution (previously) would have been
appropriate [32], [33]. This can lead to a human performing out-
dated, incorrect behavior. Specifically, negative transfer arises

when there is a combination of surface similarity and structural
discrepancy [32]. Surface similarity occurs when the interface
or environment conditions are similar enough to trigger the old
task. Structural discrepancy indicates that the tasks are executed
differently. This results in the human mistakenly executing the
old task within the new design. This definition is consistent
with the literature that has explored the mechanism and effects
of negative transfer [46], [47], [48], which has concluded that
negative transfer is predominantly caused by “temporary cog-
nitive or decision confusion, not the result of a motor control
problem” [46]. Thus, while negative transfer can occur at any
level of cognition [49], it is higher order cognition (such as
that associated with the planning cognitive function) that is
predominantly responsible for its impact.

We adapted the EOFM language and its translator to incorpo-
rate negative transfer into its formal probabilistic analyses [37],
thus enabling it to be considered along with its ability to predict
human error probabilities through other mechanisms [36]. This
was accomplished by: 1) including the replaced parts of the task
within the formal task model representation (to capture structural
inconsistency); 2) modifying the formal model to dynamically
evaluate the surface similarity between the current situation
and the original execution conditions of the replaced task; 3)
proportionally reducing the CPCSum for the original task based
on the maximum potential impact of surface similarity and using
this to compute the probability of a specialized planning error
causing the replaced task to execute. It is important to note that
we treat negative transfer as a unique type of planning error. This
is because negative transfer can relate to knowledge about how
to perform the task at any point in a task’s execution. Thus, the
mechanism for the error most naturally and generically relates to
the planning function. This is also consistent with the cognitive
theory associated with negative transfer discussed above [32],
[46], [47], [48], [49].

To enable these changes, the EOFM language and translator
were expanded to allow the explicit representation of old tasks in
the formal EOFM. For the second and third points, we modified
the EOFM-to-PRISM translation process [36] to compute the
similarity between the current situation and the conditions under
which the original task was performed, dynamically influencing
the likelihood that the original task will be executed. The alter-
ations to the formal model are illustrated by the black elements
in Fig. 1.

In the revised architecture, when a task component is replaced,
the original is retained within the formal EOFM representation
as an 01d Task Part, which is associated with three new
elements.

1) SimilarityComputation is a formula that calcu-
lates a SimilarityScore by extracting features from
the original condition under which the task part would
have been executed and comparing it to the current situa-
tion.

2) CPCAdjustment is a formula that adjusts the original
CPCSumdownwards, based onthe SimilarityScore

AdjustedCPCSum = CPCSum
— A - SimilarityScore (2)

where A is the maximum possible adjustment to the
CPC sum. Given that changes in tasks primarily impact
the operator’s procedural knowledge, only the planning
CPC is adjusted, restricting A to a range between 0 and

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

SON et al.: VALIDATION OF A FORMAL METHOD FOR HUMAN ERROR RATE PREDICTION 847

2 (the actual A range would be contingent on how the
procedures’ CPC was originally assessed).

3) PlanningFunction’ is a new concurrent cognitive
function module that uses the AdjustedCPCSum to
determine the probability of a planning error occurring as
aresult of negative transfer (indicated by PlanningEr -
ror’).

If PlanningError’ is true, the O1dTaskPart can exe-
cute in place of the corresponding portion of the new task. To
facilitate this, the formal model marks the new task as completed
when O1dTaskPart has been executed.

The similarity assessment leverages EOFM’s ability to pro-
vide a formal logical description of when the old task part would
execute. This allows for the calculation of surface similarity
in accordance with the theory underlying rule-based human
cognitive models [50], [51]. This model posits that humans
recognize situations where a behavior is appropriate based on the
features present, where the set of required features is represented
by a Boolean expression. The similarity between the feature
set Iy in the current situation and the feature set F'g from the
original context is computed as the ratio of shared features to
the total number of features in Fg [51]

Similarity = |[Fa N Fp|/|Fg|. (3)

To implement this in EOFM [37], we developed a reasoning
engine that transforms inequalities in the Boolean expression
into equivalent equalities. Then, the expression is converted into
conjunctive normal form, where the features are represented
as distinct “or” clauses. The SimilarityComputations
element (see Fig. 1) uses this structure to calculate the Simi -
larityScore

0(Feature) + ...+ 0(Feature,,)
n

SimilartyScore = 4)
where 0(Feature,) equals 1 if feature expression Feature, is
true, and O otherwise.

This approach was validated with a case study from the liter-
ature for which there was human data: software that simulated
packing fruit into boxes with different keyboard keys [52]. The
method did predict realistic error rates [37]. However, as with
the previous example, these were higher than the actual observed
error. Also, the artificiality of the application and the limited size
of the data set make it unclear how generalizable the results are.

III. OBJECTIVES

To validate our method’s predictions, we conducted a human
subjects study. In this, we compared the observed error rate
of participants for different interface designs produced with
our formal method under conditions where negative transfer
could occur and when it should not. The evaluated applications
were variants of the prescription order entry system used in the
OpenEMR electronic medical record system: one based on the
actual design and one meant to improve human reliability. This
interface is used by medical professionals to electronically send
prescriptions to pharmacies. This is an appropriate and important
application because errors in prescriptions can cause extra work
for pharmacists and medical workers and, if dangerous errors
are not caught, critical patient health and mortality outcomes.
Furthermore, this is a real system. OpenEMR has more than
20 000 worldwide installations and services approximately 120
million patients [53].

Additionally, we hypothesized that the slight overestimation
of error rates observed in previous results was caused by the
generic inclusion of planning errors: errors related to formulat-
ing a wrong task plan to address an unexpected situation. While
such errors are very real [45], they are likely unusual in applica-
tions with well-defined and well-practiced task models (which
include the applications that were previously evaluated). This is
because such systems will have human users who understand
and are well-practiced with the system’s task procedures. Thus,
we created predictions that both included and excluded planning
error so that they could be compared with our experimental
results.

IV. METHODS

The following describes our validation effort. This includes
our human subjects experiment, our formal modeling and veri-
fication effort, and the data analyses used for assessing the error
rates observed in the experiment and comparing them with the
predictions made through verification.

A. Human Subjects Experiment

To collect data for our validation, we ran a human subjects
study. Participants interacted with two different versions of the
OpenEMR prescription order entry interface. This study was
conducted under UVA IRB-SBS Protocol 5064.

1) Participants: We recruited 29 nursing students from the
University of Virginia as experiment participants (1 male and
28 females); 75% were 18-24 years of age, 7% were 25-29,
14% were 30-34, and 3% were 35-39. All were compensated
for their participation with a $50 gift card.

2) Materials and Apparatus: The experiment was conducted
in the Human Systems Laboratory at the University of Virginia
in a controlled, quiet, and uniformly illuminated setting. It
was administered on a laptop computer resting on a computer
desk in front of which a participant would sit. The laptop was
connected to a mouse and a set of headphones that the partic-
ipant could use to interact with the computer. The laptop was
running software (implemented as a web application built using
PHP, JavaScript, and HTML) that was developed specifically
for this study. The software was designed to administer the
full experiment: introducing participants to the different tasks
with training videos, providing them with text instructions; and
collecting (and saving) participant responses. The software also
included the two prescription order entry interface designs. The
first [illustrated in Fig. 2(a)] used the original design from Open-
EMR. In the alternative [see Fig. 2(b)], we modified this design
to presumably improve the human reliability of the interface.
Both had participants enter information concerning whether a
prescription was active; its start date; the provider; the name of
the drug; the quantity (number of units) of the drug; the medicine
unit of the drug (i.e., the amount of the drug in each unit such
as a tablet); coded directions for taking the drug (e.g., PO for
“per 0s”/“by mouth” or QD for “quaque die”/“once a day”);
the number of refills and associated tablet dosages; prescriber
notes; an indicator about whether to add the medication to
a particular list; whether substitutions are allowed; whether
the prescription was an electronic-prescription (e-prescription);
whether it has been checked that the prescription is covered by
the patient’s insurance (checked drug formulary); and whether
the prescription is a controlled substance.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

848

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 55, NO. 5, OCTOBER 2025

(a) Currently Active O)

Start Date |mm/dd/yyyy O

O E-Prescription?
[Checked Drug Formulary?
O Controlled Substance?

Provider (Select]
Drug (click tQ search)
Quiy N
Medicine Units | [t)
Directions| Jin] V[M
Refills[]#oftablets[]

Notes

Add to Medication List

—

Provider
Drug | | (click to search)
= =a
Quantity T k
Medicine Units | |)
Directions in|]]
Refills # of tablets
:> Notes
Add to Medication List

) E-Prescription?
O Checked Drug Formulary?
O Controlled Substance?

Currently Active ()

Start Date [nm/dd/yyyy 8

Currently Active [

Start Date |mm/dd/yyyy O

(J E-Prescription?
(J Checked Drug Formulary?

Currently Active (]

Start Date [mn/dd/yyyy

() E-Prescription?
O Checked Drug Formulary?
O Controlled Substance?

; ? i
Provider (3 Controlled Substance Provider [Select :
Drug | (click to search) Drug [Lisinopril] (click to search)
]
+Lisinopri-Hydrochlorothiazide]) Q“i’]" ty : i)
o — nits <
Quantity (= k . .
Medicine Units LisinoprilHCTZ Directions | Jin) <
t . 2 Refills [V]#ofbless(]
Directions | Jin Ml Ml J Notes _
N T I b :
Notes Add to Medication List
- :f‘> -
Add to Medlcal{on .Llst
(b) Currently Active () O E-Prescription? Currently Active [() E-Prescription?
Start Date (mm/dd/yyyy O) Checked Drug Formulary? Start Date [mm/dd/yyyy O (J Checked Drug Formulary?
Provider[Select 7] OJ Controlled Substance? Provider (O Controlled Substance?
Drug] Drug Lisi v]
Quatiy(] Quantity [—
Medicine Units]) Medicine Units -~
Directions | in| Ml M] Directions LisinoprillHCTZ % V[Ml
Refills #oftablets[| Refills # of tablets
B i A B
Add to Medication List Add to Medication List
Currently Active (] (J E-Prescription? ; :/
Start Date [mm/dd/yyyy O OJ Checked Drug Formulary?
Provider (J Controlled Substance? (c)
Drug Lisinopril)
Quantity [: Currently Active Checked E-Prescriptions Checked
?
Medicine Units | Il 9 Start_Date 2024/03/11 Checked Drug Formulary? Checked
L N Provider Fox, Andrew, MD Controlled Substance? Unchecked
Directions Jin] Ml J Drug Lisinopril and Hydrochlorothiazide
Refills #oftablets[] Quantity 30
Notes Medicine Units 20 mg/tablet
4 Directions 1 in tablet PO Qb
Add to Medication List Refills 5 #ofTablets 30
ituti v Notes Hypertension
Add to Medication List No
Substitutions Substitutions allowed

Fig. 2.

Interfaces seen by participants in the experiment. (a) and (b) are the two versions of the prescription order entry system from the OpenEMR application.

(a) is the original OpenEMR design. (b) is the alternative design. In both (a) and (b), the multiple screenshots and arrows show the process for finding and entering
the drug type. (c) is an example of prescription information presented to participants on paper during the experiment.

The differentiating factors between the interfaces were how
the drug name was specified. In the original, entering the
drug was a multistep process [illustrated in Fig. 2(a)]: 1) the
user/participant clicks on the “(click to search)” text next to
the “Drug” text field; 2) this displays a search box below the
“Drug” field in which the user enters a search term and clicks
on the “Search” button; 3) this replaces the search box with
a dropdown list containing the search results, from which the
user selects the best option and clicks on the (now displayed)
“Select” button; which 4) loads the selected drug into the “Drug”
text box. Note that this interface allows the user to enter the drug
name directly into the “Drug” search box (but without the benefit
of input being confirmed with a search). Notably, the original
interface violates standard user interaction conventions, which
inherently increases the likelihood of interaction errors, even in
the absence of negative transfer.

In the alternative interface, we sought to streamline and im-
prove the process for searching for a drug [see Fig. 2(b)]. In this:
1) the user selects and starts typing the name of the drug in the
“Drug” text field; 2) as the user types, a search results list appears
showing the best matches for the user’s text, which the user can
select; 3) the selected option is loaded into the “Drug” text field.
This was expected to be more reliable (less prone to human error)
because it is less complex, more standard-compliant, and avoids
creating a post-completion error condition [54]. Specifically, in
the original interface, once a user has searched for and found a
drug, they must click on the “Select” button to load it into the
“Drug” text field. Given that finding or entering the right drug
is the user’s primary goal, they should be prone to omitting the
supplementary, yet critical, goal of clicking the “Select” button.

For both interfaces, the prescriptions entered were given to
participants and were printed on individual sheets of paper [see

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

SON et al.: VALIDATION OF A FORMAL METHOD FOR HUMAN ERROR RATE PREDICTION 849

an example prescription in Fig. 2(c)]. These prescriptions were
from a set of real, representative, deidentified prescriptions used
for training pharmacy students in a model pharmacy.

3) Independent Variables: The experiment had two indepen-
dent variables. The interface [original or alternative; see Fig. 2(a)
and (b)] was a within-subjects factor. The order participants
saw interfaces (original first or alternative first) was a between-
subjects factor, where participants entered all of a set of prescrip-
tions first with one interface and then all with the other. This
distinction was important because the interfaces could allow
negative transfer to occur when going from the alternative (first)
to the original (second). This is because participants could enter
a prescription drug directly into the “Drug” text field without
engaging the search (a situation likely to increase the chance
of incorrect entry of the drug’s name). The reverse is not true
when the alternative interface is second. This is because the
original’s drug search cannot be executed on the alternative. This
combination of variables ultimately created three conditions of
interest: 1) the original interface with no negative transfer (the
original seen first); 2) the original interface with negative transfer
(the original seen second); and 3) the alternative interface (across
both orders).

4) Dependent Measures: For each prescription with each
interface, participants entered the prescription’s information into
the interface. Any field whose entered value did not match
what was in the prescription (incorrect values, misspellings,
or omissions) resulted in the prescription being counted as
having an error. This enabled us to compute error rates for each
independent variable condition of interest, where the rate was
the number of prescriptions with errors for that condition divided
by the number of prescriptions for that condition.

Additionally, for each experiment, participants completed a
CREAM CPC survey. This used the standard questionnaire
established by Hollnagel [45], which asked participants nine
questions to assess whether they felt that each of the nine CPCs
improved, reduced, or did not affect performance. By counting
the responses to this survey, we were able to estimate average
CPC sums for both interfaces.

5) Procedure: In the experiment, a participant was admitted
to the lab and sat in front of a laptop. The participant had the
experiment explained to them. They were also presented with
an informed consent document, which they read and signed.
Following this, the participant put on the headphones and had
the experiment administered to them via our custom software.

In this, participants completed a demographic survey and then
watched a training video. The video described the components
of prescriptions and how to enter them into the system using the
interface that participants would see first. Following the video,
participants entered a set of prescriptions (from provided paper
printouts) into the first interface. After entering 50 prescriptions,
participants completed the CREAM CPC survey for that inter-
face. This completed the first half of the experiment. Participants
were given the option to take a short break. When they were
ready to continue, the software would present participants with
a training video that explained how to use their second interface.
The participants would then enter 50 prescriptions into the
second interface. This was followed by the CREAM CPC survey
for the second interface.

6) Experimental Design: The same 50 prescriptions were
used across interfaces and participants. Thus, each participant
had to enter each prescription twice: once with the first inter-
face and once with the second. The order of prescriptions was

randomized for each interface and participant. Furthermore, the
order participants saw interfaces was counterbalanced between
them: 15 saw the original first and 14 saw the alternative first.!

B. Formal Modeling and Error Rate Prediction

Based on the OpenEMR documentation and our own experi-
ence using its online demo, we used EOFM to model the human
task behavior for filling prescriptions with our two interfaces.
Visualizations of the EOFM are shown in Figs. 3 and 4. In par-
ticular, the general form of the tasks for entering a prescription
is shown in Fig. 3(a) along with general patterns for entering
text/numerical values [see Fig. 3(b)] and selecting check box
options [see Fig. 3(c)]. The variants of the aEnterDrug activ-
ity [a subactivity of the task in Fig. 3(a)] for entering the name
of the drug are shown in Fig. 4. Fig. 4(a) was the activity for
entering the drug name into the original interface, while Fig. 4(b)
was the activity for doing it with the alternative.

The main task [see Fig. 3(a)] has root activity aEnterPre-
scription. This is executed by having the human enter a
prescription’s data (aEnterData) and then save it (aSave-
Data) as dictated by the ord decomposition operator. Data
entry under aEnterData had activities for each interface
field, and could be executed in any order (as per the and_seq
decomposition). Entering a numerical or textual value used the
pattern in Fig. 3(b). This had humans read the associated value
from the paper prescription and then set the value (and repeatedly
try to do so until the correct value was entered) by selecting the
correct interface field and entering the read value. The activity
for setting a checkbox value [see Fig. 3(c)] operated similarly,
with the participant reading the prescription element from the
paper and setting the check value by clicking the appropriate
field.

The activity for setting the drug name with the original in-
terface [see Fig. 4(a)] had the human start by reading the drug
from the provided paper (aReadDrug). They would then set
the drug (repeatedly if necessary via aSetDrug) by: showing
the search field by clicking on “click to search” (under aS-
electClickToSearch), selecting the revealed search field
(with aSelectSearchBox), entering the name of the drug
they read from the paper (under aEnterDrugName), clicking
the “Search” button (via aSelectDrugSearchField, se-
lecting the revealed search box dropdown list (with aSelect-
DrugName), picking the drug they read from the paper from
the list of search results (under apickDrugname), and then
clicking the “Select” button to load the selected drug into the
“Drug” text field (via aSolidifyDrugnameSelection).
The comparable drug name selection activity for the alternative
interface [see Fig. 4(b)] was comparatively simpler. The human
reads the drug name from the provided paper (aReadDrug) and
then sets the drug (again repeatedly if necessary) by: selecting
the drug name field (aSelectDropdownField), entering
the name of the drug read from the paper (aEnterDrugName),
and then (optionally via the optor_seq decomposition) pick-
ing the drug name from the search results (aPickDrugName).

These tasks were translated into PRISM’s input language to
create six different models. Two were for the original interface
[using aEnterDrug from Fig. 4(a)], one with and one without

! Our original design called for 15 participants in each condition. However,
participant cancellation and semester schedule constraints resulted in us failing
to recruit our final participant.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 55, NO. 5, OCTOBER 2025

ord

v

aReadX

iX#I1X $

iX#IX

X=X

S
g

$

1X = iPaperX

]

iField # X

iField # X

iField = X

aEnter
XValue

850
aEnter (@)
Prescription
l$:|
(=)
oras
and_seq v
hMouseSelect
Field Save
{ aEnter | [aEnter | [aEmter | | aEnter |
| StartDate ; | Provider | | Drug I | Quantity |
| aEnter 1 { aEnter 1 ' aEnter 1o aEnter | { aEnter |
\ MedUnitQuant | | MedUnitUnits | | DirNumSched | | DirForm | | DirLocation |
{ aEnter | | aEnter 1 ! aEnter 1 ! aEnter ! { aEnter 1
| DirSched | | NumRefills | | NumTablets | | Notes I MedList |
. N7 acheck N/ aCheck N/ aEmer
aEnter { aCheck | i @ [Vol oo
el] i %ion | |DrugFormularyi | Controlled | ! CurrentActive |
@ubstﬂunorg \\EPrescnpnon/ \ Checked J \ Substance ;)\ Checked !
Fig. 3.

ord

v

ord

A|
XField

hMouse
SelectField
X

hEnterValue
X

©

aCheckX

iXChecked # IXChecked

iXChecked = IXChecked
aSetE
XChecked

iXChecked # IXChecked
aRead
XChecked

. ¢§.

ord ord

hMouse
SelectField
XChecked

IXChecked =
iPaperXChecked

Visualization of the EOFM patterns for entering prescriptions into the OpenEMR prescription order entry interfaces (see Fig. 2). In these patterns (and

those in Fig. 4), activities are rounded rectangles and actions are pointy ones. Decompositions are downward arrows annotated with a decomposition operator. These
point to a gray shape that encompasses decomposed acts. Strategic knowledge conditions are connected to the activity they constrain. These are labeled with the
condition’s Boolean logic. A Precondition is a down-pointing, yellow triangle; a CompletionCondition is an up-pointing, magenta triangle; and a RepeatCondition
is a recursive arrow. In these examples, there are two types of action. Local actions have the person remember a value by setting a local variable (one starting with
1) to a value (e.g., 1X= iPaperX). Valued output actions communicate a value of a variable (e.g., hMouseSelectFieldX). See [55] for more details about
the notation. (a) Base EOFM for the original and modified open EMR interfaces. Dotted activities are defined in other sub-figures or Fig. 4. Italicized and bolded
names in activities indicate the values of variable X, which are used to define instances of the patterns in the other subfigures. (b) Activity pattern (based on X) for
setting a value field on the interfaces. (c) Pattern (based on X) for setting an interface checkbox.

standard planning errors, where planning errors were excluded
by manually setting PlanningError (see Fig. 1) to false.
Two versions were for the original interface in the negative
transfer conditions using aEnterDrug from Fig. 4(a), both
with and without standard planning errors, where aSetDrug
from Fig. 4(b) was the old task part. Note, negative transfer plan-
ning errors, usingplanningFunction’ fromFig. I, were in-
cluded in the negative transfer condition. Furthermore, the simi-
larity condition (4) that could contribute to errors associated with
executing Fig. 4(b)’s aSetDrug as the old text part was for-
mulated as (0(aEnterDrug = Ezecuting) + 0(aReadDrug =
Done) + 0(iDrugName # [DrugName))/3. The final two
model versions were for the alternative interface [using aEn-
terDrug from Fig. 4(b)], one with and one without standard
planning errors. In these, the architecture’s (see Fig. 1) other
system elements were composed of automation and mission
models.” The automation model tracked the interface field that
was selected, updated field values based on this, and (in the case
of the original interface) controlled the display and selection
of fields for the drug name search. The mission model would
determine what an accurate prescription looked like, where the

2 Allmodels and software can be found at https://github.com/mIb4b/PEOFM-
to-Prism-Translator.

probability of a given prescription form was set based on the
set of prescriptions participants entered during the experiment.
Note, to keep the model tractable, all prescription values were
modeled abstractly as being Nothing (having no value set),
SomethingCorrect (having a value that matches what was
in the prescription), and SomethingIncorrect (having a
value not matching what was in the prescription).

Finally, the formal models made use of PRISM’s “label” fea-
ture to define when a prescription error occurred under the label
“RxError.” This label logically computed a Boolean value that
would be true if the aEnterPrescription [see Fig. 3(a)]
completed execution with the entered prescription not matching
what was prescribed in the mission. It was false otherwise.

By default, analyses for all models started with the CPCSum
set to the maximum value of 9. This was because, in our expert
opinion, we expected the task to be fairly familiar and straight-
forward for most participants, who were performing the task in
an ideal environment. However, we also potentially anticipated
updating these to match the interface condition average CPCSum
measured from participant surveys.

Each model variation was verified using statistical model
checking (to avoid the scalability issues of probabilistic check-
ing; [40]) with confidence set to 0.01, 20 000 samples, and a
maximum path length of 10 000. These used a probabilistic

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

https://github.com/mlb4b/PEOFM-to-Prism-Translator
https://github.com/mlb4b/PEOFM-to-Prism-Translator

SON et al.: VALIDATION OF A FORMAL METHOD FOR HUMAN ERROR RATE PREDICTION 851

aEnter (@)
Drug

ord

v

aReadDrug

iDrugName # IDrugName

iDrugName # IDrugName iDrugName = IDrugName
aSetDrug

ord

v

aEnter (b)
Drug

ord

iDrugName # [DrugName

iDrugName # IDrugName iDrugName = IDrugName
e

ord ord

v v

IDrugName =

iPaperDrug
Name aSelect
aEnter aPick
Dr?:?glgwn] [DrugName [DrugName]

Upwl seq—

uvu ulu

hMouseSelect

Field hEnterValue

hEnterValue

SearchField SearchBox

aEnter
DrugName

IDrugName = IDrugName IDrugName
iPaperDrug DrugName ¢ w0
Name
V - iDrugSearchVisible $ Y iField # SearchBox V i/?:‘g:‘;e?deﬁcsﬁggr\éﬁgb;i 4
. - iDrugSearchVisible R, iD onVisible | I ionVisible
~ iDrugSearchVisible ¥ 9 Field # SearchBox iField = SearchBox /\ \Fleld # SearchBox /\ iField = SearchBox
aSelect aSolidify
ClickTo aSelect DrugName

aSelectDrug
SearchField
u. d

Selection

aSelect aPick
DrugName DrugName
ulu u.u

ord ord ord

v v

ord

Y

hMouse
SelectField
SearchBox

hMouseSelect

Field

ClickToSearch

hEnterValue
IDrugName

hMouse
SelectField
SearchField

hMouseSelect
FieldSelect
DrugField

hMouse
SelectField

SearchBox IDrugName

hEnterValue

Fig. 4.
the notation.

computation tree logic property of
P = ?[F(“RxError”)]. %)

This instructed the model checker to compute the probability
(p = 7) that eventually (F') “RxError” becomes true.

C. Data Analysis

We used two-tailed statistical tests to evaluate whether there
were significant differences observed between options using
a = 0.05, with p-values adjusted using a Benjamini-Hochberg
(BH) false discovery rate (FDR) correction to account for multi-
ple comparisons. This included a paired t-test to assess whether
there were differences in the error rates observed between the
original and alternative interfaces. It also included independent
t-tests to evaluate whether there were differences between the
negative transfer conditions for the experimentally observed
error rates for the original interface. Finally, it did not make
sense to use a t-test to compare the observed human error rates
to those produced by the model verification process. This is
primarily due to the former being averaged across observations
collected from multiple participants and the latter being com-
puted based on probabilistic computations from 20 000 model
traces. However, both processes produce accurate estimates of
sampling variability. Thus, we used Z-tests for the difference
between two proportions to assess whether there were signif-
icant differences between the predicted error rates (both with
and without standard planning errors) and their corresponding
interface’s experimental error rate.

EOFM activities for entering the drug (aEnterDrug from Fig. 3) for the (a) original and (b) modified open EMR interfaces. See Fig. 3 for a description of

V. RESULTS

Based on the ratings participants provided on the CPC survey
about entering prescription data with the different interfaces,
the original interface received a mean CPCSum of 2.510 (sd =
1.844). The alternative interface received a mean CPCSum of
1.385 (sd = 1.500). These values were considerably lower than
our expert-provided CPCSum of 9, which we initially used
for model predictions. Because this expert CPCSum produced
extremely accurate results (discussed next), we did not use the
averages provided by participants (which would have produced
significantly higher error rate predictions) or explore additional
CPCSum levels.

The error rates observed in the experiment were 0.054 for
the original interface (without negative transfer / when seen
first), 0.056 for the original interface under the negative transfer
condition (when seen second); and 0.033 for the alternative
interface (an average of a 0.033 error rate observed when the
alternative interface was seen both first and second). These were
compared with the results produced by each of the evaluated
models with a CPCSum of 9, as shown in Fig. 5.

The statistical analyses of these results revealed significant
differences between the experimentally observed error rates
for the original and alternative interfaces (¢(28) = 26.10,p =
0.033,d = 4.85) and the experimental error rate and the pre-
dicted one produced when planning errors were allowed (z =
3.06,p = 0.018, ~ = 0.11). No other comparisons showed sig-
nificant differences. These results are summarized as part of
Fig. 5. There are three important takeaways from these results.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

852 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 55, NO. 5, OCTOBER 2025

1804 168.9

z 60 158.7
£ 7 1354
= 1247 119.5
= 116.0
5 80
= 404
= o
0.09
P E— \ |
008 - ‘ ‘
0.071 0.066
° 0.062
§ 0.06
5 0.054 °f56 0.055 0.055
&5 0.05 1 0.048
0.042
0.04
0.033
0.03 1 %
02- Original Interface Original Interface Alternative
(no negative transfer) (negative transfer) Interface
Fig. 5. Error rates observed from the human subject experiment (*) compared

with model verification results both with (M) and without ([J) standard planning
errors allowed. All results are shown with 95% confidence intervals observed
across participants or produced by verification (converted from the 99% intervals
produced by the model checker). The brackets above the plots show significant
differences between options (p < 0.05 adjusted using BH FDR). A dotted,
curved bracket indicates a pooling between options. Verification times are
reported above their respective model error rate predictions.

First, the alternative interface was clearly more reliable (pro-
duced a significantly lower error rate) than the original in the
human subjects experiment. Second, while the negative transfer
condition for the original interface produced a higher error rate,
this was not significantly different from the condition that did not
have negative transfer. Third, the error predictions that excluded
standard planning errors were closer to the comparable error
rates observed in the experiment. This relationship was most
clear in the alternative interface condition. Here, predictions
that included standard planning errors were significantly higher
than the experimental results, while those performed without the
planning errors were not.

VI. DISCUSSION

The results of this research appear to validate the ability
of our method to accurately predict human error rates. Using
the analyst identified CPCSum of 9, our approach was able to
(with one exception) produce error estimates that were within
1% point of the observed values and whose 95% confidence
interval encompassed the observed value (see Fig. 5). The ex-
ception was the alternative interface when planning errors were
allowed, which was within 2.2% points of the experimental
result. Additionally, all the predicted values reproduced the
ordinality of the error rates observed for the different inter-
face conditions (within a given planning/no-planning option):
the highest error rate was seen with the original interface under
the negative transfer condition, the second highest with the orig-
inal without negative transfer, and the lowest with the alternative
interface.

Furthermore, the results appear to confirm our hypothesis
that overestimation of error rates was caused by the generic
inclusion of planning errors (planning errors not associated with
negative transfer) in predictions (see Fig. 5). Specifically, all the
error rate predictions were overestimates (larger by between 0.8

and 2.2 percentage points) when planning errors were included.
When they were excluded, error rates were both closer (within
0.1% and 0.9% points), ranged around the observed value, and
were not significantly different from those values. Thus, our
recommendation would be to use the method without including
generic planning errors unless an analyst has acompelling reason
to do so.

The experiment did produce a higher error rate with the orig-
inal interface when negative transfer was expected. However,
the difference observed was only 0.2% points (~0.2 errors per
participant): not a statistically significant change. This was a
surprising result due to the strong negative transfer condition
created for the experiment and the prominence of the claim that
this is a major factor in human reliability in the human factors
and usability literature, particularly in the work of Norman [34].
It is possible this was caused by the simplicity of the task and/or
the fact that the associated error could only manifest in limited
ways.

Based on our insignificant finding, we returned to the literature
to see how our observed rates compared to others’. Besnard and
Cacitti [52] trained participants in a simple computer interface
for sorting virtual fruit based on specific keyboard keys. When
they swapped around the keys, they observed an average, small
increase of 1.6 errors (they did not report rates or statistical tests).
Woltz et al. [56] reported three studies where error rates were
tracked in negative transfer conditions. In these, participants
repeatedly reduce numbers using a given mental algorithm.
Participants in the negative transfer conditions were heavily
trained with a particular set of numbers and then asked to
perform with a different set. They produced significantly more
errors than those who did not receive the extensive training.
Blais et al. [46] had participants perform a coordination task
where they were asked to move a 2-D joystick and a foot control
to the position of stimuli on a visual display. All participants
reviewed consistent initial training using standard controls, had
their controls reversed for a variable number of trials, and then
were evaluated when controls were unreversed. The researchers
found that an increase in the number of reversed control trials
participants experienced resulted in more negative transfer errors
when the controls were ultimately unreversed. The observed
negative transfer error rates ranged from 0.75% to 2.25% .

These results, coupled with our own, suggest that negative
transfer may only be relevant to particular types of tasks. Besnard
and Cacitti’s [52] study related to keying errors in response to
a well-practiced stimulus-and-response sequence; Woltz et al.’s
[56] concerned sequential problem solving; Blais et al.’s [46]
was a manual control task; and ours was data entry. Thus, more
research is required to understand in what types of tasks negative
transfer is a critical factor in human reliability. It is important
to note that our previous results [37] did capture the negative
transfer effect observed by [52]. This, coupled with our results
here, suggests (though clearly not definitively) that our method
is capable of predicting the minor effect of negative transfer
on keyboard-related human—computer interaction tasks. Future
research should investigate whether this extends to other human—
computer interaction tasks as well as the tasks explored by Woltz
et al. [46], [56], and others in the negative transfer literature.

Although not used in the work presented here, the PRISM
model checker can compute rewards/penalties based on the state
of the model. This can allow the model to count the number
of errors across multiple task executions [37]. This feature
could theoretically be used (with multiple reward or penalty

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

SON et al.: VALIDATION OF A FORMAL METHOD FOR HUMAN ERROR RATE PREDICTION

categories) to count different categories of errors or specific
instances of error to provide more diagnostic information about
predicted error rates. The implementation and validation of such
a feature should be explored in future research.

The results of our study do indicate that the alternative inter-
face design we implemented for the drug search in OpenEMR’s
prescription order entry interface was superior: it produced an
error rate 2% lower than the current one. We encourage the open
EMR developers to implement such an interface in their system
to potentially improve patient safety.

It is standard practice in CREAM that CPCs are assessed
by subject-matter experts, ones that understand both the do-
main and CREAM [45]. The results we obtained from our
CREAM CPC survey suggest that normal system users are
not reliable at estimating these values. Thus, we used our own
expert ratings when making model predictions. In particular, the
participant-provided ratings not only suggest poorer support
from the alternative interface (which contradicted our instincts,
model predictions, and empirical results), but both interfaces
received estimates that would predict error rates orders of magni-
tude larger than what we achieved with our estimate. Future work
should investigate if and how CPC ratings can be effectively
collected from standard users. In the meantime, the standard
practice of using experts is recommended.

The results in this article add to the evidence [36], [37]
that our method, with or without negative transfer, accurately
predicts human error rates and their impact on safety in complex,
dynamic systems. Future work should explore its applicability
to other safety-critical domains with more complicated tasks.
In particular, research should identify domains where planning
errors are relevant to see if our method produces accurate pre-
dictions for them. Furthermore, future research should explore
applications where interface and working conditions are associ-
ated with lower CPC ratings to see if the method (with or without
negative transfer) generalizes to such conditions.

REFERENCES

[1] J. Reason, Human Error. New York, NY, USA: Cambridge Univ. Press,
1990.

[2] E. Hollnagel, “The phenotype of erroneous actions,” Int. J. Man- Mach.
Stud., vol. 39, no. 1, pp. 1-32, 1993.

[3] T.B.Sheridan and R. Parasuraman, “Human-automation interaction,” Rev.
Hum. Factors Ergonom., vol. 1, no. 1, pp. 89—129, 2005.

[4] R. Kebabjian, “Accident statistics,” 2023. [Online]. Available: planecra
shinfo.com

[5] AOPA, “The Richard G. mcspadden report: 34th AOPA air safety institute
accident report,” AOPA, Air Safety Institute, Frederick, MD, USA, Tech.
Rep., 2025. [Online]. Available: https://www.aopa.org/training-and-
safety/air-safety-institute/accident-analysis/richard- g-mcspadden-report

[6] S.D. Manning, C. E. Rash, P. A. LeDuc, R. K. Noback, and J. McKeon,
“The role of human causal factors in US army unmanned aerial vehicle
accidents,” USA Army Res. Lab, Adelphi, MD, USA, Tech. Rep. 2004-11,
2004.

[7]1 M. A. Makary and M. Daniel, “Medical error—the third leading cause of
death in the us,” BMJ, vol. 353, 2016, Art. no. i2139.

[8] L. T.Kohn,J. Corrigan, and M. S. Donaldson, 7o Err is Human: Building
a Safer Health System. Washington, NY, USA: National Academy Press,
2000.

[91 M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal verifica-

tion to evaluate human-automation interaction in safety critical systems,

a review,” IEEE Trans. Syst., Man Cybernetics: Syst., vol. 43, no. 3,

pp. 488-503, May 2013.

M. L. Bolton, “Novel developments in formal methods for human factors

engineering,” in Proc. Hum. Factors Ergonom. Soc. Annu. Meeting, SAGE

Publications Sage CA, Los Angeles, CA, 2017, pp. 715-717.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
(31]

(32]

(33]
[34]

[35]

853

B. Weyers, J. Bowen, A. Dix, and P. Palanque, Eds., The Handbook
of Formal Methods in Human-Computer Interaction. Berlin, Germany:
Springer, 2017.

T. E. Wang and A. Pinto, “Survey of human models for verification of
human-machine systems,” 2023, arXiv:2307.15082.

M. L. Bolton and W. D. Gray, Cognitive Modeling for Cognitive Engi-
neering (Ser. Cambridge Handbooks in Psychology). Cambridge, U.K.:
Cambridge Univ. Press, 2023, pp. 1088—1112.

F. Paternd and C. Santoro, “Integrating model checking and HCI tools
to help designers verify user interface properties,” in Proc. 7th Int.
Workshop Design, Specification, Verification Interactive Syst., 2001,
pp. 135-150.

Y. Ait-Ameur and M. Baron, “Formal and experimental validation ap-
proaches in HCI systems design based on a shared event B model,” Int. J.
Softw. Tools Technol. Transfer, vol. 8, no. 6, pp. 547-563, 2006.

M. L. Bolton and E. J. Bass, “Formally verifying human-automation
interaction as part of a system model: Limitations and tradeoffs,” In-
novations Syst. Softw. Eng.: A NASA J., vol. 6, no. 3, pp.219-231,
2010.

M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach to
model checking human-automation interaction using task-analytic mod-
els,” IEEE Trans. Syst., Man, Cybern., Part A, vol. 41, no. 5, pp. 961-976,
Sep. 2011.

R. Bastide and S. Basnyat, “Error patterns: Systematic investigation of
deviations in task models,” in Task Models and Diagrams for Users
Interface Design. Berlin, Germany: Springer, 2007, pp. 109-121.

R. E. Fields, “Analysis of erroneous actions in the design of critical
systems,” Ph.D. dissertation, Dept. of Computer Science, Univ. York, New
York, USA, 2001.

M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Generating phenotypical
erroneous human behavior to evaluate human-automation interaction using
model checking,” Int. J. Hum.- Comput. Stud., vol. 70, no. 11, pp. 888-906,
2012.

M. L. Bolton and E. J. Bass, “Generating erroneous human behavior
from strategic knowledge in task models and evaluating its impact on
system safety with model checking,” IEEE Trans. Syst., Man Cybern.:
Syst., vol. 43, no. 6, pp. 1314-1327, Nov. 2013.

M. L. Bolton and E. J. Bass, “Formal modeling of erroneous human
behavior and its implications for model checking,” in Proc. 6th NASA
Langley Formal Methods Workshop, 2008, pp. 62—64.

D. Pan and M. L. Bolton, “Properties for formally assessing the perfor-
mance level of human-human collaborative procedures with miscommu-
nications and erroneous human behavior,” Int. J. Ind. Ergonom., vol. 63,
pp. 75-88, 2018.

M. L. Bolton, “Model checking human—human communication protocols
using task models and miscommunication generation,” J. Aerosp. Inf. Syst.,
vol. 12, no. 7, pp. 476489, 2015.

A. Barbosa, A. C. Paiva, and J. C. Campos, “Test case generation from
mutated task models,” in Proc. 3rd ACM SIGCHI Symp. Eng. Interactive
Comput. Syst., 2011, pp. 175-184.

M. L. Bolton, S. S. Taylor, and L. Humphrey, “A formal method for
assessing mental workload,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
2023, pp. 5255-5260.

P. Wan and M. L. Bolton, “A taxonomy of forcing functions for addressing
human errors in human-machine interaction,” in Proc. IEEE Int. Conf.
Syst., Man, Cybern., 2021, pp. 3134-3139.

C. Fayollas, C. Martinie, and P. Palanque, “Taking into account human
error when assessing the impact of dependability on usability,” in Proc.
IEEE 35th Int. Symp. Softw. Rel. Eng. Workshops, 2024, pp. 271-278.

L. Bainbridge, “Ironies of automation,” Automatica, vol. 19, no. 6,
pp. 775-780, 1983.

M. L. Bolton, “A task-based taxonomy of erroneous human behavior,” Int.
J. Hum.- Comput. Stud., vol. 108, pp. 105-121, 2017.

M. D. Byrne and S. Bovair, “A working memory model of a common
procedural error,” Cogn. Sci., vol. 21, no. 1, pp. 31-61, 1997.

P. Johnson, “Supporting system design by analyzing current task knowl-
edge,” in Task Analysis for Human-Computer Interaction, D. Diaper, Ed.
Chichester, U.K.: Ellis-Horwood, 1989, pp. 160-185.

D. N. Perkins and G. Salomon, “Transfer of learning,” Int. Encyclopedia
Educ., vol. 2, pp. 6452-6457, 1992.

D. A. Norman, The Psychology of Everyday Things. New York, NY, USA:
Basic Books, 1988.

M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. Int. Conf. Comput. Aided
Verification, 2011, pp. 585-591.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

planecrapenalty -@M shinfo.com
planecrapenalty -@M shinfo.com
https://www.aopa.org/training-and-safety/air-safety-institute/accident-analysis/richard-g-mcspadden-report
https://www.aopa.org/training-and-safety/air-safety-institute/accident-analysis/richard-g-mcspadden-report

854

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 55, NO. 5, OCTOBER 2025

M. L. Bolton, X. Zheng, and E. Kang, “A formal method for including the
probability of erroneous human task behavior in system analyses,” Rel.
Eng. Syst. Saf., vol. 213, 2021, Art. no. 107764.

M. L. Bolton, S. Riabova, Y. Son, and E. Kang, “Negative transfer in
task-based human reliability analysis: A formal methods approach,” in
Proc. IEEE Int. Conf. Syst., Man, Cybern., 2023, pp. 5249-5254.

B. Kirwan and L. K. Ainsworth, A Guide to Task Analysis. London, U.K.:
Taylor and Francis, 1992.

M. L. Bolton and E. J. Bass, “Enhanced operator function model (EOFM):
A task analytic modeling formalism for including human behavior in the
verification of complex systems,” in The Handbook of Formal Methods
in Human-Computer Interaction, B. Weyers, J. Bowen, A. Dix, and P.
Palanque, Eds., Cham, Switzerland: Springer, 2017, pp. 343-377.

M. L. Bolton, K. A. Molinaro, and A. M. Houser, “A formal method for
assessing the impact of task-based erroneous human behavior on system
safety,” Rel. Eng. Syst. Saf., vol. 188, pp. 168-180, 2019.

X.Zheng, M. L. Bolton, C. Daly, and L. Feng, ““A formal human reliability
analysis of a community pharmacy dispensing procedure,” in Proc. Hum.
Factors Ergonom. Soc. Annu. Meeting, 2017, pp. 728-732.

X. Zheng, M. L. Bolton, C. Daly, and E. Biltekoff, “The development of
a next-generation human reliability analysis: Systems analysis for formal
pharmaceutical human reliability (SAFPH),” Rel. Eng. Syst. Saf., vol. 202,
2020, Art. no. 106927.

X.Zheng, M. L. Bolton, and C. Daly, “Extended SAFPH (systems analysis
for formal pharmaceutical human reliability): Two approaches based on
extended CREAM and a comparative analysis,” Saf. Sci., vol. 132, 2020,
Art. no. 104944.

T. Bedford, C. Bayley, and M. Revie, “Screening, sensitivity, and uncer-
tainty for the CREAM method of human reliability analysis,” Rel. Eng.
Syst. Saf., vol. 115, pp. 100-110, 2013.

E. Hollnagel, Cognitive Reliability and Error Analysis Method (CREAM).
Oxford, U.K.: Elsevier, 1998.

C. Blais, R. Kerr, and K. Hughes, “Negative transfer or cognitive confu-
sion,” Hum. Perform., vol. 6, no. 3, pp. 197-206, 1993.

R. A. Schmidt, “A schema theory of discrete motor skill learning,” Psychol.
Rev., vol. 82, no. 4, pp. 225-260, 1975.

R. A. Schmidt and D. E. Young, “Transfer of movement control in motor
skill learning,” in Transfer of Learning. Amsterdam, The Netherlands:
Elsevier, 1987, pp. 47-79.

M. L. Gick and K. J. Holyoak, “The cognitive basis of knowledge transfer,”
in Transfer of Learning. Amsterdam, The Netherlands: Elsevier, 1987,
pp. 9-46.

A. Tversky, “Features of similarity,” Psychol. Rev., vol. 84, no. 4,
pp. 327-352, 1977.

R. Sun, “Robust reasoning: Integrating rule-based and similarity-based
reasoning,” Artif. Intell., vol. 75, no. 2, pp. 241-295, 1995.

D. Besnard and L. Cacitti, “Interface changes causing accidents. an em-
pirical study of negative transfer,” Int. J. Hum.- Comput. Stud., vol. 62,
no. 1, pp. 105-125, 2005.

P. Groen, “OpenEMR continues to grow in popularity and
use,” Open Health News, Dec. 18, 2012. [Online]. Available:
https://www.openhealthnews.com/hotnews/openemr-continues-
growpopularity-and-use

P. Curzon and A. Blandford, “Formally justifying user-centered design
rules: A case study on post-completion errors,” in Proc. 4th Int. Conf.
Integr. Formal Methods, 2004, pp. 461-480.

M. L. Bolton and E. J. Bass, “Using task analytic models to visualize
model checker counterexamples,” in Proc. IEEE Int. Conf. Systems, Man,
Cybern., 2010, pp. 2069-2074.

D. J. Woltz, M. K. Gardner, and B. G. Bell, “Negative transfer errors
in sequential cognitive skills: Strong-but-wrong sequence application,” J.
Exp. Psychol.: Learn., Memory, Cogn., vol. 26, no. 3, pp. 601-625, 2000.

Yeonbin Son (Graduate Student Member, IEEE) re-
ceived the B.S. and M.S. degrees in industrial and
management engineering from Kyonggi University,
Suwon, South Korea, in 2018 and 2020, respectively.
She is currently working toward the Ph.D. degree in
systems engineering with the Department of Systems
and Information Engineering, University of Virginia,
Charlottesville, VA, USA.

Her research interests include machine learning-
based recommender systems and the use of human
performance modeling.

Matthew L. Bolton (Senior Member, IEEE) received
the B.S. degree in computer science, the M.S. de-
gree in systems engineering, and the Ph.D. degree in
systems engineering from the University of Virginia
(UVA), Charlottesville, VA, USA, in 2004, 2006, and
2010, respectively.

He is currently an Associate Professor with the
Department of Systems and Information Engineering,
UVA. His research interests include the use of human
performance modeling and formal methods in the
design and analysis of safety-critical systems.

Emma Crooks received the B.S. degree in industrial
engineering from the University at Buffalo, Buffalo,
NY, USA, in 2021.

She is a Project Engineer with the US Army Corps
of Engineers.

Hannah Palmer received the B.S. degree in systems
and information engineering from the University of
Virginia, Charlottesville, VA, USA, in May 2025.

She will be joining General Dynamics Mission
Systems, Chantilly, VA, USA, as a Systems Engineer.
Her academic interests are in human—computer inter-
actions.

Eunsuk Kang received the B.S.E. degree in software
engineering in 2007 from the University of Waterloo,
Waterloo, CA, USA, the S.M. and Ph.D. degrees in
computer science from the Massachusetts Institute
of Technology, Cambridge, MA, USA, in 2010 and
2016, respectively.

He is an Associate Professor with the Software and
Societal Systems Department, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA,
USA. His research interests include rigorous model-
ing and analysis techniques to design safe, secure, and
reliable software.

Christopher Daly received both the PharmD and
MBA degrees from the University at Buffalo School
of Pharmacy and Pharmaceutical Sciences in Buffalo,
NY, USA in 2012.

He is a Clinical Associate Professor with the Uni-
versity at Buffalo School of Pharmacy and Pharma-
ceutical Sciences, Department of Pharmacy Practice,
Division of Outcomes and Practice Advancement. His
professional efforts support the growth and sustain-
ability of patient care services within community-
based pharmacy settings. His academic and research

interests include innovative outpatient pharmacy models, entrepreneurial-
ism, social and administrative pharmacy practice sciences, and clinical-based

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 21,2026 at 21:00:51 UTC from IEEE Xplore. Restrictions apply.

https://www.openhealthnews.com/hotnews/openemr-continues-growpopularity-and-use
https://www.openhealthnews.com/hotnews/openemr-continues-growpopularity-and-use

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

